Exercises due 10/25

(1) Prove that a function analytic in the whole plane and satisfying an inequality of the form $|f(z)| \leq|z|^{n}$ for some n and sufficiently large $|z|$ must reduce to a polynomial.
(2) If $f(z)$ is analytic and $|f(z)| \leq M$ for $|z| \leq R$, find an upper bound for $\left|f^{(n)}(z)\right|$ in $|z| \leq \rho<R$.
(3) If $f(z)$ is analytic for $|z|<1$ and $|f(z)| \leq 1 /(1-|z|)$, find the best estimate of $\mid f^{(n)}(0)$ that Cauchy's inequality will yield.

