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Abstract. Conjugacy classes of primitive words in the free group
of rank two can indexed by the rationals. A representative for
each conjugacy class is given by a recursive enumeration scheme
and the representative, usually called a Farey word, is denoted by
Wp/q where p and q are relatively prime integers. Primitive pairs,
that is, pairs of words that generate the free group, correspond to
pairs of words (Wp/q, Wr/s) with |ps − rq| = 1. Here we give a
new enumerative scheme for the conjugacy class representatives of
primitive words in the free group of rank two. We denote these
words by Ep/q and prove that Ep/q is a palindrome if pq is even
and the product of two palindromes if pq is odd. We prove that
the pairs (Ep/q, Er/s) again generate the group when |ps−rq| = 1.

1. Introduction

It is well known that up to conjugacy primitive generators in a rank
two free group can be indexed by the rationals and that pairs of prim-
itives that generate the group can be obtained by the number theory
of the Farey sequences. The words are denoted by Wp/q where p and
q are always taken to be relatively prime integers and a primitive pair
will be of the form (Wp/q,Wr/s) obeying the Farey neighbor condition
|ps− rq| = 1.

It is also well known that up to conjugacy a primitive word can
always be written as either a palindrome or a product of palindromes
and that certain pairs of palindromes will generate the group.

In this paper we give a new enumerative scheme for conjugacy classes
of primitive words, still indexed by the rationals (Theorem 3.1). We
denote the words representing each conjugacy class by Ep/q. In addition
to proving that the enumeration scheme gives a unique representative
for each conjugacy class containing a primitive, we prove that the words
in this scheme are either palindromes or products of palindromes and
thus give a new proof of that result. Further we show that pairs of
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these words (Ep/q, Er/s) are primitive pairs that generate the group if
|pq − rs| = 1 (Theorem 3.2).

Pairs of primitive generators arise in the discreteness algorithm for
PSL(2,R) representations of two generator groups [4, 5]. This enu-
merative scheme will be useful in extending discreteness criteria to
PSL(2,C) representations where the hyperbolic geometry of palin-
dromes plays an important role [3].

2. Preliminaries

The main object here is a two generator free group which we de-
note by G = 〈A,B〉. A word W = W (A,B) ∈ G is, of course,
an expression of the form An1Bm1An2 · · ·Bnr for some set of 2r in-
tegers n1, ..., nr,m1, ..., nr. The expression W (C, D) denotes the word
W with A and B replaced by C and D. The expressions W (B, A),
W (A−1, B),W (A−1, B−1) and W (A,B−1) have the obvious meaning.

We write X̄ as well as X−1 for the inverse of a word X.

Definition 1. A word W = W (A,B) ∈ G is primitive if there is
another word V = V (A,B) ∈ G such that W and V generate G. V is
called a primitive associate of W and the unordered pair W and V is
called a pair of primitive associates or a primitive pair for short.

Definition 2. A word W = W (A,B) ∈ G is a palindrome if it reads
the same forward and backwards.

In [1] we found connections between a number of different forms of
primitive words and pairs of primitive words in a two generator free
group. We recall some results.

Theorem 2.1. ([1, 7]) W = W (A,B) in G = 〈A,B〉 is primitive if
and only if, up to cyclic reduction and inverse, it has the form

(1) AεBn1AεBn2 . . . AεBnp

or the form

(2) BεAn1BεAn2 . . . BεAnp

where ε = ±1 and nj ≥ 1, j < p, |nj−nj+1| ≤ 1 where j is taken mod p,
and, if

∑p
i=1 ni = q then p and q are relatively prime, (p, q) = 1.

We denote this primitive W (A,B) by Wp/q. Two primitive words
Wp/q and Wr/s are associates if and only if neighbor property |ps−qr| =
1 holds.

The exponents in (1) and (2) are termed the primitive exponents of
the word.
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In what follow when we use r/s to denote a rational, we assume that
r and s are integers, s 6= 0 and (r, s) = 1.

To state the next theorem, we need the concept of Farey addition
for fractions.

Definition 3. If p
q
, r

s
∈ Q, the Farey sum is

p

q
⊕ r

s
=

p + r

q + s

Two fractions are called Farey neighbors if |ps− qr = 1|.
If p

q
< r

s
then it is a simple computation to see that

p

q
<

p

q
⊕ r

s
<

r

s

and that both pairs of fractions

(
p

q
,
p

q
⊕ r

s
) and (

p

q
⊕ r

s
,
r

s
)

are Farey neighbors if (p/q, r/s) are.
One creates the Farey diagram in the upper half-plane by marking

each fraction by a point on the real line and joining each pair of Farey
neighbors by semi-circle orthogonal to the real line. The point here is
that because of the properties above none of the semi-circles intersect
in the upper half plane. This gives a tessellation of the hyperbolic plane
where the semi-circles (which are hyperbolic geodesics) joining a pair
of neighbors and its Farey sum form a hyperbolic triangle.

Fix any point ζ on the positive imaginary axis. Given a fraction, p
q
,

there is a hyperbolic geodesic γ from ζ to p
q

that intersects a minimal

number of these triangles.

Definition 4. We determine a Farey sequence for p
q

by choosing the

new endpoint of each new common edge in the sequence of triangles
traversed by γ.

Definition 5. The Farey level or the level of p/q, Lev(p/q) is the
number of triangles traversed by γ

Given p/q, we can find the smallest and largest rationals m/n and r/s
that are neighbors of p/q. These also have the property that they are
the only neighbors with lower Farey level. That is, m/n < p/q < r/s
and Lev(p/q) < Lev(m/n), Lev(p/q) < Lev(r/s), and if u/v is any
other neighbor Lev(p/q) > Lev(u/v).

Definition 6. We call the smallest and the largest neighbors of the
rational p/q the distinguished neighbors of p/q.
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Note that we can tell whether a distinguished neighbor c/d is smaller
(respectively larger) than p/q by whether cq − pd = 1 (respectively
cq − pd = −1). We also refer to the distinguished neighbors of p/q as
being the unique parents of p/q.

Farey sequences are related to continued fraction expansions of frac-
tions (see for example, [6]). In particular, write

p

q
= a0 +

1

a1 + 1
a2+ 1

a3+···+ 1
ak

= [a0, . . . , ak]

where aj > 0, j = 1 . . . k and set pn

qn
= [a0, . . . , an].

The approximating fractions can be computed recursively from the
continued fraction for p/q as follows:

p0 = a0, q0 = 1 and p1 = a0a1 + 1, q1 = a1

pj = ajpj−1 + pj−2 , qj = ajqj−1 + qj−2 j = 2, . . . , k.

The Farey level can be expressed in terms of the continued fraction
p/q = [a0, . . . ak] by the formula

Lev(p/q) =
k∑

j=0

aj.

The distinguished neighbors of p/q have continued fractions

[a0, . . . , ak−1] and [a0, . . . , ak−1, ak − 1].

The Farey sequence contains the approximating fractions as a sub-
sequence. The points of the Farey sequence between

pj

qj
and

pj+1

qj+1
have

continued fraction expansions

[a0, a1, . . . aj + 1], [a0, a1, . . . , aj + 2], . . . , [a0, a1, . . . aj + aj+1 − 1].

The next theorem shows how distinguished neighbors of words are
related to the pairs of primitive associates in theorem 2.1.

Theorem 2.2. ([1, 7, 10]) The primitive words Wp/q in G = 〈A,B〉
can be enumerated inductively using Farey sequences of fractions as
follows: set

W0/1 = A, W1/0 = B

Given p
q
, let m

n
and r

s
be its distinguished neighbors labeled so that

m

n
<

p

q
<

r

s
.

Then
W p

q
= Wm

n
⊕ r

s
= Wr/s ·Wm/n.
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A pair Wp/q,Wr/s is a pair of primitive associates if and only if p
q
, r

s

are neighbors.

We note that the product of the words Wm/n · Wr/s is conjugate
to the product Wr/s ·Wm/n regardless of which rational is larger, but
that in order for the scheme to work we need to be consistent. In this
iteration scheme we always choose the product where ms − rn = 1.
We emphasize that Wp/q always denotes the word obtained using this
enumeration scheme.

We also note that the Wp/q words can be expanded using their con-
tinued fraction exponents instead of their primitive exponents. Stated
most simply, for generators A and B, if we have the primitive pair of
words (X, Y ), then either

(3) (X, Y ) 7→ (XY ak , Y ) or (X, Y ) 7→ (Y, XY ak)

The following exhibits the primitive words with the continued frac-
tion expansion exponents in its most precise form.

Theorem 2.3. [1] If [a0, . . . , ak] is the continued fraction expansion of
p/q, the primitive word Wp/q can be written in a form that exhibits the
continued fraction. As above let the continued fraction approximants be
pj/qj = [a0, . . . , aj]. They are alternately larger and smaller than p/q.

Set

W0/1 = A, W1/0 = B and W1/1 = BA.

If pk−2/qk−2 > p/q set

Wp/q = Wpk−2/qk−2
(Wpk−1/qk−1

)ak

and set

Wp/q = (Wpk−1/qk−1
)akWpk−2/qk−2

otherwise.

In [9] Piggott characterizes conjugacy classes of primitive elements
as those which contain cyclically reduced words of odd length and pairs
of palindromes that generate the group. He also shows that each cycli-
cally reduced primitive element is either a palindrome or a product of
palindromes. We obtain new proofs of these results using our Ep/q enu-
meration scheme. Note that our condition on the parity of pq translates
into a condition on the parity of p + q.

In the case when pq is odd, the two palindromes in the product can
be chosen in various ways. We will make a particular choice in our
enumeration scheme.
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3. Enumerating primitives: palindromes and products

We can now establish the E enumeration scheme: set

E0/1 = P0/1 = A and E1/0 = P1/0 = B

These are trivially palindromes. At the next level we have Q1/1 = BA.
To give the induction scheme: we assume we have m/n < p/q < r/s,
p/q = (m + r)/(n + s) and m/n, r/s are the distinguished neighbors of
p/q.
Case 1 pq - odd: Here the order of multiplication is

Ep/q = Er/sEm/n.

Case 2 pq - even: Here the order is reversed

Ep/q = Em/nEr/s.

Theorem 3.1. The primitive elements of a two generator free group
can be enumerated recursively as Ep/q. Each Ep/q is a cyclic permu-
tation of Wp/q. The enumeration scheme uses Farey sequences so that
when pq is even, Ep/q is a palindrome, denoted by Pp/q, and when pq is
odd, Ep/q is a product of palindromes denoted by Qp/q.

• For pq even, there is a unique palindrome conjugate to Wp/q.
We denote it by Pp/q

• For pq odd, set Qp/q = Pm/nPr/s where m/n and r/s are the
distinguished neighbors of p/q with m/n the smaller one.

Remark 3.1. Note that although there are several ways the conjugacy
class of Wp/q can be factored as products of palindromes, in this theorem
we specifically choose the one that makes the enumeration scheme work.

Not only are the words in this enumeration scheme primitive, we
have

Theorem 3.2. Let {Wp/q} or {Ep/q} denote the words in the two enu-
meration schemes. Then if (p/q, p′/q′) are neighbors the pair Wp/q,Wp′/q′

and the pair Ep/q, Ep′/q′ are both pairs of primitive associates.

Before we give the proofs we note that Theorem 2.2 gives one way
to choose a specific representative for each conjugacy class of primitive
words. Theorem 3.1 gives another way. Our notation distinguishes
between these representatives: We write Wp/q for the primitive form
from theorem 2.1, and Ep/q (e.g. Pp/q or Qp/q as pq is even or odd) for
the primitive form from theorem 3.1.

In this new enumeration scheme, we will see that words labeled with
fractions that are Farey neighbors again give rise to primitive pairs.
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Note that cyclic permutations are obtained by conjugation but we can-
not necessarily simultaneously conjugate both elements of a primitive
pair in the form of theorem 2.1 to get to the corresponding primitive
pair in theorem 3.1.

Proof. (proof of Theorem 3.1) It is a simple observation that in
every Farey triangle with vertices m/n, p/q, r/s one of the vertices is
odd and the other two are even. To see this simply use the fact that
mq − np, ps − rq,ms − nr are all congruent to 1 modulo 2. (This
also gives the equivalence of parity cases for pq and the p + q used by
other authors.) In a triangle where pq is even it may be the smaller
distinguished neighbor is even and the larger odd or vice-versa and we
take this into account in discussing the enumeration scheme. We note
that in general if X and Y are palindromes, then so is (XY )tX for any
positive integer t. The proof proceeds by induction on the level.

The idea behind the proof is that each rational has a pair of parents
and each parent in turn has two parents so there are at most four
grandparents to consider. The parents and grandparents may not all
be distinct. The cases considered below correspond to the possible
ordering of the grandparents as rational numbers and also the possible
orders of their levels.

In case 1) by induction we will get the product of distinguished
neighbor palindromes.

In case 2) we will need to show that we get palindromes.

The set up shows that we have palindromes for level 0, ({0/1, 1/0})
and the correct product for level 1, {1/1}.

Assume the scheme works for all rationals with level less than N and
assume Lev(p/q) = N . Since m/n, r/s are distinguished neighbors of
p/q both their levels are less than N .

Let p/q = [a0, a1, . . . , ak],
∑k

0 aj = N . and assume we are in case 2
where pq is even.

If

Lev(r/s) > Lev(m/n),

we have

(4) m/n = [a0, a1, . . . , ak−1] and r/s = [a0, a1, . . . , ak−1, ak − 1].

Then m/n is the smaller distinguished neighbor of r/s and the larger
distinguished neighbor is

(5) w/z = [a0, a1, . . . , ak−1 − 2].
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The smaller distinguished neighbor of m/n is

(6) u/v = [a0, . . . , ak−2, ak−1 − 1]

and the larger distinguished neighbor is

(7) x/y = [a0, . . . , ak−2].

If rs is odd we have, by the induction hypothesis

Er/s = Qr/sPw/zPm/n

and
Ep/q = Pp/q = Pm/nQr/s = Pm/n(Pw/zPm/n)

which is a palindrome.
If mn is odd we have by the induction hypothesis

Em/n = Qm/n = Px/yPu/v

and by equations (4), (5), (6))and (7)

Pr/s = Q
(ak−1)
m/n Px/y = (Px/yPu/v)

(ak−1)Px/y

so that
Pp/q = Qm/nPr/s = (Px/yPu/v)

akPx/y

is a palindrome.

If
Lev(r/s) < Lev(m/n),

we have

(8) m/n = [a0, a1, . . . , ak−1, ak − 1] and r/s = [a0, a1, . . . , ak−1].

Then r/s is the larger distinguished neighbor of m/n and the smaller
distinguished neighbor is

(9) w/z = [a0, a1, . . . , ak−1 − 2].

The larger distinguished neighbor of r/s is

(10) x/y = [a0, . . . , ak−2, ak−1 − 1]

and the smaller distinguished neighbor is

(11) u/v = [a0, . . . , ak−2].

If mn is odd we have, by the induction hypothesis

Em/n = Qm/n = Pr/sPw/z

and
Ep/q = Pp/q = Qm/nPr/s = Pr/s(Pw/zPr/s)

which is a palindrome.
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If rs is odd we have, by the induction hypothesis

Er/s = Qr/s = Px/yPu/v

and by equations (8), (9), (10))and (11)

Pm/n = Pu/vQ
(ak−1)
r/s = Pu/v(Px/yPu/v)

(ak−1)

so that

Pp/q = Pm/nQr/s = Pu/v(Px/yPu/v)
ak

is a palindrome.
We have yet to establish that the Ep/q words are primitive but this

follows from the proof of Theorem 3.2. ¤

3.1. Proof of Theorem3.2.

Proof. The proof is by induction on the maximum level of p/q and p′/q′

and is the same for either set of words. We write the proof for the E
form since it is a well known fact for the W form of the words even
though the proof given here is new.

At level 1, the theorem is clearly true: (A,B), (A,BA) and (BA, B)
are all primitive pairs.

Assume now that the theorem holds for any pair both of whose levels
are less than N .

(1) Let (p/q, p′/q′) be a pair of neighbors with Lev(p/q) = N .

(2) Let m/n, r/s be the distinguished neighbors of p/q and assume
m/n < p/q < r/s.

(a) Then m/n, r/s are neighbors and both are have level less
than N so that by the induction hypothesis (Em/n, Er/s) is
a pair of primitive associates.

(b) It follows that all of the pairs

(Em/n, Em/nEr/s), (Em/n, Er/sEm/n),

(Em/nEr/s, Er/s) and (Er/sEm/n, Er/s)

are pairs of primitive associates since we can retrieve the
original pair (Em/n, Er/s) from any of them.

(c) Since Ep/q = Er/sEm/n or Ep/q = Em/nEr/s we have proved
the theorem if p′/q′ is one of the distinguished neighbors.

(3) If p′/q′ is not one of the distinguished neighbors, then either
p′/q′ = (tp+m)/(tp+n) for some t > 0 or p′/q′ = (tp+r)/(tp+s)
for some t > 0.
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(a) Assume for definiteness p′/q′ = (tp + m)/(tp + n); the ar-
gument is the same in the other case.

(b) Note that the pairs p/q, (jp + m)/(jp + n) are neighbors
for all j = 1, . . . t.

(c) We have already shown Em/n, Ep/q is a pair of primitive
associates. The argument above applied to this pair shows
that Em/n, E(p+m)/(q+m) is also a pair of primitive asso-
ciates. Applying the argument t times proves the theorem
for the pair Ep′/q′ , Ep/q.

¤
An immediate corollary is

Corollary 3.1. The scheme of Theorem 3.1 also gives a scheme for
enumerating primitive palindromes alone and a scheme for enumerating
primitives that are palindromic products alone.

We thank Vidur Malik whose thesis [8] suggested that we look at
palindromes.
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