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1. Introduction

In a recent series of papers, [4, 5, 6] we studied the limit functions of iterated
function systems. To define an Iterated Function System, or IFS, we begin with
the family of holomorphic functions Hol(Ω, X) from a hyperbolic domain Ω ⊂ C
to a subdomain X ⊂ Ω; we choose an arbitrary sequence of functions {fn},
fn ∈ Hol(Ω, X); then we form the sequence

Fn = f1 ◦ f2 ◦ . . . fn−1 ◦ fn.

The sequence {Fn} is called the iterated function system corresponding to {fn}.
For readability, we denote by F(Ω, X) the set of all iterated function systems
made from functions in Hol(Ω, X).

By Montel’s theorem (see for example [2]), the sequence Fn is a normal fam-
ily, and every convergent subsequence converges uniformly on compact subsets
of Ω to a holomorphic function F ∈ Hol(Ω, X). The accumulation functions
F are called accumulation points of the IFS and are either open or constant
maps. The constant accumulation points may be located either inside X or on
the boundary of X.

Whether there are non-constant accumulation points and whether accumu-
lation points may take values on the boundary of X depends on the geometry of
X. In [1], the authors introduced the concept of a Bloch subdomain as follows:

Definition 1. Let R(X, Ω) be the supremum of all radii of hyperbolic disks
contained in X, where the radii are measured with respect to the hyperbolic metric
on Ω. A subdomain X of Ω is called a Bloch subdomain of Ω if

R(X, Ω) < ∞.

Note that by a compactness argument, any relatively compact subdomain is
a Bloch subdomain.

2000 Mathematics Subject Classification. Primary 32G15; Secondary 30C60, 30C70,
30C75.

Key words and phrases. Random Iteration, Iterated Function Systems, Blaschke products
.

Supported in part by PSC-CUNY grant.
Supported in part by by the grant DMS 0200733 from the National Science Foundation.

c©0000 (copyright holder)

1



2 LINDA KEEN AND NIKOLA LAKIC

In [1] the authors proved that if X is a Bloch subdomain then every accumu-
lation point of an IFS in F(Ω, X) is constant. In [5] we proved that this condition
is also necessary; that is, if X is a non-Bloch subdomain there are non-constant
accumulation points. In [3, 7], it was proved that if X is relatively compact in
∆, the accumulation point is unique. In our recent paper, [6], we showed that if
X is Bloch and non-relatively compact, any finite number of arbitrary points in
X can be prescribed as the set of accumulation points of an IFS in F(Ω, X).

In this paper we turn our attention to iterated function systems where X is
a non-Bloch subdomain of ∆ and there are accumulation points that are non-
constant. Any accumulation point can be represented as an infinite composition
of maps in Hol(Ω, X). To see this, suppose F = limj→∞ Fnj is an accumulation
point of some IFS corresponding to {fn}. Let g1 = f1 ◦ . . . ◦ fn1 , g2 = fn1+1 ◦
. . . ◦ fn2 , gk = fnk−1+1 ◦ . . . ◦ fnk+1 . Then gn ∈ Hol(Ω, X) and F is the infinite
composition F = g1 ◦ g2 ◦ . . . ◦ gk . . ..

We now reverse this and ask whether a given holomorphic map in Hol(Ω, X)
is an accumulation point for some IFS in F(Ω, X), or equivalently, whether it
has a representation as an infinite composition of maps in Hol(Ω, X).

In this paper we answer this question when the source domain Ω is the unit
disk ∆. We prove

Theorem 1. If X is a non-Bloch subdomain of X then given any function
g ∈ Hol(∆, X) there is an IFS in F(Ω, X) with g as an accumulation point.

and

Theorem 2. Let X be a non-Bloch subdomain of ∆. Let K be either an
empty set or a compact subset of X and let C be any closed subset of X. Let G
be the set of covering maps g ∈ Hol(∆, X) such that g(0) ∈ K. Then there is a
single IFS in F(∆, X) whose full set of accumulation points consists exactly of
the open maps in G and the constants in C.

The paper is organized as follows. In section 2, we prove two lemmas that
are at the heart of the proof of the theorems and in section 3 we prove the
theorems. In section 4 we derive two corollaries: the first says that any map
in Hol(∆, X) can be an accumulation point of an IFS in F(∆, X) if X is a
non-Bloch subdomain and any constant in X can be an accumulation point if
X is Bloch; the second says that if X 6= ∆ then any g ∈ Hol(∆, X) cannot
be represented by a non-trivial finite composition of functions fi ∈ Hol(∆, X).
Finally, in the last section we show that the first corollary does not generalize to
F(Ω, X) for Ω 6= ∆.

2. Preparatory Lemmas

Definition 2. Let X be a subdomain of Ω and let a be a point of X. Let
C = R(X, Ω, a) be the radius measured with respect to the hyperbolic metric ρΩ

of Ω of the largest disk with center at a contained in X. Then C is called the
ρ-Bloch radius at a.

Using this definition we can restate the definition of a Bloch subdomain.

Definition 3. A subdomain X of Ω is a Bloch subdomain if the supremum
of the ρ-Bloch radii, taken over all points in X, is finite.
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We now assume Ω is the unit disk ∆. The first lemma gives an estimate
depending on the ρ-Bloch radius that relates the distances between relatively
close points in the ρ = ρ∆ and ρX metrics.

Lemma 2.1. Let a be a point in a subdomain X of ∆. Let C = R(X, ∆, a)
be the ρ-Bloch radius at a. If z is another point in X, with

ρ(a, z) < 1 < C,

then
ρX(a, z) ≤ (1 + ε)ρ(a, z)

where
ε = ε(C) → 0 as C →∞.

Proof. By applying the Möbius transformation

A(z) =
z − a

1− az
,

we may assume that a = 0. Suppose that C = R(X, ∆, 0) > 1 > ρ(0, z) for some
point z in X. Let D be a disk in ∆ with center at 0 and ρ-radius C. Then D ⊂ X,
so that ρX ≤ ρD. Therefore, an easy calculation shows

ρX(0, z) ≤ ρD(0, z) =
∫ |z|

0

c

c2 − t2
dt

where c is the Euclidean radius of D. Obviously c → 1 as C →∞. Therefore,

ρX(0, z) ≤
∫ |z|

0

1
1− t2

(c +
c(1− c2)
c2 − t2

)dt ≤
∫ |z|

0

1
1− t2

(c +
c(1− c2)
c2 − |z|2 )dt →

∫ |z|

0

1
1− t2

dt = ρ(0, z)

as c → 1, and the lemma follows.

In the next series of lemmas we prove that from an arbitrary sequence of points
c1, c2, . . . in the unit disk such that |cn| → 1, we can extract a subsequence and
estimate the contraction properties of the infinite Blaschke product whose zeros
are at the points of the subsequence.

Let a1, a2, a3, . . . be a sequence of points in ∆ and let k be a positive integer.
Then by Montel’s theorem, the sequence of finite Blaschke products

An(z) = zk z − a1

1− a1z

z − a2

1− a2z
. . .

z − an

1− anz
,

is a normal family. Thus, some subsequence An(l) of An converges locally uni-
formly to an infinite Blashke product

A(z) = zk z − a1

1− a1z

z − a2

1− a2z
. . .

Note that if the sequence of numbers |a1||a2||a3| . . . |an| converges to a positive
number, then the kth derivative at zero of any accumulation point A of An is
nonzero. This in turn implies that A is an open map from ∆ to ∆.

In the following lemmas the notation D(a, r) stands for a hyperbolic disk in
∆ with center a and radius r.
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Lemma 2.2. Let b1, b2, b3, . . . be a sequence of points in the unit disk ∆ such
that |bn| → 1. If C > 1 then there exists a subsequence a1, a2, a3, . . . chosen
from the bn such that for all n ≥ 1 and all z in D(an, n+4

2 ), the finite Blaschke
products

An(z) = zk z − a1

1− a1z

z − a2

1− a2z
. . .

z − an

1− anz
satisfy

(1) |An(z)| ≥ e
−1

2n−2C | z − an

1− anz
||z|k−1

Proof. Assume first that k = 1. Pick a constant C > 1. Let a0 = 0. Choose
a1 from the sequence {bn} such that D(a1, 4C) is disjoint from D(0, C). Continue
by choosing a2, a3, . . . such that the hyperbolic disks D(an, 4nC) are disjoint for
all n = 0, 1, 2, . . . . Let z be a point in D(an, n+4

2 ). Then for 0 ≤ l < n, we have

ρ(al, z) ≥ ρ(al, an)− ρ(an, z) > (4n + 4l)C − n + 4
2

≥ 2n2lC.

Since ln(x) ≤ x for all positive x, for all l, 1 ≤ l < n, we have

2n2lC ≤ ρ(al, z) =
1
2

ln
1 + | z−al

1−alz
|

1− | z−al

1−alz
| ≤

1
2

ln
2

1− | z−al

1−alz
| ≤

1
1− | z−al

1−alz
|

Therefore

| z − al

1− alz
| ≥ 1− 1

2n2lC
Note that

2x ≥ ln
1

1− x
whenever 0 < x <

1
2
.

Therefore,

ln |An(z)
z−an

1−anz

| = ln |z|+ ln | z − a1

1− a1z
|+ . . . + ln | z − an−1

1− an−1z
| ≥

n−1∑

l=0

ln(1− 1
2n2lC

) ≥ −
n−1∑

l=0

1
2n−12lC

≥ − 1
2n−2C

.

This is equivalent to

|An(z)| ≥ e−
1

2n−2C | z − an

1− anz
|

as claimed.
If k > 1 we can apply the above argument to Ãn(z) = |An(z)|

|zk−1| . Multiplying

the result for Ãn through by |z|k−1 we obtain the statement of the lemma.

We turn now to the infinite product A(z). We prove

Lemma 2.3. Let A be an accumulation point of the finite Blaschke products
An(z) of lemma 2.2. Then for all n and all z ∈ D(an, n+4

2 ) we have

(2) |A(z)| ≥ e−
1

2n−2C | z − an

1− anz
||z|k−1

and the weaker inequality

(3) |A(z)| ≥ e−
k

2n−2C | z − an

1− anz
|
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Moreover, A′(an) 6= 0 for all n 6= 0 and A(z) is univalent in a neighborhood
of each an. In addition, if k = 1, A′(0) 6= 0 and A is univalent in a neighborhood
of zero.

In particular, for n = 0 this says

(4) |A(z)| ≥ e−
4
C |z|k whenever ρ(0, z) < 2

Proof. We need to estimate the tail of the right side of

ln | A(z)
z−an

1−anz

| = k ln |z|+ ln | z − a1

1− a1z
|+ . . .

(5) + ln | z − an−1

1− an−1z
|+ ln | z − an+1

1− an+1z
|+ . . .

(Notice that if n = 0 we replace k by k − 1.) To this end we note that for l > n
we have, with an argument similar to the one in lemma 2.2,

ρ(al, z) ≥ ρ(al, an)− ρ(an, z) > 4lC − n + 4
2

≥ 2n2l−1C

so that

2n2l−1C ≤ ρ(al, z) =
1
2

ln
1 + | z−al

1−alz
|

1− | z−al

1−alz
| ≤

1
2

ln
2

1− | z−al

1−alz
| ≤

1
1− | z−al

1−alz
|

Therefore
| z − al

1− alz
| ≥ 1− 1

2n2l−1C
for l > n

and again arguing as in lemma 2.2,

ln | z − an+1

1− an+1z
|+ . . . =

∞∑

l=n+1

ln | z − al

1− alz
| ≥

∞∑

l=n

−1
2n−12lC

This together with the proof of lemma 2.2 implies,

ln | A(z)
z−an

1−anz

| ≥ −1
2n−2C

+ (k − 1) ln |z|

or equivalently,

|A(z)| ≥ e−
1

2n−2C | z − an

1− anz
||z|k−1

We obtain the second inequality by noting that we trivially have

ln | A(z)
z−an

1−anz

| ≥ k ln |z|+ k ln | z − a1

1− a1z
|+ . . .

(6) +k ln | z − an−1

1− an−1z
|+ k ln | z − an+1

1− an+1z
|+ . . .

Then from the arguments above we have

ln | A(z)
z−an

1−anz

| ≥

k

∞∑

l=0

ln(1− 1
2n2lC

) ≥ −k

∞∑

l=0

1
2n−12lC

= − k

2n−2C
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The next step is an estimate for k = 1.

Lemma 2.4. Suppose k = 1. For any ε > 0, there exists a C > 1 such
that the infinite Blaschke product A of lemma 2.3 has the following property:
for every point w in ∆ with ρ(0, w) < 1, there exists a point z in ∆ such that
A(z) = w and ρ(0, z) ≤ (1 + ε)ρ(0, w).

Proof. We claim that we may choose C sufficiently large so that

(7) D(0, 1) ⊂ A(D(0, 2))

To prove this, let w be a point in D(0, 1) \ A(D(0, 2)) closest to 0. Since k = 1,
A(0) = 0 and A is univalent in a neighborhood of 0 so that |w| > 0. Thus,
there exists a sequence wn = A(zn) such that ρ(0, zn) < 2 and wn → w. Passing
to a subsequence we may assume zn → z with ρ(0, z) = 2. The inequality (4)
implies that |wn| ≥ e−

4
C |zn|. Passing to the limit, we obtain |w| ≥ |z|e− 4

C .
Because ρ(0, w) ≤ 1 and ρ(0, z) = 2, |z| > |w|. Now if we choose C so large that
|z|e− 4

C > |w|, we have a contradiction that proves the relation (7). Therefore,
for every w in D(0, 1) we conclude that there exists a point z in D(0, 2) such
that A(z) = w. The inequality (4) implies ρ(0, z) ≤ (1 + ε)ρ(0, w) for the large
C we have chosen.

When k > 1 we have

Lemma 2.5. Suppose k > 1. Then any accumulation point A(z) is an open
map that satisfies

ρ(0, A(z)) ≤ ρ(0, zk)

Proof. The lemma follows from noting that |An(z)| ≤ |z|k for all n.

The last lemma of this group is

Lemma 2.6. For any two points p and q in ∆ with ρ(p, q) < 1, and any
σ > 0, for n sufficiently large there exist points pn and qn in D(an, n+4

2 ) such
that A(pn) = p, A(qn) = q, and ρ(pn, qn) ≤ (1 + σ)ρ(p, q).

Proof. Let p and q be any two points in ∆ with ρ(p, q) < 1 and let σ > 0.
Let N ≥ 2 be the smallest integer n such that both p and q belong to D(0, n

8 +1).
Let C̃ be the value of C chosen in lemma 2.4 and now set C = kC̃. We claim
that

(8) D(0,
n + 4

4
) ⊂ A(D(an,

n + 4
2

))

for all sufficiently large n. To prove this claim, let n ≥ N and let w be a point in
D(0, n+4

4 )\A(D(an, n+4
2 )) closest to 0. Since A(an) = 0 and A′(an) 6= 0, we have

|w| > 0. Thus, there exists a sequence wj = A(zj) such that zj ∈ D(an, n+4
2 ),

ρ(zj , an) → n+4
2 and wj → w. Let z̃j → z̃ be a sequence such that ρ(0, z̃j) =

ρ(an, zj) → n+4
2 . The inequality (3) implies that |wj | ≥ e−

k

2n−2C |z̃j |. Passing to

the limit, we obtain |w| ≥ e−
k

2n−2C |z̃| where ρ(0, z̃) = n+4
2 . Therefore,

|w|
|z̃| <

e
n+4

2 −1

e
n+4

2 +1

en+4−1
en+4+1

< e−
k

2n−2 ,

which is a contradiction for all sufficiently large n. This proves the claim (8).
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It now follows that there exist points pn and qn in D(an, n+4
2 ) such that

A(pn) = p and A(qn) = q. If p = 0, then we choose pn = an and the lemma
follows directly from inequality (4). Thus, we may assume that both p and q
are nonzero. By inequality (4), the points p̃n = pn−an

1−anpn
and q̃n = qn−an

1−anqn
are

uniformly bounded away from both 0 and the unit circle. Furthermore, the

inequality (3) implies that the functions
A( z+an

1+anz )

z converge locally uniformly to
a point a on the unit circle as n approaches infinity. Therefore, p

p̃n
and q

q̃n
both

converge to a, and since ρ(pn, qn) = ρ(p̃n, q̃n), the lemma follows.

3. The main theorem

In this section we prove theorems 1 and 2.

Theorem 1 If X is a non-Bloch subdomain of X then given any function
g ∈ Hol(∆, X) there is an IFS in F(Ω, X) with g as an accumulation point.

Proof. If X is a non-Bloch subdomain of ∆ there exists a sequence of
points a1, a2, a3, . . . in X such that the ρ−hyperbolic disks D(an, n) with center
at an and radius n satisfy

(9) D(an, n) ⊂ X

Let z0 be a point in the unit disk with 0 < ρ(0, z0) < 1. Choose a sequence
εn > 0 such that (1 + εn)2n−1 → 1.

Let k = 1. By lemma 2.4, there exists a subsequence ank
of the an deter-

mining an infinite Blashke product

A1(z) = z
z − an1

1− an1z

z − an2

1− an2z

z − an3

1− an3z
. . .

and there is a point z1 in ∆ satisfying

(10) A1(z1) = z0 and ρ(0, z1) ≤ (1 + ε1)ρ(0, z0)

Now lemma 2.6 with p = 0, q = z0 and σ = ε2 implies that for any n(1)
sufficiently large there are points p1 and q1 in D(an(1),

n(1)+4
2 ) such that

(11) A1(p1) = 0, A1(q1) = z0, and ρ(p1, q1) ≤ (1 + ε2)ρ(0, z0)

Observe that A1 maps X onto ∆.
Choose n(1) so large that by lemma 2.1 and formula (9), we have

ρX(p1, q1) ≤ (1 + ε2)ρ(p1, q1).

Next, choose a holomorphic covering map π1 from the unit disk ∆ onto
X such that π1(0) = p1 and π1(w1) = q1 for some point w1 with ρ(0, w1) =
ρX(p1, q1).

Again by lemma 2.4, there exists a subsequence of the ani that determines
another infinite Blashke product A2(z) such that A2(0) = 0 and there is a point
z2 in ∆ such that

(12) A2(z2) = w1 and ρ(0, z2) ≤ (1 + ε2)ρ(0, w1)

Thus
ρ(0, z2) ≤ (1 + ε2)3ρ(0, z0).
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Let f2 = π1 ◦A2.

Now lemmas 2.6 and 2.1 again, with p = 0, q = z0 but σ = ε3, imply that for
any n(2) sufficiently large there are points p21 and q21 in D(an(2),

n(2)+4
2 ) such

that
A1(p21) = 0, A1(q21) = z0, and

(13) ρX(p21, q21) ≤ (1 + ε3)ρ(p21, q21) ≤ (1 + ε3)2ρ(0, z0).

Since π1 is a covering map, there exist points p̃21 and q̃21 such that π1(p̃21) =
p21, π1(q̃21) = q21, and

ρ(p̃21, q̃21) = ρX(p21, q21) ≤ (1 + ε3)2ρ(0, z0).

Again choosing n(2) > n(1) sufficiently large and applying lemmas 2.6 and 2.1,
we obtain points p2 and q2 such that A2(p2) = p̃21, A2(q2) = q̃21, and

ρX(p2, q2) ≤ (1 + ε3)ρ(p2, q2) ≤ (1 + ε3)2ρ(p̃21, q̃21) ≤ (1 + ε3)4ρ(0, z0).

Next, choose a holomorphic covering map π2 from the unit disk ∆ onto
X such that π2(0) = p2 and π2(w2) = q2 for some point w2 with ρ(0, w2) =
ρX(p2, q2).

Repeating the arguments above, we find an infinite Blaschke product A3(z)
such that A3(0) = 0 and such that there is a point z3 in ∆ with

A3(z3) = w2 and ρ(0, z3) ≤ (1 + ε3)ρ(0, w2).

Then
ρ(0, z3) ≤ (1 + ε3)5ρ(0, z0).

Let f3 = π2 ◦A3.
Continuing in this way we obtain a sequence of maps fn = πn−1 ◦ An

and a sequence of points zn with ρ(0, zn) → ρ(0, z0) such that ρ(0, zn) ≤
(1 + εn)2n+1ρ(0, z0). Moreover, the maps

Gn = A1 ◦ f2 ◦ f3 . . . ◦ fn

are holomorphic self maps of the unit disk that satisfy Gn(0) = 0 and Gn(zn) =
z0. Therefore any accumulation point g of Gn is a holomorphic self map of the
unit disk that maps an accumulation point of zn to z0. Thus, g(z) = eiθz.

For any given f ∈ Hol(∆, X) set f1(z) = f(e−iθA1(z)). Then

f1 ◦ f2 ◦ f3 . . . = f(e−iθA1(f2(f3 . . .)))

has f as an accumulation point.
If f is a constant map whose image is a point on the boundary of X the

proof follows from the proof of the next theorem.

Now we are ready to prove theorem 2

Theorem 2 Let X be a non-Bloch subdomain of ∆. Let K be either an empty
set or a compact subset of X and let C be any closed subset of X. Let G be the
set of covering maps g ∈ Hol(∆, X) such that g(0) ∈ K. Then there is a single
IFS in F(∆, X) whose full set of accumulation points consists exactly of the open
maps in G and the constants in C.
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Observe that in the first theorem we were able to obtain any holomorphic
map as a limit function. In this theorem we can get any collection of maps at
either end of the contraction spectrum; that is any collection of constants and
hyperbolic isometries.

Proof. Let X be a non-Bloch subdomain of ∆. Pick a countable dense
subset C0 = {c1, c2, c3, . . .} of points in X such that C0 = C. Similarly, pick a
countable subset X0 = {x1, x2, x3, . . .} of points in X such that X0 = K.

By the compactness of K there exists a point x0 6= 0 in ∆ such that x+x0 ∈
X for every x in K. Furthermore, by rescaling, we may assume ρX(x, x+x0) < 1
for every x in K.

We proceed much as we did in the proof above. We start with a sequence
εn > 0 such that (1 + εn)4n−1 → 1. Then, since X is non-Bloch, we find a
sequence of points a1, a2, a3, . . . in X such that the disks D(an, n) satisfy

(14) D(an, n) ⊂ X

Using the preparatory lemmas, we use appropriate subsequences of the points
an to construct the following sequences: infinite Blaschke products An, covering
maps πn from ∆ to X and points z2n ∈ ∆ such that the maps fn = πn ◦An have
the following properties:

(15) f1f2 . . . f2n(z2n) = xn + x0,

f1f2 . . . f2n(0) = xn,

ρ(0, z2n) ≤ (1 + εn)4n−1ρX(xn, xn + x0),

f1f2 . . . f2n−1(0) = cn,

and for every z ∈ ∆.

ρ(f1f2 . . . f2n−1(0), f1f2 . . . f2n−1(z)) ≤ ρ(0, zn).

Once we have these maps it is easy to check that the even subsequences
f1f2 . . . f2n converge to covering maps that map 0 to points in K and that the
odd subsequences f1f2 . . . f2n−1 converge to constants in C proving the theorem.
Notice that the construction of the even indexed functions is more complicated
that the construction for the odd indexed one.

For the first map, choose a covering map π1 from ∆ onto X such that
π1(0) = c1. Using the preparatory lemmas, we take a subsequence ani and find
an infinite Blashke product

A1(z) = zk z − an1

1− an1z

z − an2

1− an2z

z − an3

1− an3z
. . . .

Since A1 is holomorphic, for all z ∈ ∆

ρ(0, A1(z)) ≤ ρ(0, z)

Let f1 = π1 ◦A1. Then we have f1(0) = c1 and ρ(f1(0), f1(z)) ≤ ρ(0, z).

Now we design f2. Choose a point y1 ∈ ∆ such that π1(y1) = x1. Then there
exists a point ỹ1 such that π1(ỹ1) = x1 + x0 and ρ(y1, ỹ1) = ρX(x1, x1 + x0).
Lemma 2.6 applied to A1 with σ = ε1 implies that for all sufficiently large n(1)
there are points p1 and q1 in D(an(1),

n(1)+4
2 ) such that A1(p1) = y1, A1(q1) = ỹ1,
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and ρ(p1, q1) ≤ (1+ε1)ρ(y1, ỹ1). Furthermore, if we choose n(1) sufficiently large,
by lemma 2.1, and formula (14), we also have

ρX(p1, q1) ≤ (1 + ε1)ρ(p1, q1).

Pick w2 ∈ ∆ with ρ(0, w2) = ρX(p1, q1). Choose a holomorphic covering map
π2 from the unit disk ∆ onto X such that π2(0) = p1 and π2(w2) = q1. Using
the preparatory lemmas we can find an infinite Blaschke product A2 and a point
z2 in ∆ such that A2(z2) = w2 and ρ(0, z2) ≤ (1 + ε1)ρ(0, w2).

Thus
ρ(0, z2) ≤ (1 + ε1)3ρX(x1, x1 + x0).

Let f2 = π2 ◦A2. Obviously f1f2(0) = x1 and f1f2(z2) = x1 + x0.

Next, we design f3. By lemma 2.6 the maps A1 and A2 map X onto ∆.
Therefore the composition f1 ◦ f2 maps X onto X and we can find a point d2 in
X such that f1f2(d2) = c2. Choose a holomorphic covering map π3 from ∆ onto
X such that π3(0) = d2. Now form the infinite Blashke product A3(z) such that
A3(0) = 0 and by lemma 2.5

ρ(0, A3(z)) ≤ ρ(0, z2)

Let f3 = π3 ◦A3. Obviously f1f2f3(0) = c2 and

ρ(c2, f1f2f3(z)) ≤ ρ(0, A3(z)) ≤ ρ(0, z2).

The design of f4 takes four steps. First choose a point y2 ∈ ∆ such that
π1(y2) = x2. Then there exists a point ỹ2 such that π1(ỹ2) = x2 + x0 and
ρ(y2, ỹ2) = ρX(x2, x2 + x0). Lemma 2.6 applied to A1 again implies that for all
sufficiently large n(2) there are points p2 and q2 in D(an(2),

n(2)+4
2 ) such that

A1(p2) = y2, A1(q2) = ỹ2, and

ρ(p2, q2) ≤ (1 + ε2)ρ(y2, ỹ2).

Furthermore, if we choose n(2) > n(1) sufficiently large, by lemma 2.1, and
formula (14) we have,

ρX(p2, q2) ≤ (1 + ε2)ρ(p2, q2).

Second, since π2 is a covering map, there exist points p3 and q3 in the unit
disk such that π2(p3) = p2, π2(q3) = q2 and ρX(p2, q2) = ρ(p3, q3). Lemma 2.6
applied to A2 implies that for sufficiently large n(3) there are points p4 and q4

in D(an(3),
n(3)+4

2 ) such that A2(p4) = p3, A2(q4) = q3, and

ρ(p4, q4) ≤ (1 + ε2)ρ(p3, q3).

Furthermore, if we choose n(3) > n(2) sufficiently large, by lemma 2.1, and
formula (14) we have,

ρX(p4, q4) ≤ (1 + ε2)ρ(p4, q4).

Third, since π3 is a covering map, there exist points p5 and q5 in the unit
disk such that π3(p5) = p4, π3(q5) = q4 and ρX(p4, q4) = ρ(p5, q5). Lemma 2.6
applied to A3 implies that for sufficiently large n(4) there are points p6 and q6

in D(an(4),
n(4)+4

2 ) such that A3(p6) = p5, A3(q6) = q5, and

ρ(p6, q6) ≤ (1 + ε2)ρ(p5, q5).
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Furthermore, if we choose n(4) > n(3) sufficiently large, by lemma 2.1, and
formula (14) we have,

ρX(p6, q6) ≤ (1 + ε2)ρ(p6, q6).

Finally, pick a point w4 ∈ ∆ with ρ(0, w4) = ρX(p6, q6) and choose a holo-
morphic covering map π4 from the unit disk ∆ onto X such that π2(0) = p6 and
π4(w4) = q6.

Then find an infinite Blashke product A4(z) and a a point z4 in ∆ such that
A4(0) = 0, A4(z4) = w4 and

ρ(0, z4) ≤ (1 + ε2)ρ(0, w4).

Putting these inequalities together we have

ρ(0, z4) ≤ (1 + ε2)7ρX(x2, x2 + x0).

Let f4 = π4 ◦A4. Obviously f1f2f3f4(0) = x2 and f1f2f3f4(z4) = x2 + x0.
We continue in this way to construct the full sequence of maps fn; by con-

struction they have the properties listed in equations (15). A properly chosen
subsequence of the odd maps f1 . . . f2n−1(0) will converge to any constant in C
and by the last of equations (15) the limit function is just this constant. This
finishes the last part of the proof of theorem 1.

Now note that the points z2n are bounded in ∆ by the third of equations (15).
Given any k ∈ K we can choose a subsequence xni → k. Then f1 . . . f2ni(0) =
xni → k and f1 . . . f2ni(z2ni) = x0 + xni → x0 + k so that the limit function g is
open. To see that g is a covering map set lim zni = z∞ and note that

ρX(g(0), g(z∞)) ≤ ρ(0, z∞) ≤ x0 + k

so that g is an isometry and hence a covering map.
Hence we obtain an IFS whose set of accumulation functions contains all

of the constants in C together with a set of covering maps in G that map 0
onto every point in K. To see that this is the set of all covering maps recall
that a covering map is defined up to rotation by where it sends the origin.
Therefore repeating this construction, replacing the set {x1, x2, x3, . . .} with the
set {x1, x2, x1, x2, x3, x1, x2, x3, x4, . . .} we get infinitely many covering maps that
send the origin to each xi. If we pre-compose each of the corresponding f2n with
an appropriately chosen rational rotation about the point z2n, we get all the
covering maps. Thus we have an IFS whose limit functions contain the whole
set G as well as the set C of constants.

4. Corollaries

Corollary 1. Let X be a subdomain of the unit disk ∆. If X is a Bloch
subdomain then every constant in X is an accumulation point of some F(∆, X).
On the other hand, if X is non-Bloch, then every holomorphic map from the unit
disk to X is an accumulation point of some F(∆, X).

It is an open question whether every point on ∂X of a Bloch subdomain can
be an accumulation point. In [6] we prove that the answer is yes for two special
classes: those with locally connected boundary and those obtained by removing
an infinite set of points from the disk.
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Proof. If X is non-Bloch, it follows directly from Theorem 1 that any point
in X̄ is an accumulation point of some F(∆, X).

If X is Bloch, it is shown in [1] that every accumulation point is a constant
map. To obtain any given constant c ∈ X, take the first map of the IFS to be
the map f1 ≡ c.

Corollary 2. Let X be a proper subdomain of the unit disk ∆ and let f
be a holomorphic covering map from ∆ onto X. Then f can not be represented
as a finite composition of two or more holomorphic maps from the ∆ to X.
Furthermore, f may be represented as an infinite composition f1 ◦ f2 ◦ . . . of
holomorphic maps fn from ∆ to X if and only if X is non-Bloch. In particular,
if X is simply connected, then a Riemman map from the unit disk onto X may
be represented as a non-trivial composition of holomorphic maps from ∆ to X if
and only if X is non-Bloch.

Proof. The only part left to prove is the first part. Suppose f = h ◦ g is a
covering map from ∆ to X where g and h are holomorphic maps from ∆ to X.
Then by Schwarz’s lemma

1 = ρX(f(0))|f ′(0)| = ρX(h(g(0)))|h′(g(0))||g′(0)|
≤ ρ(g(0))|g′(0)| = |(A ◦ g)′(0)|,

where

A(z) =
z − g(0)
1− g(0)z

.

Thus, A ◦ g must be a rotation and so the image of g must be all of ∆.

5. More general source domains

Our discussion above is restricted to the situation where the source domain is
∆. The Bloch condition is defined, however, for any source domain Ω and target
subdomain X. Moreover, the proof in [1] extends to iterated function systems
in F(Ω, X); that is, if X is a Bloch subdomain of Ω then all limit functions are
constant.

One could ask, in this more general situation if, when X is a non-Bloch
subdomain of Ω, whether any function in Hol(Ω, X) can be realized as the limit
of an IFS in F(Ω, X). We show the answer is not always yes.

Consider the following explicit set S:

Denote the Euclidean disk of radius a that is centered and punctured at the
origin by ∆∗

a and set ∆∗ = ∆∗
1. Let z0 be the point 1/2 on the real axis in ∆∗

and, for n = 1, 2, . . ., let zn be the point on the real axis between 0 and z0 defined
by the equation ρ∆∗(zn, z0) = 2n. Let In be a closed interval on the real line
with center at zn and length 2 measured with respect to the hyperbolic metric
ρ∆∗ . We set

S = ∆∗
1/2 \ ∪nIn.

First, note that S is relatively compact in ∆. Thus, S is a Bloch subdomain
of ∆. Suppose f is a holomorphic map from ∆∗ to S. Then since f is bounded
and 0 is an isolated singularity, f extends to a holomorphic map f̃ from ∆ to S.
Because S contains no punctures, f̃ maps ∆ to S. Therefore, any IFS in F(∆∗, S)
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extends to an IFS in F(∆, S) and thus can only have constant accumulation
points.

Second, note that large disks in ∆∗ are contained in annuli around the
puncture. The complement of the intervals In in [0, 1/2] consists of intervals
Gn between In and In+1 and by construction the ρ∆∗ length of Gn is at least
2(2n−1 − 1). Thus there are arbitrarily large disks in S and S is not a Bloch
subdomain of ∆∗.

Therefore, S is a non-Bloch subdomain of ∆∗ and any IFS in F(∆, S)
has only constant limits.
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