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DYNAMICS OF MEROMORPHIC MAPS: MAPS WITH
POLYNOMIAL SCHWARZIAN DERIVATIVE

BY ROBERT L. DEVANEY AND LINDA KEEN

ABSTRACT. - We investigate the dynamics of a class of meromorphic functions, namely those with
polynomial Schwarzian derivative. We show that certain of these maps have dynamics similar to rational
maps while others resemble entire functions. We use classical results of Nevanlinna and Hille to describe
certain aspects of the topological structure and dynamics of these maps on their Julia sets. Several examples
from the families z -> X tan z, z ->• ez/(^z+e-z), and z -^'ke^^—e~z) are discussed in detail.

There has been a resurgence of interest in the past decade in the dynamics of complex
analytic functions. Most of this work has centered around the dynamics of polynomials
or rational maps [Bl, DH, Ma, S] or entire transcendental functions [DK, DT, GK, BR].
Our goal is to extend some of this work to the meromorphic case, pointing out along
the way some of the similarities and principal differences between this case and the other
classes of maps.

One of the principal differences arising in the iteration of meromorphic (non-rational)
functions is the fact that, strictly speaking, iteration of these maps does not lead to a
dynamical system. Infinity is an essential singularity for such a map, so the map cannot
be extended continuously to infinity. Hence the forward orbit of any pole terminates,
and, moreover any preimage of a pole also has a finite orbit. All other points have
well defined forward orbits.

Despite the fact that certain orbits of a meromorphic map are finite, the iteration of
such maps is important. For example, the iterative processes associated to Newton's
method applied to entire functions often yields a meromorphic function as the root-
finder. See [CGS].

In this paper we will deal exclusively with a very special class of meromorphic functions,
namely, those whose Schwarzian derivative is a polynomial. This class of maps includes
a number of dynamically important families of maps, including ^ tan z and X,expz.

The Schwarzian derivative has played a role in the analysis of dynamical systems in
other settings. For example, if the Schwarzian of two C3 maps of the interval is negative,
the same is true for their composition. Singer [Si] has shown that the class of functions
satisfying these conditions share many of the special properties of complex analytic
maps. This has allowed Guckenheimer [G] to classify these maps in a dynamical
sense. Our use of the Schwarzian derivative is completely different from these authors'
approach.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/89/01 55 25/$ 4.50/ © Gauthier-Villars



56 R. L. DEVANEY AND L. KEEN

The main property of maps with polynomial Schwarzian derivative that makes this
class special was noted first by Nevanlinna [N]. These maps are precisely the maps that
have only finitely many asymptotic values and no critical values. As is well known, the
fate of the asymptotic values and critical values under iteration plays a crucial role in
determining the dynamics. A further important fact about these maps concerns the
covering properties of the map itself. Hille [H] has shown that the plane may be
decomposed into exactly p sectors of equal angle (when the Schwarzian derivative has
degree p— 2) each of which is associated to one of the asymptotic values. This structure
theorem allows us to say much about the Julia set of the map.

The plan of this paper is as follows. In paragraph 1 we recall the classical results of
Nevanlinna and Hille. In paragraph 2-4 we present a series of three illustrative examples
drawn from the families X. tan z, ez/(kez+e~z), and ' k e z / ( e z — e ~ z ) . In paragraph 5 we
show that many of the standard properties of the Julia sets of polynomials, rational
maps, and entire functions carry over to our case. In particular, we show that these
maps never have wandering domains or domains at infinity, so that the Fatou — Sullivan
classification of the complement of the Julia set holds for these maps. In paragraph 6
we discuss several theorems which indicate the similarity of the Julia sets of our maps
with those of rational functions. For example, if all of the asymptotic values of the
map lie in a single immediate basin of attraction of a fixed point, then the Julia set of
the map is a Cantor set. We show that the restriction of the map to the Julia set is
equivalent to a shift map on infinitely many symbols which is appropriately modified
and augmented to account for finite orbits.

Other results show that certain of these maps have several properties in common with
entire functions. For example, it is possible for one of the asymptotic values to be a
pole. If this is the case, we show that the Julia set of the map contains Cantor bouquets,
a typical phenomenon encountered in the study of entire maps. In paragraph 3, we
present an example of inhomogenity in Julia sets; in this example, the Julia set is not the
entire Riemann sphere: certain of the points lie on analytic curves in it, but others do
not.

1. Classical Results

If F (z) is a meromorphic function, its Schwarzian derivative is defined by
F^)_3/F^)Y
F'(z) 2\F(z)j

Associated to the Schwarzian differential equation
(*) {F,z}=Q(z)

is a linear differential equation obtained by setting
g(z)=(F'(z)r1'2.

The resulting equation is

(^) r+iQ(^=0.
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DYNAMICS OF MEROMORPHIC MAPS 57

If 8i9 8i are linearly independent (locally defined) solutions of (^), their Wronskian is
a non-zero constant k. Since

^v=-^U ^'
it follows that Y(z)=g^(z)jg^(z) is a solution of (^). Conversely, each solution of (^
may be written locally as a quotient of independent solutions of (^^).

If Q(z) is a polynomial, there is a wide class of maps which satisfy (^). These
f'include such maps as X tan z, Xexpz, and exp(R(u))dM where R is a polynomial.f1

Results of Nevanlinna [N] and Hille [H] allow us to describe the asymptotic properties
of the solutions to (^) when Q is a polynomial of degree p—2. There are exactly p
special solutions, G o . . . G p _ i , called truncated solutions, which have the following
property: in any sector of the form

2nv 3n
argz——— < — — £

P P

with £ > 0, G^ (z) has the asymptotic development

logG^z)^-!)^^/2.

Each G^ is an entire function of order p / 2 . It follows that each G^ tends to zero as
z -> co along each ray in a sector \\\, of the form

27iv n
argz-—— <—.

I P I P

Moreover, G^(z) -> oo in the adjacent sectors W^+i and W\,_p Note that G^ and G^+i
are necessarily linearly independent. However, Gy and G^+j, f01' 1^1^ ^^ not ^e

independent.
Any solution of the associated Schwarzian equation may therefore be written in the

appropriate sector in the form

^ AG,(z)+BG^(z)
CG,(z)+DG^(z)

with AD-BC^O. Note that F(z) tends to A/C along any ray in the interior of W^+i
and to B/D in W^. The values A/C and B/D are called asymptotic values. Recall that
an asymptotic (or critical) path for a function F (z) is a curve a: [0, 1) -> C such that

lim a (t) = oo
t -»i

and
limF(a(0)=0).
t -> i
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58 R. L. DEVANEY AND L. KEEN

The point 0) is called an asymptotic value of F.
Asymptotic values can be classified. Nevanlinna's results show that our assumption

that Q is a polynomial implies that F has only finitely many asymptotic values. They
are therefore all isolated. Let B be a neighborhood of co which contains no other
asymptotic values. Consider the components of F'^B—o). Since the only points at
which F is not a covering of its image are the asymptotic values, F is a covering map on
these components. Hence these components are either disks or punctured disks. If
some component is a disk, then co is called a logarithmic singularity.

Example. — Let F(z)=tanz. Then i and —i are logarithmic singularities. F maps
the half plane lmz>yo>0 onto a punctured neighborhood of i. The image of any path
a (t) such that lim Im a (t) = oo is a path p (t) such that lim P (t) = i. Similarly the image

t ->• i t -^ i
of a lower half plane Imz<Ui <0 is mapped onto a punctured neighborhood of —i. oo
is an accumulation point of the poles; it is not an asymptotic value.

Since a map with a polynomial Schwarzian derivative assumes the special form (t) in
each sector W^, it follows that such a map has exactly p asymptotic values. Two or
more of these values may coincide, but in this case, non-adjacent sectors of asymptotic
paths correspond to this value. Also, F has no critical points since

F^-^v ' 2 / \si(z)

where k is a constant and g^ is entire. We summarize these facts in a theorem originally
proved by Nevanlinna [N].

THEOREM.—Maps with degree p—2 polynomial Schwarzian derivatives are exactly
those functions which have p logarithmic singularities, OQ, . . . ,0p_i . The a^ need not be
distinct. There are exactly p disjoint sectors Wo, . . ., Wp_i, at oo, each with angle 2n/p
in which F has the following behavior: there is a collection of disks B^, one around each
of the Op satisfying ¥~l{Q^—a^) contains a unique unbounded component U^W, and
F: Uf —> B, — a, 15 a universal covering.

The Uf are called exponential tracts. Since the truncated solutions tend to 0 or oo in
adjacent sectors, it follows that the boundary curve of each U has as asymptotic
directions the pair of rays which bound the sectors W^. Recall that a ray P is called a
Julia ray for F if, in any angle about P, F assumes all (but at most one) values infinitely
often. See Fig. 1. It is an immediate consequence of (t) that the ray P, bounding a pair
of adjacent sectors W,_i and W^ for F is a Julia ray.

Example. — The positive and negative imaginary axes are Julia rays for e2. Similarly,
the rays

(2 fe+ l )7C

^^p-

for k e Z are Julia rays for exp (z^).
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DYNAMICS OF MEROMORPHIC MAPS

Fig. 1. - Exponential tracts and Julia rays.

When F is meromorphic, the arguments of the poles of F accumulate to the argument
of the Julia rays. Therefore, except for finitely many poles, it is possible to associate to
a given pole p, that particular Julia ray, ^(p), such that the pole lies in a small angle
about p, („,. We also associate two asymptotic values to each pole; v, (p) is the asymptotic
value corresponding to U,^_i and v,(p) is the asymptotic value corresponding to U.(,,.

Example. - The positive and negative axes are Julia rays for tan z, the poles are
contained in the rays and v,(p)=i, v,(p)=-i for each of the positive poles while
v! (P) = — i, V2 (p) = i for each of the negative poles.

2. The tangent family

In this and the next two sections, we will describe the dynamics of some specific and
important families of maps with constant Schwarzian derivatives. We will concentrate
on the structure of the Julia set of such a map. We call a point z stable for F if there
is a neighborhood U of z such that the iterates F" are uniformly bounded on U The
metric here is the standard Euclidean metric. The Julia set of F, denoted by J(F) is
the complement of the stable set. We will see in paragraph 5 that the Julia set of a
meromorphic function with polynomial Schwarzian derivative has two additional equiva-
lent formulations:

1. J(F) is the closure of the set of repelling periodic orbits.
2. J(F) is the closure of the set consisting of the poles of F" for n>0.
We will use both of these characterizations in the next three sections.

ANNALES SCIENTIFIQUES DE L-ECOLE NORMALE SUPERIEURE



60 R. L. DEVANEY AND L. KEEN

Consider the equation

(^) { F , z } = f e

where f e e R — { 0 } . By the results of paragraph 1, any map with constant Schwarzian
derivative is affine conjugate to a map in this class.

The truncated solutions of (^^) are given by

^±v /E- fc /2z

and the general solution is

A^^^+Bg-^722

C^-fc/2z_^^-v- fc/2z

with AD—BC^O. Two of these parameters can be fixed by affine conjugation. We will
consider one parameter subfamilies of this family in this and the next two sections.

Let

_ , , , 'ke^-e-12

T^(z)=^tanz= - -——:—
i e^+e lz

where ^ > 0. We have { T),, z } = 2. T^ has asymptotic values at ± ̂  i, and T^ preserves
the real axis.

PROPOSITION. — I f ^eR, ?i>l, then J(T^) is the real line and all other points tend
asymptotically to one of t\\?o fixed sinks located on the imaginary axis.

Proof. - Write T^(z)=L,,°E(z) where

E(z)=exp(2fz)

^)-x.(^).

E maps the upper half plane onto the unit disk minus 0 and L^ maps the disk back to
the upper half plane. Both E and L^ preserve boundaries, so T^ maps the interior of
the upper half plane into itself. Now T^ also preserves the imaginary axis and we have

T^ (iy) = i X tanh (y)
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DYNAMICS OF MEROMORPHIC MAPS 61

The graph of ^ tanh y shows that T\ has a pair of attracting fixed points located
symmetrically about 0 if X>1. See Fig. 2. By the Schwarz Lemma, all points in the
upper (resp. lower) half-plane tend under iteration to one of these points.

^

Fig. 2. - The graph of A- tanh x when 3l> 1.

Hence neither the upper nor the lower half plane is in J(T\). The real line is in
J(T^). This follows from the facts that the real line satisfies T^R^R and
TJR)=RUoo, and that T,, (x) > 1 for all x e R if X > 1 (T, (x) ̂  1 if ^ = 1). Each interval
of the form

/2fe- l 2 f e + l \
—————7t, —————71

V 2 ? 2 ;

is expanded over all of R. If U is any open interval in R, then there is an integer k
such that T^(U) covers one of these intervals of length TL Hence T^1 (U) covers U. It
follows that there exist repelling fixed points and poles of T^1 in U.

Q.E.D.

Remarks. - 1. If X=l , then J(T^)=R, and all points with non-zero imaginary parts
tend asymptotically to the neutral fixed point at 0.

2. When X< -1, the dynamics of T,, are similar to those for ?i> 1, except that T^ has
an attracting periodic cycle of period two. Points in the upper and lower half-planes
hop back and forth as they are attracted to the cycle. Since |T,,(x)|>l for xeR, it
follows as above that J (TJ = R for 5i < -1.

For 0<|X-[<1, 0 is an attracting fixed point for T^. In this case, the Julia set of T^
breaks up into a Cantor set, as we show below. We will employ symbolic dynamics to
describe the Julia set in this case. Let F denote the set of one-sided sequences whose
entries are either integers or the symbol oo. If oo is an entry in a sequence, then we
terminate the sequence at this entry, i.e., F consists of all infinite sequences
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62 R. L. DEVANEY AND L. KEEN

(so, Si, s^, . . . ) where SjCZ and all finite sequences of the form (so, s^, . . ., s ,̂ oo) where
5,eZ.

The topology on F was described in [Mo]. For completeness, we will recall this
topology here. If (so, s^ s^ . . .) is an infinite sequence, we choose as a neighborhood
basis of this sequence the sets.

Ufc={(^ ti. . . . ) | ^ = s , f o r f ^ f e } .

If, on the other hand, the sequence is finite (so, . . ., s? oo), then we choose the U^ as
above for k <j as well as sets of the form

Vi={(^ h. . . . ) |^=s , forf^and | r ,+i |^ ;}

for a neighborhood basis.
There is a natural map a: F -> V called the shift automorphism which is defined by

a(sQS^s^ . . .)=(siS2 . . .). Note that a(oo) is not defined. In Moser's topology, a is
continuous and F is a Cantor set. The pair F, a is often called the shift on infinitely
many symbols. F provides a model for many of the Julia sets of maps in our class,
and a | r is conjugate to the action of F on J(F). One such instance of this is shown in
the following proposition.

PROPOSITION. —Suppose ^-eR and 0<|^|<1. Then J(T^) is a Cantor set in C and
T^ | J (T^) is topologically conjugate to a | F.

Proof. — Since 0<|^|<1, 0 is an attracting fixed point for T^. Let B denote the
component of the basin of attraction of 0 in R. B is an open interval of the form
( — p , p ) where rT^(±p)=±p. (The points ±p lie on a periodic orbit of period two
i f—l<^<0) . The preimages T^^B) consist of infinitely many disjoint open
intervals. Let Lp j e Z, denote the complementary intervals, enumerated left to right so
that Io abuts p. See Fig. 3. Then T), : 1̂  (RU oo) - B for each 7, and | T,, (x) | > 1 for
each x e ly. Standard arguments [Mo] then show that

A = {x e RU { oo } | T{ (x) G\JIj for allj }

is a Cantor set and T^ | A is conjugate to CT | F.
Now A is invariant under all branches of the inverse of T^. It therefore contains

preimages of poles of all orders and is closed. Hence A is the Julia set of T^. The
classification of stable regions tells us that all other points lie in the basin of 0.

Remarks. — 1. The basin of 0 is therefore infinitely connected. This contrasts with
the situation for polynomial or entire maps in which finite attracting fixed points always
have a simply connected immediate basin of attraction.

2. The arguments above will be used later to show that Cantor sets appear often as
the Julia sets of meromorphic maps with polynomial Schwarzian derivatives.
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DYNAMICS OF MEROMORPHIC MAPS 63

Fig. 3. — The intervals lj.

The Julia set of T\ is a similar Cantor set for all \ with |?i|<l, as shown in the
following Proposition.

PROPOSITION. — Suppose 0<|^|<1. Then J(T^) is a Cantor set and each T^ is quasi-
conformally conjugate to T^-

Proof. — We use techniques of Teichmiiller theory for the proof. The origin is the
only attracting fixed point of T^, | X | < 1. There is a holomorphic map (p^ from the unit
disk U to a neighborhood of the origin so that

^ = (p^ o T^ o (p^~1 has the form ^ -> ̂ .

Therefore we can find an annulus A ^ = { ^ [ r ^ < | ^ [ < r } which is mapped by v|/^ onto the
annulusA^^I^)2^^^}.
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64 R. L. DEVANEY AND L. KEEN

Fig. 4. — The graph of F^.

Define a Beltrami differential (a mesurable structure) on A 1/2 as follows. Let
/: A 1/2 -> A^ be a differentiable map such that

^(0=f
A

is a measurable function and ess sup | jl(0 \^k< 1. Extend jl to U using the map vj/i/^
by

^1/2(0)-to
Pull this Beltrami differential back to the neighborhood of 0 by

H(z)==Ho(pi /2 .

Extend [i(z) to the rest of the orbit of (pi/i(Ai/2) as follows:

^ (z) = ̂  (T?/2 00) (T^r 00/(T^r OO, for z e T^ (4

Note that this defines the structure everywhere in the stable set. Set [i(z) =0 everywhere
else in C. Use the measurable Riemann mapping theorem [AB] to find a quasiconformal
map g of the plane whose Beltrami differential is n. g is uniquely determined by what
it does to two points. We will assume that g fixes the origin and maps the asymptotic
values to a pair of points symmetric with respect to the origin. The map
F = g ~ l o r T ^ ^ o g is meromorphic by construction. It has exactly two finite asymptotic
values and no critical points so by Nevanlinna's Theorem, since it fixes 0 and its
asymptotic values are symmetric, it is of the form T^ for some X,, hence the X we began
with. Since g is quasiconformal, it conjugates stable points to stable points. The Julia
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DYNAMICS OF MEROMORPHIC MAPS 65

set is a quasiconformal image of the Julia set of T 1/2 hence is a Cantor set.
Q.E.D.

Remark. — It would be interesting to describe the complete bifurcation diagram for
this family.

3. Asymptotic values which are poles

It is known that entire transcendental functions of finite type often have Julia sets
which contain analytic curves. Indeed, for a wide class of these maps (see [DT]), all
repelling periodic orbits lie at the endpoints of invariant curves which connect the orbit
to the essential singularity at oo.

In this section we give an example of a family of maps with constant Schwarzian
derivative for which certain of the repelling fixed points lie on analytic curves in the
Julia set, but for which many of the other periodic points do not. This lack of
homogeneity in the Julia set is caused by the fact that one of the asymptotic values is
also a pole.

Consider the family of maps

w^-,€'-€ z

with K>0. Clearly, {F^, z ] = —2 and F^ is periodic with period ni. These maps have
asymptotic values at 0 and ̂  and 0 is also a pole.

The graph of ¥^ restricted to R shows that ¥^ has two fixed points on R at p and q
with p<0<q. We note that F^(z)=L^oE(z) where E(z)=exp(—2z) and L^ is the
linear fractional transformation

L,(z)=-^-A v / 1-z

F^ has poles at k ni where k eZ. F^ has the following mapping properties:
1. F^ preserves R4^ and R~ .
2. F^ maps the horizontal lines Im z=(l/2)(2fe+ l)n onto the interval (0, ^) in R.
3. F^ maps the imaginary axis onto the line Re z = ̂ /2, with the points k n i mapped

to oo.

4. F^ maps horizontal lines onto circular arcs passing through both 0 and ^.
5. F^ maps vertical lines with Re z > 0 to a family of circles orthogonal to those in 4

which are contained in the plane Re z > X/2.
6. F^ maps vertical lines with Re z<0 to a family of circles orthogonal to those in 4

which are contained in the plane Re z < 'k/2.
As a consequence of these properties, we have
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66 R. L. DEVANEY AND L. KEEN

PROPOSITION. — If K > 0, then the fixed point q is attracting. Moreover, if Re z > 0,
then ¥^(z) -> q as n -^ oo. Hence J(F^) is contained in the half plane Re z^O.

Proof. — First compute |F^) |<1. Then use property 5 above and the Schwarz
Lemma.

PROPOSITION. — J(F^) contains R~ U {0}.

Proof. — The fixed point p is repelling. This follows from the fact that F^ has
negative Schwarzian derivative: if [(F^)'^)]^!, then it follows that p would have to
attract a critical point or asymptotic value of ¥^ on R. This does not occur since q
attracts 'k and 0 is a pole.

Let xe (—oo, p). One may check easily that [(F^^x)] > 1. Moreover,
|(F^"y(x)| -> oo as n->co. This again follows from the fact that F^ has negative
Schwarzian derivative on R~. Let U be a neighborhood of x in C. Note that F^"
expands U until some image overlaps the horizontal lines y = ± n/2. By the above
properties, these points are in the basin of q. Hence the family {F^"} is not normal at
x, and so ( — oo, p) c=J(F^). The image of this interval under F^ is (/?, 0), so R~ c:J(F^).

Q.E.D.
Thus some points in the Julia set lie on analytic curves; for example, R~ and all of its

preimages. But not all points in the Julia set lie on smooth invariant curves:

PROPOSITION. — There is a unique repelling fixed point p^ in the half strip

7i/2 < Imz<3 7i/2

and this point does not lie on any smooth invariant curve in J(F^).

Proof. — Let R be the rectangle

7i/2<Im z<37i/2

v<Re z<0

where v is chosen far enough to the left in R so that

|F,(v+^)|<7i/4.

Then F^(R) is a "disk" which covers R and FjR is 1—1. So, F^1 has a unique
attracting fixed point p^ in R. Since this argument is independent of v for v large
enough negative, the first part of the Proposition follows.

Now suppose that p^ lies on a smooth invariant curve y in J(F^). Since J(F^) is
invariant under F^\ we may assume that y accumulates on the boundary of the strip

7C/2<Im z<37c/2

R e z < 0
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DYNAMICS-OF MEROMORPHIC MAPS 67

by taking iterates of F^1 as above. The upper and lower boundaries of the strip are
stable by property 2; hence y cannot meet y = 7i/2 or y = 3 n/2. Similarly, y cannot meet
the line x==0 (except possibly at in). So y can only accumulate at oo or in. If y
accumulates at oo, then y must also accumulate at in, since F^(in)= oo. Since all points
on Y leave the strip under iteration, it follows that y must contain in. Now Y cannot
have a tangent vector at in, for if so, y would enter the region Rez^O, Im z^in, which
lies in the stable set.

Q.E.D.
Remarks. — 1. There is a continuous invariant curve which lies in the Julia set and

accumulates on p ^ . Indeed, the horizontal line (o given by y=n, x^O lies in J(F^) since
it is mapped onto R~ by F,,. Consider the successive preimages ^^F^^o), where F^1

is the branch of the inverse of F^ whose image is n/2 < Im z < 3 n/2. Then l^ meets IQ at
in, ?2 meets l^ at F^^iTi), and so forth. Since p^ is an attracting fixed point for F^~1,
the curve / formed by concatenating the ^ is invariant and accumulates on p^ as
i-> oo. Note that this curve is considerably different from a dynamical point of view
from the invariant curve R~ through/?.

2. We will show in paragraph 6 that F^ also possesses a collection of invariant curves
which are quite different from /. These curves will lie in a Cantor bouquet, and all
points (except the endpoints) on these curves will tend toward oo or 0 under iteration
of F,2.

4. Bifurcation to an entire function

Most maps with polynomial Schwarzian derivatives are bona fide meromorphic
functions, but occasionally they are entire functions. In this section we describe an
"explosion" in the Julia set which occurs when a meromorphic familly suddenly encoun-
ters an entire function. An explosion occurs at a parameter value for a family of
functions whenever the Julia sets of the functions in the family change suddenly, when
the parameter is reached, from a nowhere dense subset of C to all of C.

Consider the family

F ez = 1

^z) ^2+6?-z X+6?-22 '

When A,=0, the corresponding element of this family is the entire function Fo(z) =exp(2z)
whose dynamics are well understood. It is known that J(F())==C, since the orbit of the
asymptotic value 0 tends to oo. See [D] or [Mi].

When ^>0, J ( ¥ y ) ^ C . This follows since F^ has a unique attracting fixed point p^
on the real line. The graph of F^ is depicted in Figure 4.

In fact, we can say much more about J(F^).

PROPOSITION. — For all X,>0, the Julia set ofF^ is a Cantor set in C and FjJ(F,J is
the shift map on infinitely many symbols as described in paragraph 2.
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68 R. L. DEVANEY AND L. KEEN

Proof. — First note that the entire real axis lies in the basin of attraction of p^. This
follows since F^ has negative Schwarzian derivative and maps R diffeomorphically onto
the interval bounded by the asymptotic values, (0,1/X,). In particular, both asymptotic
values lie in the immediate basin of p^ and so there are disks about these points which
lie in the basin. Taking preimages of these disks, it follows that there are half planes of
the form Rez<Vi and Re z>v^ with v^ <p^<\z which lie in the immediate basin of p^

We may find a strip S^ surrounding the interval [v^, v^] of the form

{z[ | lm z|<n, Vi^Rez^v^}

which is mapped inside itself. Now let B denote the "ladder-shaped" region consisting
of the two half planes together with S^ and all of its n i translates. See Fig. 5. Clearly,
F^ maps B inside itself as long as the v^ are chosen large enough.

Q.E.D.
The complement of B consists of infinitely many congruent rectangles R^ where j e Z

^^^^^^^s^^<s^^^^ ^sS^^^^^^^^S^V<s^^^^
-fJL -7T

^

-M

^-7T

Fig. 5. - The region B.

and the Rj are indexed according to increasing imaginary part. F^ maps each R^
diffeomorphically onto C-F,,(B). In particular, F^(R^) covers each R^ and oo. It
follows that there exists at least one point z corresponding to any sequence (5o, s^, . . .)
in the sequence space F which has the property that F; (z) e R^ for each n. We claim
that this point is unique and lies in the Julia set.

To see that the point with the prescribed itinerary (so, s^, . . .) is in the Julia set, we
first note that B is contained in the immediate attracting basin of the attractive fixed
point. Moreover, B intersects its preimages, so the immediate basin is completely
invariant. Since it contains both asymptotic values, it is the whole stable set. Therefore,
the entire Julia set is contained in the rectangles. Points whose orbits remain in the
rectangles are in the Julia set, so the points corresponding to sequences are in the Julia
set.

In paragraph 6, we will show that |(F^)'(z) | -> oo for all zeJ(F^) i.e., that F^ is
expanding on its Julia set. Since two points corresponding to the same sequence must
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remain a bounded distance apart, it follows that two points in the Julia set cannot have
the same itinerary. J(F^) therefore is a Cantor set modeled on the sequence space with
infinitely many symbols as described in paragraph 2.

Q.E.D.

5. Dynamics

In this section we discuss the dynamics of maps which have Schwarzian derivative a
polynomial P(z). Since such maps are meromorphic, and map the finite plane C onto
the Riemann sphere C, we must first discuss the basic dynamical concepts in some
detail. Since these concepts are well known for the case of entire maps, we will
concentrate only on the meromorphic case. An immediate consequence of the Heard
Theorem is that any pole has an infinite backward orbit. There are maps with an
exceptional pole, i. e., a pole with no preimage, but these maps do not have polynomial
Schwarzian derivative.

Recall that a point z is stable for F if there is a neighborhood U of z such that the
iterates F" are uniformly bounded on U in the standard Euclidean metric. The Julia
set J=J(F) is the complement in C of the stable set. Therefore it is the closure of the
set of points at which the F" fail to form a normal family of functions.

Remark. — Infinity is in the Julia set by the Heard Theorem. The poles are also in
the Julia set. The forward iterates F", n^l , are not defined at these points. The first
iterate has the point at oo as its image. The image of oo is not defined, and so the
Julia set is not forward invariant.

The Julia set for such maps shares many of the properties of Julia sets for rational or
entire maps. One of the standard properties of the Julia set is that it is also the closure
of the set of repelling periodic orbits. The standard proofs of this fact do not work in
the meromorphic case. Nevertheless, we can prove:

PROPOSITION. — Suppose that F admits at least one repelling periodic orbit. Then J(F)
is the closure of the repelling periodic points for F.

Remark. — We will show below that a meromorphic function always has infinitely
many repelling periodic points, so the hypothesis of this proposition is always fulfilled.

Proof. — Suppose { F"} is not normal at z. Let X be an open neighborhood of z. We
will produce a repelling periodic point in X.

Suppose p is a repelling periodic point for F. We may assume that p is a fixed
point. Let Y be a disk about p on which F has a single valued inverse F~1. By
choosing Y smaller if necessary, we may assume that F~1: Y -> Y is a contraction. So
F~": Y-^Y is well-defined for all n and shrinks Y down toward p. Since {F"} is
not normal at /?, it follows that there exists an open neighborhood UcY such that
F^: U -> F^U) cX is one to one and F^U) =W is a neighborhood of z. This follows
since z is not an exceptional point and F has no critical points.
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Since {F"} is not normal at z, we may find an open disk WcW and le^ such that
¥11 W is one to one and maps W onto a neighborhood V of p.

Finally, there exists meZ'^ such that F - m (Y)==Y_^ is an open simply connected
region entirely contained in V. We can restrict W so that V=Y_^. Note that ^m+k

maps Y_^ over W so that F^^^V) covers V and so contains a repelling periodic
point. Therefore, there is a repelling periodic point in U. Note that F^LQcWcX,
so we are done.

Q.E.D.
As noted above, each pole lies in the Julia set. I. N. Baker pointed out to us that we

can say more.

PROPOSITION. — J(F) is the closure of all of the preimages of the poles o/F.

Proof. — Since F is meromorphic, it has at least one pole. Suppose U is a neighbor-
hood of some zeJ(F). By MonteFs Theorem U F"(U) misses at most two points in

n>0

C, hence there is a pole in the forward orbit of U.
The proof of the following proposition is the standard proof for a rational or entire

function.

PROPOSITION. — Let zeJ(F). Then J(F) is the closure of the union of all preimages
ofz.

In order to describe the stable set of maps with polynomial Schwarzian, we first recall
the classical facts discussed in paragraph 1. By Nevanlinna's Theorem, each such map
F has p asymptotic values OQ, . . ., flp-i. To each a, there corresponds a sector W^ with
angles 2 n / p in which F has the following behavior: we may choose a small disk B^ about
a, such that, if U, is the component of F'^B^) meeting Wp then F : U f - ^ B f — a , is a
universal covering map. The sectors are separated by the Julia rays P^. Almost all
poles p have associated Julia rays, p^ ̂ , and asymptotic values v^ (p) and v^ (p). Finally,
the Of corresponding to adjacent sectors must be distinct.

Note that the a, need not be distinct, but it follows from the linearindependence of
the truncated solutions G^ and G^+i that ^ corresponding to adjacent Wf are
distinct. Thus the basic mapping properties of F are as depicted in Figure 1.

Let us assume that all of the a^ are finite. We may choose R sufficiently large so
that D R = { z | | z | ^ R } contains all of the B^ in its interior. Let r\ denote the disk in C
which in the complement of DR. Let

Fp^-'u u,
1=0

If R is large enough, F^ consists of exactly p "arms" which extend to oo in FR and
which separate the U,. Let A^ denote the arm between U^ and Uf+i . A^ contains the
Julia ray ?,. See Fig. 6.
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Fig. 6. — Arms in FR.

Since F |A^ is a covering map which covers C — ( B f U B ^ + i ) infinitely often, it follows
that F'^r^) QAf consists of infinitely many disks, each of which is mapped by F in a
one-to-one fashion over FR. These disks accumulate only at oo.

At this point we can fill the gap left in our proof that the Julia set is also the closure
of the set of repelling periodic points. In that proof we assumed that F had at least
one repelling point. Since F maps infinitely many of the disks above completely over
themselves in a one to one manner, each disk must contain a repelling point. This
argument holds even if some of the a,=oo, for we still find disks in the arms which are
covered by the map.

We now turn to a discussion of the dynamics of F on its stable set. The set of stable
points comprise the largest completely invariant open set. As in the classical Fatou
theory, the eventually periodic components of the stable set can be classified as follows:
each is either an attracting cycle, a parabolic domain, a Siegel disk, a Herman ring or
an "essentially singular cycle" (domain at oo); superattractive domains cannot occur
since there are no critical points. We prove below that all stable components of F are
eventually periodic. In the next section we will prove that domains at oo cannot occur
either, at least in the case where all of the asymptotic values of the map lie in the finite
plane.

To prove that all of the components of the stable set are eventually periodic, we
need the following preliminary ideas. For a given map F with polynomial Schwarzian
derivative, we consider the space T(F) of functions G for which {G, z ] is a polynomial
and there exists a quasiconformal homeomorphism h of C such that h°¥=G°h. We
define the Moduli Space of F, ^(F), to be T(F) modulo affine conjugation.

THEOREM.—If {F, z}=Q(z) where Q is a polynomial of degree p—2, then
dim^(¥)^p.
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Proof. — Let Ge^(F). G is topologically conjugate to F, so it also has exactly p
asymptotic values and no critical values. By Nevanlinna's Theorem, we know that
{G, z } = P(z) where P(z) is also a polynomial of degree p — 2. Let gi and g^ be linearly
independent solutions of the associated linear differential equation

^+,P(z)^=0.

Since

G^A^+B^
Cg,+Dg,

where AD—BC==1, there are three more parameters. Two of these can be normalized
by affine conjugation so there are p independent parameters for the space J^(F).

Q.E.D.
Remark. — As we saw in paragraph 3, in the case of the tangent family, the parameter

space Cp contains many different moduli spaces corresponding to dynamically different
functions.

Now we can prove:

THEOREM. — Every component of the stable set is eventually periodic.
Proof. — The crux of the proof is the finite dimensionality of the space eJ^(F). As in

the case of rational functions, the proof breaks into three parts, depending on the
connectivity of the components in a stable orbit.

Assume there is a domain D such that the iterates, D"=F"(D) are mutually disjoint
(D" is actually the component containing the image of the n-th iterate of D). The maps
¥ : D" ->Dn+l are all unramified since there are no critical points so there is an induced
injection on the respective fundamental groups. The three cases to consider are (1) the
D" are all simply connected, (2) the fundamental groups are eventually non-abelian, and
(3) the D" are all annuli. In cases 1 and 2 the proof proceeds as in [Be, S] mutatis
mutandi with "rational" replaced by "meromorphic with polynomial Schwarzian." The
point is that the existence of such domains implies that the space J^(F) cannot be finite
domensional which is a contradiction. We need a new argument in case 3.

If F is entire, the theorem follows from [GK]. Therefore assume F is meromorphic
and has infinitely many poles. Suppose now that the domains D" are all annuli; i. e.
their boundaries consist of two components of the Julia set, neither of which is a
point. If one component were a point, it would have to be a pole p and hence a
preimage of oo. Since F has infinitely many poles which accumulate at oo, all of which
belong to the Julia set, there is an infinite set of preimages of these poles which accumulate
at p. It follows that p is not an isolated point of the Julia set.

Therefore there is a conformal map (p" of D" onto the annulus { z [ 0 < ^ < | z | < l } ,
where the number r^ is uniquely determined. There are "natural" foliations of D" by
the inverse images of the circles, |z|=c, r^<c<\. Since F has no critical points, the
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map
Z-Xp^oFo ((()")-^z)

is either of the form
z-^z, aeR,

or
z-^r/z).

We conclude that r ^=r^+ i=r for all n. Further, F takes the leaves of the natural
foliation of D" onto those of D^1. Let y be such a leaf in D and y"=F"(y). The y"
are all simple since there are no critical points.

There is another natural conformal invariant besides r for these annuli. It is the
extremal length of the set of curves homologous to y. It is well known [A] that the
extremal length in this case is:

(1) 27i/log(l/r)=sup{(inffp(z)|dz|)2 / f f p(z)2dxdy\
I Jc / JJD" )

where the supremum is taken over all Borel measurable non-negative functions p(z) for
which the double integral is finite and positive, and the infimum is taken over all
rectifiable curves C homologous to y.

For p the spherical metric, it is clear that the areas of the areas of the disjoint annuli
must tend to zero. From (1) we have

(2) 27i/log(l/r)^infffp(z)|rfz[Y / f f ^(z)2 dxdy
\Jc / /JJD"

with the denominators going to zero as n goes to infinity. It follows that

(3) inf p(z)\dz\->0 as n -> oo.
Jc

Let I" be the bounded, and 0" the unbounded component of the complement of
D". We claim that the diameters of the I" must go to zero in the spherical metric. The
infimum in (3) is at least twice the diameter of the smaller of I" or On. If the spherical
diameters of a subsequence of 0"'s goes to zero, there is a sequence of y^s each of which
bounds a neighborhood F" of infinity, and so passes through each of the sectors. The
r" nest. For the exponential tract in each sector, \Jp F [ Vj n F" is an infinite to one
covering map onto a punctured neighborhood of an asymptotic value aj. Therefore,
given M>0, P 'c{z | [z[>M}, for all n>N=N(M). It follows that for each j,
¥\yn^}^j is k to one onto its image for fe=fe(n)>l , which contradicts the fact that
F(y") is simple. We conclude that since the diameters of the I" go to zero, if an infinite
subsequence of 0" are nested, they must nest down to a point.

Now we prove, in a series of steps, that any such infinite nested sequence must contain
at least two points in the intersection of their bounded complements.

First, we remark that since the preimages of the poles are dense in the Julia set, given
D", there is a fe>0 such that ln+k contains at least one pole pj,. If ]n+k contained more
than one pole, the bounded region defined by ^n+k would be mapped at least two to one
onto a neighborhood of infinity, and F(y"+k) could not be simple.
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Next, let n be so large that the pole p =p^ has an associated Julia ray, |3 = P^). The
winding number of yn+k with respect to /? is one. Under the mapping F, the interior of
^n+k is mapped to the exterior of F(Y"+fc), and the exterior is mapped to the interior. It
follows that if v^ (p) and v^ {p) are the asymptotic values associated to pole p, then the
winding umber of 5=F(Y"+fc) is one, with respect to both v^ and v^.

Finally, choose an integer I so that F^(8) contains exactly one pole q in its interior
and so that P^)=P also. 51=F f+ l(5) also has winding number one with respect to v^
and v^. Iterate this process and obtain a sequence of curves 5s which nest and all
contain both the asymptotic values v^ and v^ in their interiors. (3) implies these curves
eventually nest in, and nest down to a single point; hence v^=v^ However, v^ and v^
are asymptotic values corresponding to adjacent sectors and must be distinct. Therefore
we have arrived at a contradiction and there no wandering annuli.

Q.E.D.

6. Topology of the Julia sets

Our goal in this section is to describe some of the topological properties of the Julia set
of a map F with polynomial Schwarzian derivative. Recall that ] " R = { z | | z | > R } U ( o o )
and that A^ are the arms containing Julia rays.

PROPOSITION. — Suppose all of the asymptotic values of F are finite. Let
A ^ = { z | F^Z^FR for all j}. J/R is chosen large enough, then AR is a closed, forward
invariant subset o/J(F). Moreover, AR is homeomorphic to a Cantor set which is modeled
on the shift space with infinitely many symbols.

Proof. — As there are only countably many disks in F'^F^) HA^ for each arm A^,
we may choose an indexing of these disks by the natural numbers. Say

00

F'^F^PidJA,^ (J Dj. Thus each D^cF^ and F maps each Dj onto FR. In
j=o

particular, F|D^ covers each other D^ and oo. Standard arguments as described in
paragraph 2 then yield the result.

Q.E.D.
Thus the set of points whose orbits remain in a neighborhood of oo form a closed

forward invariant subset of the Julia set which is homeomorphic to a Cantor set. We
may apply these ideas on a global level if we can guarantee that all of the asymptotic
values lie in a single immediate attracting basin of a fixed point.

COROLLARY. — Suppose each of the a^ lie in the immediate attracting basin of an
attracting fixed point. Then J ( F ) is a Cantor set and F|J(F) is conjugate to the shift
map on infinitely many symbols.

Proof. — Our assumption allows us to choose a simple closed curve in C which bounds
an open set in the immediate attractive basin, and which contains all of the B;. The
Julia set is contained in the complement of this set. Applying the above argument to
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this curve instead of FR yields the result.
Q.E.D.

Recall that the Julia set of a rational map is also a Cantor set under this hypothesis
so that these meromorphic maps are dynamically similar to rational maps. By contrast,
there are no entire transcendental functions whose Julia sets are Cantor sets [Ba].

This proposition also allows us to complete the classification of the components of
the stable set begun in the previous section, by showing that domains at oo do not exist
in general.

COROLLARY. — Suppose F has polynomial Schwarzian derivative and all of the asymptotic
values ofF are finite. Then F has no domains at oo.

Proof. — Suppose F admits a domain at oo, U. Let zeU. By definition, there is
an open neighborhood Vc=U containing z and on which the F" converge uniformly to
oo. Therefore, given R large, there exists f e=k(R) such that, for n>k, F"(V) is comple-
tely contained in FR. By the previous proposition, F" (V) is completely contained in the
set AR and hence in the Julia set.

Q.E.D.
When the asymptotic values are alternately finite and infinite as we move around the

sectors at oo, it is easy to see that the meromorphic map is actually entire. The Julia
sets of such maps were studied in [DT] where it was shown that they contain "Cantor
bouquets."

Suppose now that F is meromorphic and that one of the asymptotic values, say OQ, is
also a pole. Then F maps Uo onto Bo—Oo as a universal cover, and, provided Bo is
chosen small enough F maps Bo biholomorphically onto a neighborhood of oo in
C. We now show that when this occurs, the Julia set of F again contains Cantor
bouquets. Recall that in paragraph 3 we discussed a special case of this phenomenon.

Recall the following terminology from [DT]. Let E^ be the set of sequences (so, s^,
s^, . . .) where the s^ are integers of absolute value less than N. Let U be open and
connected. Let F : \J ->C be analytic. An invariant subset C of J(F)c=U is called a
Cantor N-bouquet for F if

1. There is a homeomorphism h : 5^ x [0, oo) -> C.
2. n ° h~1 ° F o h (s, t) = a (s) where n : 2^ x IP? °o) -> ̂  is the projection map.
3. lim h(s, t)=co.

t ->• 00

4. lim F"ofc(s, r)=oo if t^O.
n -»• oo

An N-bouquet includes naturally in an (N+l)-bouquet by considering only sequences
with entries less than or equal to N in absolute value.

The invariance of C requires that F(h(s, 0))=fo(a(s), 0). Hence the set of points
A=/i(s, 0) is an invariant set on which F is topologically conjugate to the shift. We
call A the cro\vn of C. The curve h^(t) for t>0 is called the tail associated to s. In
analogy with real dynamical systems, we think of the tails associated to 5 as the strong
unstable manifold associated to A(s, 0), although this is by no means
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correct. Alternatively, we may view the tails as comprising a piece of the "stable
manifold" of infinity.

Let C^ be an n-bouquet and suppose C^cC^+^c . . . is an increasing sequence of
bouquets with the natural inclusion maps. The set

C=^J~C~n
n^O

is then called a Cantor bouquet.
Our main result is:

THEOREM.—Suppose F(z) has polynomial Sch\varzian derivative \vith degree
p—2. Suppose that F has an asymptotic value a, which is also a pole. Let W^ be the
sector containing the exponential tract corresponding to a^ Then for each N>0, J(F)
contains a Cantor 1^-bouquet in Wf which is invariant under F2.

To show that the Julia set of a meromorphic map with polynomial Schwarzian
derivative contains a Cantor bouquet if one of the asymptotic values is a pole, we need
a result which is proved in [DT] and a Lemma which follows from it. Let G be an
analytic map. In the proof of the theorem, G will be F2 restricted to the exponential
tract in W». As above, let F^ denote the complement of DR in C and suppose U is a
disk which satisfies

1. U is contained in a sector W
2. G | U is a universal covering map onto FR— oo.
Let T| be a ray in C—W; the preimages of T| under G determine infinitely many

fundamental domains in U. Let "W be a collection of N of these fundamental domains
in U which have the additional property that each is completely contained in F^ as
well. See Fig. 7.

Fig. 7. — Fundamental domains in U.

PROPOSITION. — Suppose there are constants R^, a, C>0 such that if z, G(z)e^ with
| z |=r>Ri,

(i) \G(z)\>Cera
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(ii) G^IX^"

(iii) largG^z^Ce-^
Then { z | G7 (z) e ̂  for all j} forms a Cantor 1^-bouquet which lies in J (G).

LEMMA. — Suppose G is analytic in the sector W

I A I n I I| A r g z | < — , \z\>r
2^

and that
log F(z)-z4

in W. Let A = { z e W | G1 (z) e W }for all i ̂  0. Then, for each N > 0, A contains a forward
invariant Cantor 1^-bouquet.

Proof. - We invoke the above proposition. Let FR be given as above and set
l \={zeW|G(z)er^}.

If R is chosen large enough, then F : f^ -> FR is a universal covering. Clearly, G satisfies
(i) and (ii) in the proposition. So it suffices to verify (iii).

Let y be a ray in the complement of W. The preimages of y in FR are infinitely many
curves which bound fundamental domains for G|FR. If q^2, all of these curves are
asymptotic to the positive real axis, whereas, if q=l, they all have bounded imaginary
parts. In any event, let us select N of the fundamental domains determined by these
preimages. Call this set of strips ̂ . If both z, F(z) lie in ̂ , it follows that [ Im z |
and | Im G(z) [ are bounded, say by v, and we have

tan|ArgG /(z)|=I ImG/(z)l<^lz^
V 7 f \ReG/(z)\-c,\G(z)\

for some constants c^ and c^. Hence |Arg G(z)\ <ce~ra for some constants c, a as
required.

Q.E.D.
We now complete the proof of the Theorem.
Proof. — We may assume that W^ is given by

|ArgF(z)|<71 .
P

In this sector, we may use (+) from paragraph 1 to show that
log(F(z)-a,)--2zp/2

Since a, is a pole for F, it follows that
logF^z^z^2

in this sector. Hence the lemma applies to F2.

Q.E.D.
We conclude this section with a brief discussion of the Lebesgue measure of the Julia

sets of these meromorphic functions. Following Sullivan [S], we say that a map is
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expanding on its Julia set if all of the asymptotic values are attracted to attracting
periodic orbits. The reason for this terminology is the following.

PROPOSITION. — Suppose that a meromorphic map F mth polynomial Schwarzian deriva-
tive is expanding on its Julia set. Then

KF^Z)!-^

as n -> oo for all z e J (F).
Proof. — The proof is exactly the same as in [Me], Prop. 6.1. It uses the Poincare

metric as in Douady's proof for rational functions [Do]. The only difference occurs at
poles, but there | F' (z) | = oo already.

Q.E.D.
The following result is an immediate consequence.

THEOREM. — If {F, z} is a polynomial and F is expanding on its Julia set, then J(F)
has two dimensional Lebesgue measure zero.

proof. — Following McMullen, we note that the Julia set is "thin at infinity". See
[Me], § 7. That is, if B (z, R) is a ball of radius R centered at z, there exists an e and
an R such that for all z we have

Area(J(F)nB(z, R))<(l-s)7iR2 .

This follows since the exponential tracts are asymptotically contained in the basins of
attraction of the attracting orbits. Now invoke Proposition 7.3 in [Me], using the
backward invariance of the Julia set. The idea is that, since F is expanding the balls
B(z, R), for zeJ(F), are contracted down onto the Julia set with bounded distortion,
and that therefore J(F) cannot contain points with positive density.

Q.E.D.
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