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Abstract. Let F = 〈a, b〉 be a rank two free group. A word
W (a, b) in F is primitive if it, along with another group element,
generates the group. It is a palindrome (with respect to a and b)
if it reads the same forwards and backwards. It is known that in
a rank two free group any primitive element is conjugate either
to a palindrome or to the product of two palindromes, but known
iteration schemes for all primitive words give only a representative
for the conjugacy class. Here we derive a new iteration scheme
that gives either the unique palindrome in the conjugacy class or
expresses the word as a unique product of two unique palindromes.
We denote these words by Ep/q where p/q is rational number ex-
pressed in lowest terms. We prove that Ep/q is a palindrome if pq
is even and the unique product of two unique palindromes if pq
is odd. We prove that the pairs (Ep/q, Er/s) generate the group
when |ps − rq| = 1. This improves the previously known result
that held only for pq and rs both even. The derivation of the enu-
meration scheme also gives a new proof of the known results about
primitives.

1. Introduction

It is well known that up to conjugacy primitive generators in a rank
two free group can be indexed by the rational numbers and that pairs
of primitives that generate the group can be obtained by the number
theory of the Farey tessellation of the hyperbolic plane. It is also well
known that up to conjugacy a primitive word can always be written as
either a palindrome or a product of two palindromes and that certain
pairs of palindromes will generate the group. [1, 19]

In this paper we give new proofs of the above results. The proofs
yield a new enumerative scheme for conjugacy classes of primitive
words, still indexed by the rationals (Theorem 2.1 and Theorem 6.1).
We denote the words representing each conjugacy class by Ep/q. In
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addition to proving that the enumeration scheme gives a unique rep-
resentative for each conjugacy class containing a primitive, we prove
that the words in this scheme are either palindromes or the canonically
defined product of a pair of palindromes that have already appeared
in the scheme and thus give a new proof of the palindrome/product
result. Further we show that pairs of these words (Ep/q, Er/s) are
primitive pairs that generate the group if and only of |pq − rs| = 1
(Theorem 6.2). This improves the previous known result that held
only for pairs of palindromes.

Pairs of primitive generators arise in the discreteness algorithm for
PSL(2,R) representations of two generator groups [4, 5, 11]. This
enumerative scheme will be useful in extending discreteness criteria
to PSL(2,C) representations where the hyperbolic geometry of palin-
dromes plays an important role [10]. Here we use the discreteness
algorithm and its relation to continued fractions as described in [8],
and its relation to the Farey tessellation of the hyperbolic plane, to
find the enumeration scheme and to prove that it actually enumerates
all primitives and all primitive pairs.

2. The Main Result

We are able to state and use our main result with very little notation,
only the definition of continued fractions. Namely, we let p and q be
relative prime integers positive integers. Write

p

q
= a0 +

1

a1 + 1
a2+ 1

a3+···+ 1
ak

= [a0; a1, . . . , ak]

where the ai are integers with aj > 0, j = 1 . . . k, a0 ≥ 0.

Enumeration Scheme for positive rationals

Set
E0/1 = A−1, E1/0 = B, and E1/1 = BA−1.

Suppose p/q has continued fraction expansion [a0; a1, ..., ak−1, ak].
Consider the two rationals defined by the continued fractions [a0;1 , ..., ak−1]
and [a0, ..., ak−1, ak−1]. One is smaller than p/q and the other is larger;
call the smaller one m/n and the larger one r/s so that m/n < p/q <
r/s. The induction step in the scheme is given by

Case 1 pq - odd:
Ep/q = Er/sEm/n.

Case 2 pq - even:
Ep/q = Em/nEr/s.
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We have a similar scheme for negative rationals described in sec-
tion 6. With both schemes we can state our main result as

Theorem 2.1. (Enumeration of Primitives by Rationals) Up to
inverses, the primitive elements of a two generator free group can be
enumerated by the rationals using continued fraction expansions. The
resulting words are denoted by Ep/q. In the enumeration scheme, when
pq is even, Ep/q is a palindrome, and when pq is odd, Ep/q is a product
of palindromes that have already appeared in the scheme. Moreover,

• For pq even, Ep/q is a palindrome. It is cyclically reduced and
the unique palindrome in its conjugacy class.
• For pq odd, when Ep/q = Em/nEr/s both Em/n and Er/s are

palindromes; Ep/q is cyclically reduced.

Remark 2.1. Note that although there are several ways a word in the
pq odd conjugacy class can be factored as products of palindromes, in
this theorem we specifically choose the unique factorization for Ep/q that
makes the enumeration scheme work.

In addition we have,

Theorem 2.2. Let {Ep/q} denote the words in the enumeration scheme
for rationals. Then if (p/q, p′/q′) satisfies |pq′ − qp′| = 1, the pair
(Ep/q, Ep′/q′) generates the group.

These theorems will be proved in section 6. In order to prove the
theorems and the related results we need to review some terminology
and background.

3. Preliminaries

The main object here is a two generator free group which we denote
by F = 〈a, b〉. A word W = W (a, b) ∈ F is, of course, an expression of
the form

(1) am1bn1am2 · · · bnr

for some set of 2r integersm1, ...,mr, n1, ..., nr withm2, ...,mr, n1, ..., nr−1

non-zero. The expression W (c, d) denotes the word W with a and b
replaced by c and d. The expressions W (b, a), W (a−1, b),W (a−1, b−1)
and W (a, b−1) have the obvious meaning.

Definition 1. A word W = W (a, b) ∈ F is primitive if there is another
word V = V (a, b) ∈ F such that W and V generate F . V is called a
primitive associate of W and the unordered pair W and V is called a
pair of primitive associates or a primitive pair for short.
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In the next subsections we summarize terminology and facts about
the Farey tessellation and continued fraction expansions for rational
numbers. Details and proofs can be found in [20, 21, 22]. See also [23].

3.1. Preliminaries: The Farey Tessellation. In what follows when
we use r/s to denote a rational number, we assume that r and s are
integers with s > 0, and that r and s are relatively prime, that is, that
(r, s) = 1. We let Q denote the rational numbers, but we identify the
rationals with points on the extended real axis on the Riemann sphere.
We use the notation 1/0 to denote the point at infinity.

We need the concept of Farey addition for fractions.

Definition 2. If p
q
, r
s
∈ Q with |ps− qr| = 1, the Farey sum is

p

q
⊕ r

s
=
p+ r

q + s

Two fractions are called Farey neighbors if |ps− qr| = 1.

When we write p
q
⊕ r

s
= p+r

q+s
we tacitly assume the fractions are Farey

neighbors.

Remark 3.1. If p
q
< r

s
then it is a simple computation to see that

p

q
<
p

q
⊕ r

s
<
r

s

and that both pairs of fractions

(
p

q
,
p

q
⊕ r

s
) and (

p

q
⊕ r

s
,
r

s
)

are Farey neighbors if (p/q, r/s) are.

It is easy to calculate that the Euclidean distance between finite
Farey neighbors is strictly less than one unless they are adjacent inte-
gers. This implies that unless one of the fractions is 0/1, both neighbors
have the same sign.

One creates the Farey diagram in the upper half-plane by marking
each fraction by a point on the real line and joining each pair of Farey
neighbors by a semi-circle orthogonal to the real line. The point here is
that because of the above properties none of the semi-circles intersect
in the upper half plane. This gives a tessellation of the hyperbolic
plane where the semi-circles joining a pair of neighbors, together with
the semi-circles joining each member of that pair to the Farey sum of
the pair, form an ideal hyperbolic triangle. The tessellation is called
the Farey tessellation and the vertices are precisely the points that
correspond to rational numbers. See Figure 1
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Figure 1. The Farey Tesselation with the curve γ

The Farey tessellation is invariant under the semi-group generated
by z 7→ z + 1 and z 7→ 1/z.

Fix any point ζ on the positive imaginary axis. Given a fraction,
p
q
, there is an oriented hyperbolic geodesic γ connecting ζ to p

q
. We

assume γ is oriented so that moving from ζ to a positive rational is
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the positive direction. This geodesic γ will intersect some number of
triangles.

Definition 3. The Farey level or the level of p/q, denoted by Lev(p/q),
is the number of triangles traversed by γ

Note that our definition implies Lev(p/q) = Lev(−p/q).
The geodesic γ will enter any given triangle along an edge. This

edge will connect two vertices and γ will exit the triangle along an
edge connecting one of these two vertices and the third vertex of the
triangle, the new vertex. Since γ is oriented, the edge through which
γ exits a triangle is either a left edge or a right edge depending upon
whether the edge γ cuts is to the right or left of the new vertex.

Definition 4. We determine a Farey sequence for p
q

inductively by

choosing the new vertex of next triangle in the sequence of triangles
traversed by γ. The sequence ends at p/q.

Given p/q, we can find the smallest rational m/n and the largest
rational r/s that are neighbors of p/q. These neighbors have the prop-
erty that they are the only neighbors with lower Farey level. That is,
m/n < p/q < r/s and Lev(p/q) > Lev(m/n), Lev(p/q) > Lev(r/s),
and if u/v is any other neighbor Lev(p/q) < Lev(u/v).

Definition 5. We call the smallest and the largest neighbors of the
rational p/q the distinguished neighbors or the parents of p/q.

Note that we can tell whether a distinguished neighbor r/s is smaller
or larger than p/q by the sign of rq − ps.

We emphasize that we have two different and independent orderings
of the rational numbers: the ordering as rational numbers and the
partial ordering by level. Our proofs will often use induction on the
level of the rational numbers involved as well as the rational order
relations among parents and grandparents.

Remark 3.2. It follows from remark 3.1 that if m/n and r/s are the
parents of p/q, then any other neighbor of p/q is of the form m+pt

n+tp
or

r+pt
s+tp

for some positive integer t. The neighbors of ∞ are precisely the

set of integers.

Finally we note that we can describe the Farey sequence of p/q by
listing the number of successive left or right edges of the triangles that
γ crosses where a left edge means that there is one vertex of the triangle
on the left of γ and two on the right, and a right edge means there is
only one vertex of γ on the right. This will be a sequence of integers,
the left-right sequence ±(n0;n1, ..., nt) where the integers ni, i > 0 are
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all positive and n0 is positive or zero. The sign in front of the sequence
is positive or negative depending on the orientation of γ.

3.2. Preliminaries: Continued Fractions. Farey sequences are re-
lated to continued fraction expansions of positive fractions; they can
also be related to expansions of negative fractions. We review the con-
nection in part to fix our notation precisely. We do not use the classical
notation of [12] for negative fractions, but instead use the notation of
[17, 21, 20] which is standardly used by mathematicians working in
Kleinian groups and three manifolds. This notation reflects the sym-
metry about the imaginary axis in the Farey tessellation which plays a
role in our applications. This symmetry is built in to the semi group
action on the tessellation.

For, for p/q ≥ 0 write

p

q
= a0 +

1

a1 + 1
a2+ 1

a3+···+ 1
ak

= [a0; a1, . . . , ak]

where aj > 0, j = 1 . . . k, a0 ≥ 0. For 0 ≤ n ≤ k set
pn
qn

= [a0; a1, . . . , an].

Remark 3.3. The continued fraction of a rational is ambiguous; the
continued fractions [a0; a1, ..., an] and [a0; a1, ..., an−1, 1] both represent
the same rational. Therefore, if we have [a0; a1, ..., an−1, 1] we may
replace it with [a0; a1, ..., an−1 + 1].

Remark 3.4. Note that if p
q
≥ 1 has continued fraction expansion

[a0; a1, ..., an], then q
p

has expansion [0; a0, ..., an] while if p
q
< 1 has con-

tinued fraction expansion [0; a1, ..., an], then q
p

has expansion [a1; a2, ..., an].

The approximating fractions, pn

qn
, are also known as the approxi-

mants. They can be computed recursively from the continued fraction
for p/q as follows:

p0 = a0, q0 = 1 and p1 = a0a1 + 1, q1 = a1

pj = ajpj−1 + pj−2 , qj = ajqj−1 + qj−2 j = 2, . . . , k.

One can calculate from these recursion formulas that the approximants
are alternately to the right and left of p/q.

The Farey level can be expressed in terms of the continued fraction
p/q = [a0; a1, . . . ak] by the formula

Lev(p/q) =
k∑
j=0

aj.



8 JANE GILMAN AND LINDA KEEN

The distinguished neighbors or parents of p/q have continued fractions

[a0; a1 . . . , ak−1] and [a0; a1, . . . , ak−1, ak − 1].

The Farey sequence contains the approximating fractions as a sub-
sequence. The points of the Farey sequence between

pj

qj
and

pj+1

qj+1
have

continued fraction expansions

[a0; a1, . . . aj + 1], [a0; a1, . . . , aj + 2], . . . , [a0; a1, . . . aj + aj+1 − 1].

They are all on the same side of p/q.
We extend the continued fraction notion to negative fractions by

defining the continued fraction of p
q
< 0 to be the negative of that for

|p
q
|. That is, by setting

p

q
= −[a0; a1 . . . , ak] = [−a0;−a1 . . . ,−ak] where |p

q
| = [a0; a1, . . . ak].

We also set Lev(p/q) = Lev(|p/q|).
In [12] the continued fraction [a0; a1, . . . , ak] of p/q < 0 is defined so

that a0 < 0 is the largest integer in p/q and [a1, . . . ak] = p/q − a0 is
the continued fraction of a positive rational. With this notation the
symmetry about the origin which plays a role in our applications is
lost.

We note that for any pair of neighbors, unless one of them is 0/1
or 1/0, they both have the same sign and thus have equal a0 entries.
Since we almost always work with neighbors the difference between our
notation and the classical one does not play a role.

4. Preliminaries: Lifting results from PSL(2,R) to the
free group F .

In addition to the free group on two generators, F = 〈a, b〉, we also
consider a non-elementary representation of F into PSL(2,R) where
ρ : F → PSL(2,R) with ρ(a) = A, ρ(b) = B and ρ(F ) = G = 〈A,B〉.
In [11] it was shown that if the representation were discrete and free,
then up to taking inverses as necessary, any pair of primitive words
could be obtained from (A,B) by applying a sequence of Nielsen trans-
formations to the generators. This sequence is described by an ordered
set of integers, [a0, . . . ak] and is used in computing the computational
complexity of the algorithm [5, 13]. It was termed the Fibonacci or
F−sequence in [8]. The words obtained by applying the algorithm are
known as algorithmic words; here we call them the F -words. We give
precise definitions below (section 4.2).
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Our aim is to lift these results for the generators of the representation
groups to pairs of primitives in the free group. To do this we review
the algorithm and other prior results. In the free group F there is
no concept equivalent to a geometric orientation. Therefore in lifting
statements from PSL(2,R) to F we need to carefully analyze the role
of geometric orientation in the algorithm.

4.1. Coherent Orientation, algorithmic words and stopping
generators. The group PSL(2,R) consists of isometries in the hyper-
bolic metric on the upper half plane H. It is conjugate in PSL(2,C)
to the group of isometries of the unit disk D with its hyperbolic met-
ric. By abuse of notation, we identify these groups and use whichever
model is easier at the time. All of the results below are independent of
the model we use. An isometry is called hyperbolic if it has two fixed
points on the boundary of the half-plane or the disk, and leaves the
hyperbolic geodesic joining them invariant. This geodesic is called the
axis of the element. One of the fixed points is attracting and the other
is repelling. This gives a natural orientation to the axis since points are
moved along the axis toward the attracting fixed point. This natural
orientation does not exist in the free group.

The result that we will apply from PSL(2,R) uses the orientation
of an axis of an element to define the notion of a coherently oriented
pair of elements or axes. In what follows we need to lift this concept
to the free group.

Definition 6. Let A and B be any pair of hyperbolic generators of the
group G acting as isometries on the unit disk. Assume that they are
given by representatives in SL(2,R) with trA ≥ trB > 2. Suppose
the axes of A and B are disjoint. Let L be the common perpendicular
geodesic to these axes oriented from the axis of A to the axis of B.
We may assume that the attracting fixed point of A is to the left of
L, replacing A by A−1 if necessary. We say A and B are coherently
oriented if the attracting fixed point of B is also to the left of L and
incoherently oriented otherwise.

If (A,B) are coherently oriented, then (A,B−1) are incoherently ori-
ented.

If G = 〈A,B〉 is discrete and free, and the axes of A and B are
disjoint, the quotient Riemann surface D/G is a sphere with three holes;
that is a pair of pants. The axes of hyperbolic group elements project
to closed geodesics on S. The length of the geodesic is determined by
the trace of the element.
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4.1.1. Stopping generators. IfG is a discrete free subgroup of PSL(2,R),
the Gilman-Maskit algorithm [11] goes through finitely many steps and
at the last, or k+ 1th step, it determines that the group is discrete and
stops. At each step, t = 0, . . . , k, it determines an integer at and a new
pair of generators (At+1, Bt+1); these integers form an F−sequence and
the pairs, (At, Bt), of algorithmic words are the F− words in the pro-
cess above. The final pair of generators (C,D) = (Ak+1, Bk+1) are
called the stopping generators. It is shown in [8] that if the axes of
the original generators are disjoint, the stopping generators have the
geometric property that their axes, together with the axis of A−1

k+1Bk+1,
project to the three shortest geodesics on the quotient Riemann surface
and these geodesics are disjoint and simple [8].

Lemma 4.1. If the pair (A,B) is coherently oriented, then either
the pair (C,D) is coherently oriented or one of the pairs (D,C−1) or
(C,D−1) is.

Proof. We assume without loss of generality that the pair (A,B) is
coherently oriented because if it is not, one of the pairs (A,B−1) or
(B,A−1) or B−1, A−1) is coherently oriented and we can replace it
with that one. We can analyze the steps in the algorithm and the
orientations of the intermediate generators carefully and see that, if we
start with a coherently oriented pair, at each step, up to the next to
last, t = k, the pair we arrive at, (B−1

t−1, Bt), is coherently oriented. We
therefore need to check whether the last pair,

(C,D) = (Ak+1, Bk+1) = (B−1
k , Bk+1)

is coherently oriented.
The stopping condition is that the last word Bk+1 have negative

trace. We know trBk−1 > trBk; we don’t know the relation of |trBk+1|
to these traces. We will have either

|trBk+1| > trBk−1 > trBk or

trBk−1 > |trBk+1| > trBk or

trBk−1 > trBk > |trBk+1|.
In the first case (B−1

k−1, Bk) is coherently oriented. In the second case

(B−1
k , Bk+1) is incoherently oriented but (D,C−1) = (B−1

k+1, Bk) is co-

herently oriented. In the third case, again (B−1
k , Bk+1) is incoher-

ently oriented but this time (C,D−1) = (B−1
k , B−1

k+1) is coherently ori-
ented. �
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4.2. F-sequences.

Definition 7. An F−sequence is an ordered set of integers [a0, . . . ak]
where all the ai, i = 0, . . . , k have the same sign and all but a0 are
required to be non-zero.

Given an F -sequence we define a sequence of words in the group G.

Definition 8. F-words. Let A and B generate the group G and let
F = [a0, ..., ak] be an F−sequence. We define the ordered pairs of
words (At, Bt), t = 0, . . . , k inductively, replacing the pair (X, Y ) given
at step t by the pair (Y −1, X−1Y at) as follows: Set

(A0, B0) = (A,B)

and
(A1, B1) = (B−1, A−1Ba0).

Then for t = 1, . . . , k, set

(At+1, Bt+1) = (B−1
t , A−1

t Bat
t ).

Note that At+1 = B−1
t and Bt+1 = Bt−1B

at
t We call the words (At, Bt)

the F-words determined by the F-sequence.

We use the notation Bt = W[a0,...at](A,B). With this notation the
last pair is

Ak+1 = (W[a0,...ak−1](A,B))−1 and Bk+1 = W[a0,...ak](A,B).

4.3. Winding and Unwinding. In [8] we studied the relationship
between a given pair of generators for a free discrete two generator
subgroup of PSL(2,R) with disjoint axes and the stopping generators
produced by the Gilman-Maskit algorithm. We found we could inter-
pret the algorithm as an unwinding process, a process that at each step
reduces the number of self-intersections of the corresponding curves on
the quotient surface and unwinding the way in which stopping genera-
tors had been wound around each other to obtain the original primitive
pair.

Here is an example where we denote the original given pair of gen-
erators by (A,B) and the stopping generators by (C,D).

Example 1. We begin with the (unwinding) F−sequence [3, 2, 4] and
obtain the words

(A0, B0) = (A,B)

(A1, B1) = (B−1, A−1B3)

(A2, B2) = (B−3A,BA−1B3A−1B3)
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and

(A3, B3) = (B−3AB−3AB−1, A−1B3 · (BA−1B3A−1B3)4) = (C,D).

Going backwards

(C0, D0) = (C,D)

(C1, D1) = (C−4
0 D−1

0 , C−1
0 ) = (B−3A,BA−1B3A−1B3)

(C2, D2) = (C−2
1 D−1

1 , C−1
1 ) =

((B−3A)−2 · (BA−1B3A−1B3)−1, A−1B3) = (B−1, A−1B3)

(C3, D3) = (C−3
2 D−1

2 , C−1
2 ) = (B3B−3A,B) = (A,B)

We can think of this as the (winding) sequence given by [−4,−2,−3]
and write

A = W[−4,−2,−3](C,D) and B = W−1
[−4,−2](C,D).

Definition 9. Let q be a positive integer. A winding step labeled by
the integer −q will send the pair (U, V ) to the pair (U−qV −1, U−1) and
an unwinding step labeled by the integer q the will send the pair (M,N)
to the pair (N−1,M−1N q).

Theorem 4.2. [8] If G = 〈A,B〉 is a non-elementary, discrete, free
subgroup of PSL(2,R) where A and B are hyperbolic isometries with
disjoint axes, then there exists an unwinding F-sequence [a0, ..., ak]
such that the stopping generators (C,D) are obtained from the pair
(A,B) by applying this F-sequence. There is also an unwinding F-
sequence [b0, ..., bk] such that the pair (A,B) is the final pair in the set
of F-words obtained by applying the winding F-sequence to the pair
(C,D).

The sequences are related by [b0, ..., bk] = [−ak, ...,−a0]

This motivates the following definition.

Definition 10. (1) We call the F-sequence [a0, a1, . . . , ak], determined
by the discreteness algorithm that finds the stopping generators when
the group is discrete, the unwinding F-sequence.

(2)We call the F-sequence [b0, b1, . . . , bk], that determines the origi-
nal generators (A,B) from the stopping generators (C,D), the wind-
ing F−sequence.
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4.4. F-sequences and rational numbers. We have been using a
notation for our F -sequences that looks very much like the continued
fraction notation. We justify this by identifying the rational p/q with
continued fraction [a0; . . . , ak] with the F−sequence [a0, . . . , ak]. This
justifies our modifying the classical definition of continued fractions
for negative numbers in section 3.2. Moreover, the ambiguity in the
definition of stopping generators corresponds exactly to the ambiguity
in the definition of a continued fraction.

5. Primitive exponents

It follows from Theorem 4.2 that the stopping generators are inde-
pendent of the given set of generators. This means that every primitive
word in the group G is the last word in a winding F -sequence. Using
the rules for winding and unwinding and the identification of the F -
sequence with the rational p/q it is easy to show that if we expand the
F -words into the form of (1) we have

Theorem 5.1. Let (C,D) be stopping generators for G and assume
they are labeled so that they are coherently oriented. Every primitive
word W (C,D) in G has one of the following four forms where the
vi > 0, i = 1, . . . , j − 1, and v0, vj ≥ 0.

W (C,D) =


Cεv0D−εCεv1D−εCεv2 · · ·D−εCvj for p/q > 1 or
C−εv0DεCεv1DC−v2 · · ·DεC−εvj for 0 < p/q ≤ 1 or
Dεv0CεDεv1CεDεv2 · · ·CεDεvj for p/q < −1 or
Cεv0DεCv1DεCεv2 · · ·DεCεvj for − 1 ≤ p/q < 0

where p/q = [a0; a1, . . . , ak] is the rational corresponding to the winding
F-sequence and ε = ±1 as k is even or odd.

Proof. Starting with coherently oriented generators (C,D), and an F -
sequence with non-negative entries, the exponents of C and D in the
F -words always have opposite signs. If a0 > 0, and p/q ≥ 1, we see
that D1 = C−1Da0 and, as we go through the F -words, the exponent of
C will always have absolute value 1 as in the first line. If, on the other
hand, a0 = 0, and 0 < p/q < 1, we see that (C1, D1) = (D−1, C−1)
and the roles of C and D−1 and D and C−1 are interchanged as in the
second line.

If we begin with an F -sequence with non-positive entries, the neg-
ative entries cause the exponents of C and D in the F -words always
to have the same sign. Again, if a0 < 0, we see that D1 = C−1Da0

and as we go through the F -words, the exponent of C will always have
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absolute value 1 as in the third line. Similarly, if a0 = 0 we get the
form of the last line.

In either case, as we step from t− 1 to t, we have Dt = C−1
t−1 so that

the signs of all the exponents change. This accounts for the appearance
of ε in the exponents. �

Remark 5.1. (No Cancellation) We see from the above theorem that
in any primitive word the exponents of the C generator are all of the
same sign as are those of the D generator. Moreover, by Theorem 4.2
and the identification of the F-words with the algorithmic words, we see
that if we have a primitive pair, the F-sequences agree in their first k
entries so that both words correspond to fractions in the same interval of
Theorem 5.1. This implies that there is no cancellation when we form
products. Thus we do not need to distinguish between concatenation
and free reduction.

We call the exponents vi the primitive exponents of the wordW (C,D).
They have the property that two adjacent primitive exponents differ
by at most 1. There are formulas for writing the primitive exponents
in terms of the entries in the (F)− sequence which can be found in [8]
and [9] but we will not need them here.

The identification of continued fractions for rationals to F -sequences,
together with Remark 5.1, immediately imply

Corollary 5.2. There is a one-to-one map, τ from pairs of rationals
(p/q, r/s), with |ps − rq| = 1 to coherently oriented primitive pairs
defined by τ : (p/q, r/s) 7→ (A,B) where p/q is the rational with con-
tinued fraction expansion [a0; .a1, . . . , ak] and r/s is the rational with
continued fraction expansion [a0; a1, . . . , ak−1].

Corollary 5.3. Up to replacing a primitive word by its inverse, there
is a one-to-one map from the set of primitive elements to the set of all
rationals.

Proof. In the map τ above, to each rational we either obtain a word in
either (C,D) or (D−1, C−1) or (C,D−1) or (D,C−1). No word and its
inverse both appear. �

In the unwinding example, Example 1, the F -sequence is [3, 2, 4], the
rational is 31/9 and the F -word is A−1B3 · (BA−1B3A−1B3)4.

5.1. Lifting to the free group. We can now achieve our first goal
which is to extend these results from a two-generator non-elementary
discrete free subgroup G of PSL(2,R) with oriented generators to the
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free group on two generators. To do this we take a faithful represen-
tation of F = (a, b) into such a group but map the pair of generators
(a, b) to the coherently oriented stopping generators (C,D)

We have

Corollary 5.4. Every pair of primitive associates in F = 〈a, b〉 the free
group on two generators can be written in the form (W (a, b), V (a, b))
where

W (a, b) = W[a0;...,ak](a, b) and V (a, b) = W−1
[a0;...,ak−1](a, b)

and is thus associated to a pair of rationals that are Farey neighbors.

Proof. Take a faithful representation of F into PSL(2,R) this time
mapping the ordered pair (a, b) to the ordered pair (C,D) where C
and D are the stopping generators for the group they generate. �

5.2. Concatenation vs. Free Reduction. Because the words that
we obtain from the algorithm are freely reduced and in a form where
there is never any reduction with the words we work with, we do not
distinguish between freely reduced products and the concatenation of
two words.

6. Enumerating primitives: palindromes and products

We first work with positive rationals. We do this merely for ease of
exposition and to simplify the notation. We then indicate the minor
changes needed for negative rationals.

Enumeration Scheme for positive rationals
Set

E0/1 = A−1, E1/0 = B, and E1/1 = A−1B.

If p/q has continued fraction expansion [a0; a1, ..., ak−1, ak], consider
the parent fractions [a0;1 , ..., ak−1] and [a0, ..., ak−1, ak − 1]. Choose
labels m/n and r/s so that m/n < p/q < r/s. Set

Case 1 pq - odd:
Ep/q = Er/sEm/n

Case 2 pq - even:
Ep/q = Em/nEr/s.

Note that in Case 1 the word indexed by the larger fraction is on the
left and in Case 2 it is on the right.
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Enumeration Scheme for negative rationals

Now assume p/q < 0. We use the reflection in the imaginary axis to
obtain the enumeration scheme. The reflection sends A−1 to A. This
reverses the order of the distinguished neighbors.

Set

E0/1 = A and E1/0 = B

These are trivially palindromes. At the next level we have E−1/1 = BA.
To give the induction scheme: we assume m/n, r/s are the distin-

guished neighbors of p/q and they satisfy m/n > p/q > r/s, p/q =
(m+ r)/(n+ s) and set

Case 1 pq - odd:

Ep/q = Er/sEm/n.

Case 2 pq - even:

Ep/q = Em/nEr/s.

Note that in Case 1 the word indexed by the larger fraction is on the
right and in Case 2 it is on the left.

Theorem 6.1. (Enumeration by Rationals) The primitive ele-
ments of a two generator free group can be enumerated by the rationals
using Farey sequences. The resulting words are denoted by Ep/q. In the
enumeration scheme, when pq is even, Ep/q is a palindrome, and when
pq is odd, Ep/q is a product of palindromes that have already appeared
in the scheme.

• For pq even, Ep/q is a palindrome. It is cyclically reduced and
the unique palindrome in its conjugacy class.
• For pq odd, Ep/q = Em/nEr/s where m/n and r/s are the parents

of p/q with m/n the smaller one. Both Em/n and Er/s are
palindromes; Ep/q is cyclically reduced.

Remark 6.1. Note that although there are several ways words in the
conjugacy class Ep/q can be factored as products of palindromes, in
this theorem we specifically choose the one that makes the enumeration
scheme work.

Not only are the words in this enumeration scheme primitive, we
have

Theorem 6.2. Let {Ep/q} denote the words in the enumeration scheme
for positive rationals. Then if (p/q, p′/q′) are neighbors, the pair of
words (Ep/q, Ep′/q′) is a pair of primitive associates.
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Before we give the proofs we note that given p/q = [a0; a1, . . . ak] ≥ 0
the F−sequence word W[a0;a1,...ak](A,B) determines a specific word in
its conjugacy class in G. The enumeration scheme also determines
a word, Ep/q, in the same conjugacy class. In general these words,
although conjugate, are different.

Theorem 6.2 tells us that words in the enumeration scheme labeled
with neighboring Farey fractions give rise to primitive pairs. Note that
although cyclic permutations are obtained by conjugation, we cannot
necessarily simultaneously conjugate both elements of a primitive pair
coming from the F -sequence to get to the corresponding primitive pair
coming from Theorem 6.2.

Proof. (proof of Theorem 6.1) The proof uses the connection be-
tween continued fractions and the Farey tessellation. We observe that
in every Farey triangle with vertices m/n, p/q, r/s one of the vertices
is odd and the other two are even. To see this simply use the fact that
mq − np, ps− rq,ms− nr are all congruent to 1 modulo 2. (This also
gives the equivalence of parity cases for pq and the p+ q used by other
authors.) In a triangle where pq is even, it may be that the smaller
distinguished neighbor is even and the larger odd or vice-versa and we
take this into account in discussing the enumeration scheme. We note
that in general if X and Y are palindromes, then so is (XY )tX for any
positive integer t.

We give the proof assuming p/q > 0. The proof proceeds by induc-
tion on the Farey level. The idea behind the proof is that each rational
has a pair of parents (distinguished neighbors) and each parent in turn
has two parents so there are at most four grandparents to consider.
The parents and grandparents may not all be distinct. The cases con-
sidered below correspond to the possible ordering of the grandparents
as rational numbers and also the possible orders of their levels.

To deal with negative rationals we use the reflection in the imaginary
axis. The reflection sends A−1 to A. We again have distinguished
neighbors m/n and r/s, and using the reflection our assumption is
m/n > p/q > r/s. In the statement of the theorem, m/n is now
the larger neighbor. Using our definition of the Farey level of p/q as
the Farey level of |p/q|, the proof is exactly the same as for positive
rationals.

In case 1) by induction we get the product of distinguished neighbor
palindromes.

In case 2) we need to show that we get palindromes.
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The set up shows that we have palindromes for level 0, ({0/1, 1/0})
and the correct product for level 1, {1/1}.

Assume the scheme works for all rationals with level less than N and
assume Lev(p/q) = N . Since m/n, r/s are distinguished neighbors of
p/q both their levels are less than N .

Suppose p/q = [a0, a1, . . . , ak]. Then Lev(p/q) =
∑k

0 aj = N and
the continued fractions of the parents of p/q are

[a0, a1, . . . , ak−1] and [a0, a1, . . . , ak−1, ak − 1].

Assume we are in case 2 where pq is even.
Suppose first that so that we have

(2) m/n = [a0, a1, . . . , ak−1] and r/s = [a0, a1, . . . , ak−1, ak − 1].

Then the smaller distinguished neighbor of r/s is m/n and the larger
distinguished neighbor is

(3) w/z = [a0, a1, . . . , ak−1 − 2].

The smaller distinguished neighbor of m/n is

(4) u/v = [a0, . . . , ak−2, ak−1 − 1]

and the larger distinguished neighbor is

(5) x/y = [a0, . . . , ak−2].

If rs is odd we have, by the induction hypothesis

Er/s = Er/sEw/zEm/n

and
Ep/q = Em/nEr/s = Em/n(Ew/zEm/n)

which is a palindrome.
If mn is odd we have, by the induction hypothesis,

Em/n = Ex/yEu/v

and by equations (2), (3), (4))and (5)

Er/s = E
(ak−1)
m/n Ex/y = (Ex/yEu/v)

(ak−1)Ex/y

so that
Ep/q = Em/nEr/s = (Ex/yEu/v)

akEx/y
is a palindrome.

If
Lev(r/s) < Lev(m/n),

we have

(6) m/n = [a0, a1, . . . , ak−1, ak − 1] and r/s = [a0, a1, . . . , ak−1].
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Then the larger distinguished neighbor of m/n is r/s and the smaller
distinguished neighbor is

(7) w/z = [a0, a1, . . . , ak−1 − 2].

The larger distinguished neighbor of r/s is

(8) x/y = [a0, . . . , ak−2, ak−1 − 1]

and the smaller distinguished neighbor is

(9) u/v = [a0, . . . , ak−2].

If mn is odd we have, by the induction hypothesis

Em/n = Er/sEw/z

and

Ep/qEm/nEr/s = Er/s(Ew/zEr/s)

which is a palindrome.
If rs is odd we have, by the induction hypothesis

Er/s = Ex/yEu/v

and by equations (6), (7), (8) and (9)

Em/n = Eu/vE
(ak−1)
r/s = Eu/v(Ex/yEu/v)

(ak−1)

so that

Ep/q = Em/nEr/s = Eu/v(Ex/yEu/v)
ak

is a palindrome.
We have yet to establish that the Ep/q words are primitive but this

follows from the proof of Theorem 6.2. �

6.1. Proof of Theorem 6.2.

Proof. The proof is by induction on the maximum of the levels of p/q
and p′/q′. Again we proceed assuming p/q > 0; reflecting in the imag-
inary axis we obtain the proof for negative rationals.

At level 1, the theorem is clearly true: (A−1, B), (A−1, BA−1) and
(BA−1, B) are all primitive pairs.

Assume now that the theorem holds for any pair both of whose levels
are less than N .

(1) Let (p/q, p′/q′) be a pair of neighbors with Lev(p/q) = N .

(2) Let m/n, r/s be the distinguished neighbors of p/q and assume
m/n < p/q < r/s.
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(a) Then m/n, r/s are neighbors and both are have level less
than N so that by the induction hypothesis (Em/n, Er/s) is
a pair of primitive associates.

(b) It follows that all of the pairs

(Em/n, Em/nEr/s), (Em/n, Er/sEm/n),

(Em/nEr/s, Er/s) and (Er/sEm/n, Er/s)

are pairs of primitive associates since we can retrieve the
original pair (Em/n, Er/s) from any of them.

(c) Since Ep/q = Er/sEm/n or Ep/q = Em/nEr/s we have proved
the theorem if p′/q′ is one of the distinguished neighbors.

(3) If p′/q′ is not one of the distinguished neighbors, then either
p′/q′ = (tp+m)/(tp+n) for some t > 0 or p′/q′ = (tp+r)/(tp+s)
for some t > 0.

(a) Assume for definiteness p′/q′ = (tp + m)/(tp + n); the ar-
gument is the same in the other case.

(b) Note that the pairs p/q, (jp + m)/(jp + n) are neighbors
for all j = 1, . . . t.

(c) We have already shown Em/n, Ep/q is a pair of primitive
associates. The argument above applied to this pair shows
that Em/n, E(p+m)/(q+m) is also a pair of primitive asso-
ciates. Applying the argument t times proves the theorem
for the pair Ep′/q′ , Ep/q.

�

An immediate corollary is

Corollary 6.3. The scheme of Theorem 6.1 also gives a scheme for
enumerating only primitive palindromes and a scheme for enumerating
only primitives that are canonical palindromic products.
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7. Examples

We compute some examples:

Fraction Parents Parity Ep/q Parental Product simplified
1/2 0/1⊕ 1/1 even E1/2 A−1 ·BA−1 A−1BA−1

2/1 1/1⊕ 1/0 even E2/1 BA−1 ·B BA−1B
1/3 1/2⊕ 0/1 odd E1/3 A−1BA−1 · A−1 A−1BA−2

2/5 1/3⊕ 1/2 even E2/5 A−1BA−2 · A−1BA−1 A−1BA−3BA−1

1/4 1/3⊕ 0/1 even E1/4 A−1 · A−1BA−2 A−2BA−2

2/7 1/4⊕ 1/3 even E2/7 A−2BA−2 · A−1BA−2 A−2BA−3BA−2

Let us see how the word in the enumeration scheme compares with
the word we get from the corresponding F− sequence. In section 4.3,
the F−word of 31/9 = [3, 2, 4] was A−1B3 · (BA−1B3A−1B3)4.

To find the word E31/9 note that the distinguished Farey neighbors
are [3; 2] = 7/2 and [3; 2, 3] = 24/7. We form the following words
indicating E31/9 and its neighbors in boldface.

E1/1 = A−1B,E2/1 = BA−1B.E3/1 = E0/1E2/0 = B ·BA−1B,

E4/1 = E3/1E0/1 = BBA−1B ·B

E7/2 = E3/1E4/1 = BBA−1B ·BBA−1BB,

E10/3 = E3/1E7/2 = B2A−1B3A−1B3A−1B2,

E17/5 = E7/2E10/3 = B2A−1B3A−1B2 ·B2A−1B3A−1B3A−1B2,

E24/7 = E17/5·E7/2 = B2A−1B3A−1B2 ·B2A−1B3A−1B3A−1B2 ·B2A−1B3A−1B2

E31/9 = E7/2E24/7 =

B2A−1B3A−1B2 ·B2A−1B3A−1B2 ·B2A−1B3A−1B3A−1B2 ·B2A−1B3A−1B2

Conjugate by B−1 and regroup to get

BA−1B3A−1B3·BA−1B3A−1B3·BA−1B3A−1B3·A−1B3·BA−1B3A−1B3.

Finally conjugate by (BA−1B3A−1B3)−3 to obtain the F−word of
31/9 = [3, 2, 4].
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8. Farey Diagram Visualization

We can visualize the relation between primitive pairs and neighbor-
ing rationals using the Farey diagram. Suppose the stopping generators
(C,D) correspond to (0/1, 1/0) as above, and the primitive pair (A,B)
corresponds to (r/s, p/q). Note that we have done this so that the
Farey level of p/q is greater than that of r/s and r/s is the parent of
p/q with lowest Farey level. (The other parent is (r − p)/(q − s) and
corresponds to A−1B.) Draw the curve γ from a point on the imaginary
axis to p/q. If p/q is positive, orient it toward p/q; if p/q is negative,
orient it towards the imaginary axis.

The left-right sequence, the continued fraction for p/q and the F
winding sequence whose last word is B are all the same. Traversing
the curve in the other direction reverses left and right and gives the un-
winding sequence. The symmetry about the imaginary axis is reflected
in our definition of negative continued fractions.

Given two primitive pairs (A,B) an (A′B′) such that B corresponds
to p/q and B′ corresponds to p′/q′ draw the curves γ and γ′. We can
find the sequence to go from (A,B) to (A′, B′) by traversing γ from p/q
to the imaginary axis and then traversing γ′ to p′/q′. We can also draw
an oriented curve from p/q to p′/q′ and read off the left-right sequence
along this curve to get the F− sequence that gives (A′, B′) as words in
(A,B) directly. We have

Corollary 8.1. Given any two sets of primitive pairs, (A,B) and
(A′, B′) there is an F-sequence containing either only positive or only
negative integers that connects one pair to the other.

We thank Vidur Malik who coined the terms winding and unwinding
steps and whose thesis [16] suggested that we look at palindromes.
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