Math 70300

Homework 7

Due: within 72 hours

1. Let u be harmonic in a region G and suppose that the closed disc $\overline{D(a,R)}$ is contained in G. Show that

$$u(a) = \frac{1}{\pi R^2} \int_{\overline{D(a,R)}} u(x, y) \, dx \, dy.$$

Hint: Use polar coordinates.

For every r between 0 and R we have by the mean value property:

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) \, d\theta.$$

We integrate this equality multiplied by r, since $dx \, dy = r \, dr \, d\theta$ in polar coordinates. This gives

$$\int_0^R u(a) r \, dr = \frac{1}{2\pi} \int_0^R \int_0^{2\pi} u(a + re^{i\theta}) \, d\theta \, r \, dr.$$

Using polar coordinates centered at a, we cover the whole disc $\overline{D(a,R)}$ when $0 \leq r \leq R$ and $0 \leq \theta \leq 2\pi$. We remark again that $dx \, dy = r \, dr \, d\theta$. So the right-hand side becomes

$$\frac{1}{2\pi} \int_{\overline{D(a,R)}} u(x, y) \, dx \, dy. \quad (1)$$

The left-hand side is the integral of a linear function

$$\int_0^R u(a) r \, dr = u(a) \int_0^R r \, dr = u(a) \frac{R^2}{2}. \quad (2)$$

We just combine (1) and (2) to get the result.

2. Prove Hadamard’s three circles theorem: Let $f(z)$ be holomorphic in an open set containing the annulus

$$r_1 \leq |z| \leq r_2, \quad 0 < r_1 < r_2.$$

Show that with the notation $M(r) = \sup_{|z|=r} |f(z)|$

$$M(r) \leq M(r_1) \frac{\log r_2 - \log r}{\log r_2 - \log r_1} M(r_2) \frac{\log r - \log r_1}{\log r_2 - \log r_1}.$$

We want to apply the maximum modulus principle to a function of the form $z^\alpha f(z)$. The problem is that for non integer α the function z^α is not holomorphic in a disc or annulus containing 0, as it requires to define first a branch of $\log(z)$ and then define
\[z^\alpha = e^{\alpha \log(z)} \]. And we know that there is no annulus centered at 0 on which the logarithmic function is defined as a holomorphic function. However, the problem is superficial. The maximum modulus principle can be applied in any small neighborhood off 0, where \(z^\alpha f(z) \) can be defined. Moreover, the modulus of \(z^\alpha \) is independent of the branch of \(\log(z) \) we will use, as \(|z^\alpha| = |z|^\alpha \). To understand why the maximum modulus of \(z^\alpha f(z) \) is achieved on the boundary of the annulus for any branch of \(z^\alpha \) is suffices to assume that it is achieved inside at a point \(z_0 \). Then is a small neighborhood of \(z_0 \) we violate the standard maximum modulus principle. We get

\[r^\alpha M(r) \leq \max(r_1^\alpha M(r_1), r_2^\alpha M(r_2)). \] (3)

The standard trick is to choose \(\alpha \) so that the two expressions on the right become equal. This gives

\[r_1^\alpha M(r_1) = r_2^\alpha M(r_2) \iff \alpha \log r_1 + \log M(r_1) = \alpha \log r_2 + \log M(r_2) \]

\[\iff \alpha = \frac{\log M(r_1) - \log M(r_2)}{\log r_2 - \log r_1}. \]

We take logarithms in (3) and substitute our choice of \(\alpha \) to get

\[\alpha \log r + \log M(r) \leq \alpha \log r_1 + \log M(r_1) \iff \log M(r) \leq \frac{\log M(r_1) - \log M(r_2)}{\log r_2 - \log r_1} (\log r_1 - \log r) + \log M(r_1) \]

\[\iff \log M(r) \leq \left(\frac{\log r_1 - \log r}{\log r_2 - \log r_1} + 1 \right) \log M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2). \]

We only now need to add the fractions to get the result in logarithmic form:

\[\frac{\log r_1 - \log r}{\log r_2 - \log r_1} + 1 = \frac{\log r_1 - \log r + \log r_2 - \log r_1}{\log r_2 - \log r_1} = \frac{\log r_2 - \log r}{\log r_2 - \log r_1}. \]

3. Fix \(R > 0 \). Show that, if \(n \) is large enough, then

\[P_n(z) = 1 + z + \frac{z^2}{2!} + \cdots + \frac{z^n}{n!} \]

has no zeroes in \(\{ z : |z| \leq R \} \).

We apply Rouché’s theorem to \(f(z) = e^z \) and \(g(z) = P_n(z) - e^z \). We fix \(R \). We consider on \(|z| = R \) the modulus of \(f \) and \(g \).

\[|f(z)| = |e^z| = e^{\Re(z)} \geq e^{-R}, \quad \text{since} \quad -R \leq \Re(z) \leq R. \]

Moreover, using the Taylor series of \(e^z \), we get

\[|g(z)| = |P_n(z) - e^z| = \left| \sum_{k=n+1}^{\infty} \frac{z^k}{k!} \right| \leq \sum_{k=n+1}^{\infty} \frac{|z|^k}{k!} = \sum_{k=n+1}^{\infty} \frac{R^k}{k!} \rightarrow 0, \quad n \rightarrow \infty \]

as this is the remainder in the (convergent) Taylor series of \(e^R \). In particular, for \(n \) sufficiently large, \(|g(z)| \leq e^{-R} \). So we can apply Rouché’s theorem to get that for \(|z| \leq R \) the functions \(e^z \) and \(f(z) + g(z) = P_n(z) \) have the same number of zeros. Since \(e^z \) never has zeros, the result follows.
4. Let $|f(z)| \leq 1$ for $|z| < 1$ be a non-constant analytic function. Prove that

(i) If $f(0) > 0$, then
\[\frac{|f(0) - |z||}{1 - |f(0)z|} \leq |f(z)| \leq \frac{|f(0) + |z||}{1 + |f(0)z|}. \]

Hint: Apply Schwarz lemma to an appropriate composition of functions. Where is the circle of radius r mapped by the standard linear fractional transformations of the unit disc (assume they have real coefficients)?

Consider $T : \mathbb{D} \to \mathbb{D}$ given by
\[T(w) = \frac{w - f(0)}{1 - f(0)w} \]

the linear fractional transformation of \mathbb{D} such that $T(f(0)) = 0$. We consider $T \circ f : \mathbb{D} \to \mathbb{D}$ which has $(T \circ f)(0) = 0$. We apply the Schwarz lemma to it:
\[|T(f(z))| \leq |z|, \quad |z| < 1. \]

We have
\[T^{-1}(z) = \frac{z + f(0)}{1 + f(0)z}. \]

We fix $|z| = r$. For real $f(0)$ we determine the image of the circle $|z| = r$ by T^{-1}. Since T^{-1} is a linear fractional transformation, the image has to be a circle (inside the unit disc). Since T^{-1} has real coefficients, it maps the real line to the real line. Moreover,
\[T^{-1}(0) = f(0), \quad T^{-1}(r) = \frac{r + f(0)}{1 + f(0)r}, \quad T^{-1}(-r) = \frac{-r + f(0)}{1 - rf(0)}. \]

Since $T^{-1}(0) = f(0)$ is real and $T^{-1}(\infty) = 1/f(0)$ is real, the images have to be symmetric with respect to the image circle. Points symmetric with respect to a circle lie on the ray from the center. This proves that the center of the image circle is real. (Notice the center of $T^{-1}(\{z, |z| = r\})$ is not $T^{-1}(0)$).

We remark that $1 - rf(0) > 0$. Assume first that $f(0) > r$. The point closest to the origin for the image circle is $T^{-1}(-r)$ and the point further is $T^{-1}(r)$ Check:
\[T^{-1}(r) = \frac{r + f(0)}{1 + f(0)r} > T^{-1}(-r) = \frac{-r + f(0)}{1 - rf(0)}. \]
\[\Leftrightarrow r + f(0) - rf(0)^2 > -r + f(0) - r^2f(0) + rf(0)^2 \Leftrightarrow 2r > 2rf(0)^2, \]
i.e. $f(0) < 1$, which is true. Now by $|T(f(z))| \leq |z|$ we see that $f(z)$ belongs to this image circle. So we get the inequalities
\[\frac{f(0) - r}{1 - rf(0)} \leq |f(z)| \leq \frac{r + f(0)}{1 + f(0)r}. \]
which is exactly what we want to prove.

In the case \(f(0) < r \) we only need to prove the right-hand inequality. In this case \(T^{-1}(-r) < 0 \) and we see that

\[
T^{-1}(r) = \frac{r + f(0)}{1 + f(0)r} > |T^{-1}(-r)| = \frac{r - f(0)}{1 - rf(0)}
\]

\[\Leftrightarrow r + f(0) - r^2f(0) - rf(0)^2 > r - f(0) + r^2f(0) - rf(0)^2 \Leftrightarrow 2f(0) > 2r^2f(0),\]

which holds as \(f(0) > 0 \) and \(r < 1 \). So the point on the circle further away from 0 is \(T^{-1}(r) \). This gives the desired inequality.

(ii) Show that the inequality is true in general, without the assumption \(f(0) > 0 \), by using an appropriate rotation.

Define \(g(z) = f(z)e^{-i \arg f(0)} \). Then \(g \) maps the unit disc to the unit disc and \(g(0) = |f(0)| > 0 \). Moreover, \(|g(z)| = |f(z)| \) and this suffices to prove the result. If \(f(0) = 0 \), the result is just the Schwarz lemma for the right-hand inequality and obvious for the left-hand inequality.

5. (a) Show that \(w = \tan(\pi z/4) \) maps the infinite strip \(-1 < \Re(z) < 1 \) onto the unit disk.

We consider the map

\[w = g(z) = e^{i\pi z/2}. \]

We explain why \(g \) maps the strip \(|\Re(z)| \leq 1 \) to the right hand-plane \(\Re(w) \geq 0 \). It maps the line \(\Re(z) = 1 \) to the ray \(\{ix, x \geq 0\} \), as, if we set \(z = 1 + iy \), we get

\[e^{i\pi(1+iy)/2} = e^{i\pi/2}e^{-\pi y/2} = ie^{-\pi y/2}. \]

Similarly, if \(z = -1 + iy \) we have \(e^{i\pi z/2} = -ie^{-\pi y/2} \). So \(g \) maps \(\Re(z) = -1 \) to \(\{ix, x \leq 0\} \). Moreover, \(g(0) = 1 \). The fact that the strip has width 2 and we multiply by \(i\pi/2 \), makes the function \(g \) one-to-one as \(e^z \) has period \(2\pi i \). Now we need to compose with the standard map from the right-half plane \(\Re(w) \geq 0 \) to the unit disc given by

\[T(w) = \frac{w - 1}{i(w + 1)} \implies T(e^{i\pi z/2}) = \frac{e^{i\pi z/2} - 1}{i(e^{i\pi z/2} + 1)} = \frac{e^{i\pi z/4} - e^{-i\pi z/4}}{i(e^{i\pi z/4} + e^{-i\pi z/4})} = \tan(\pi z/4). \]

Remark: The \(i \) in the mapping \(T \) just gives the correct rotation (=automorphism of \(\mathbb{D} \)) to get exactly \(\tan(\pi z/4) \). We also see that indeed on the imaginary axis \(ix \) the numerator has the same modulus as the denominator: \(|T(ix)| = |(ix - 1)/(ix + 1)| = 1 \). Moreover, \(T(1) = 0 \). This explains why \(T \) maps the right-half plane to the unit disc.

(b) Let \(f(z) \) be a holomorphic function on \(|z| < 1 \) with \(|\Re f(z)| < 1 \) and \(f(0) = 0 \). Show that

\[
|\Re(f(z))| \leq \frac{4}{\pi} \arctan |z|, \quad |\Im(f(z))| \leq \frac{2}{\pi} \log \frac{1 + |z|}{1 - |z|}.
\]
Hint: Use Exercise 5 in Homework 6.

We use \(\phi(z) = z \) and \(\psi(z) = S^{-1}(z) \), where \(S(z) = T \circ g(z) = \tan(\pi z/4) \). We get that \(f(D(0, r)) \subset S^{-1}(D(0, r)) = g^{-1}(T^{-1}(D(0, r))) \) for \(0 < r < 1 \). Finding the preimage of the circle \(C(0, r) \) under \(S \) will give bounds for the \(\Re f(z) \) and \(\Im f(z) \). We first determine the image of the circle \(C(0, r) \) under \(T^{-1} \). We solve to get \(T^{-1}(z) = (iz + 1)/(1 - iz) \). It maps circles into circles or lines. Since the only point mapped to infinity is \(-i \notin C(0, r), T^{-1}(C(0, r)) \) is a circle inside \(T^{-1}(\mathbb{D}) = \{ z, \Re(z) > 0 \} \). We get

\[
T^{-1}(ir) = \frac{-r + 1}{1 + r}, \quad T^{-1}(-ir) = \frac{r + 1}{1 - r}, \quad T^{-1}(0) = 1, \quad T^{-1}(\infty) = -1.
\]

As in problem 4, we get that the points 0 and \(\infty \) are mapped by \(T^{-1} \) to points symmetric with respect to \(T^{-1}(C(0, r)) \) and their line contains the center \(C \) of this circle. So the center is on the real axis. It is located at the midpoint of \(T^{-1}(ir) \) and \(T^{-1}(-ir) \) and the radius \(R \) is half the distance between them. We calculate:

\[
C = \frac{1}{2} \left(\frac{(1 - r)^2 + (r + 1)^2}{1 - r^2} \right) = \frac{1 + r^2}{1 - r^2}, \quad R = \frac{1 - (1 - r)^2 + (r + 1)^2}{2} = \frac{2r}{1 - r^2}.
\]

We also have

\[
g^{-1}(w) = \frac{2}{i\pi} \log w, \quad \Re g^{-1}(w) = \frac{2}{\pi} \arg w, \quad \Im g^{-1}(w) = -\frac{2}{\pi} \log |w|.
\]

The point of maximum modulus on the circle \(T^{-1}(C(0, r)) \) is the right-most point \(T^{-1}(-ir) = (r + 1)/(1 - r) \). This gives

\[
|\Im f(z)| \leq \frac{2}{\pi} \log \frac{r + 1}{1 - r}.
\]

which gives the one required inequality with \(|z| = r \). For the other, the situation is a bit more complicated because we need to give bounds for the argument on circle \(T^{-1}(C(0, r)) \). We draw the tangent line from the origin to the circle and use trigonometry. If the maximum argument (=angle) in Figure 5 is \(a \) then

\[
\sin a = \frac{2r/(1 - r^2)}{(1 + r^2)/(1 - r^2)} = \frac{2r}{1 + r^2} \Rightarrow \cos a = \frac{1 - r^2}{1 + r^2} \Rightarrow \tan a = \frac{2r}{1 - r^2},
\]

(solve \(\cos^2 a + \sin^2 a = 1 \), for instance). This gives the inequality

\[
|\Re f(z)| \leq \frac{2}{\pi} \arctan \frac{2r}{1 - r^2} = \frac{2}{\pi} \arctan \frac{2|z|}{1 - |z|^2}.
\]

This is not the inequality in the form given, but the discrepancy can be explained using trigonometric identities. We have

\[
\tan(a) = \frac{2 \tan(a/2)}{1 - \tan^2(a/2)} \Rightarrow \tan(a/2) = r \Rightarrow a = 2 \arctan r = 2 \arctan |z|.
\]
6. Let $f(z)$ be holomorphic in $|z| < R$ with Taylor expansion $f(z) = \sum a_n z^n$ and set

$$I_2(r) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta, \quad 0 \leq r < R.$$

Show that

(a) $I_2(r) = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$.

We substitute the Taylor series of $f(z)$ to get

$$I_2(r) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^{\infty} a_n r^n e^{in\theta} \sum_{m=0}^{\infty} \bar{a}_m r^m e^{-im\theta} d\theta = \frac{1}{2\pi} \sum_{n,m=0}^{\infty} a_n \bar{a}_m r^{n+m} \int_0^{2\pi} e^{i(n-m)\theta} d\theta,$$

by uniform convergence of the Taylor series inside the radius of convergence. Since

$$\int_0^{2\pi} e^{ij\theta} d\theta = \left\{ \begin{array}{ll} 2\pi, & j = 0, \\ 0, & j \neq 0, \end{array} \right.$$

we get

$$I_2(r) = \frac{1}{2\pi} \sum_{n=0}^{\infty} |a_n|^2 r^{2n} 2\pi.$$

(b) $I_2(r)$ is increasing.
This follows from (a), since each term increases for larger \(r \).

(c) \(|f(0)|^2 \leq I_2(r) \leq M(r)^2\), with \(M(r) = \sup_{|z|=r} |f(z)| \).

We have \(a_0 = f(0) \), so that \(|f(0)|^2 \leq \sum_{n=0}^{\infty} |a_n|^2 r^{2n}\), as \(|a_0|^2 \) is the first term in the series of positive terms. For the second inequality we resort to the definition of \(I_2(r)\): since \(|f(re^{i\theta})| \leq M(r)\), we get

\[
I_2(r) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} M(r)^2 d\theta = M(r)^2.
\]

(d) \(\log I_2(r) \) is a convex function of \(\log r \), when \(f \) is not identically zero. This means

\[
\log I_2(r) \leq \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log I_2(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log I_2(r_2).
\]

Hint: Set \(u = \log r \), \(J(u) = I_2(e^u) \), show that \(d^2 \log J(u)/du^2 = (JJ'' - J^2)/J^2 \) and use the Cauchy-Schwarz inequality.

With this definition of \(J(u)\) and the quotient rule we get

\[
(\log J(u))' = \frac{J'(u)}{J(u)}, \quad (\log J(u))'' = \frac{J''(u)J(u) - J'(u)J'(u)}{J^2(u)}.
\]

Now using (a) and \(r = e^u \) we get

\[
J(u) = \sum_{n=0}^{\infty} |a_n|^2 e^{2nu}, \quad J'(u) = \sum_{n=0}^{\infty} |a_n|^2 2ne^{2nu}, \quad J''(u) = \sum_{n=0}^{\infty} |a_n|^2 (2n)^2 e^{2nu}.
\]

Now we apply Cauchy-Schwarz inequality for sequences in the form

\[
\left| \sum_n c_n d_n \right|^2 \leq \sum_n |c_n|^2 \sum_n |d_n|^2.
\]

We take \(c_n = a_n e^{nu} \) and \(d_n = 2n\bar{a}_n e^{nu} \) to get

\[
J'(u)^2 \leq \sum_{n=0}^{\infty} |a_n|^2 e^{2nu} \sum_{n=0}^{\infty} |a_n|^2 (2n)^2 e^{2nu} = J(u)J''(u).
\]

This implies that \((\log J(u))'' \geq 0\), i.e. \(\log J(u) \) is a convex function of \(u \). This means that the graph is less than any secant segment on its graph. We fix \(u_1 = \log r_1 \) and \(u_2 = \log r_2 \). The segment between them is \(au_1 + (1-a)u_2 \). To get \(u \) we choose \(a = (u_2 - u)/(u_2 - u_1) \) i.e.

\[
u = \frac{u}{u_2 - u_1} u_1 + \frac{u - u_1}{u_2 - u_1} u_2.
\]

We join the points \((u_1, \log J(u_1))\) and \((u_2, \log J(u_2))\) on the graph of \(\log J(u) \) with a line segment of slope

\[
m = \frac{\log J(u_2) - \log J(u_1)}{u_2 - u_1} = \frac{\log I_2(r_2) - \log I_2(r_1)}{\log r_2 - \log r_1}
\]

7
with equation
\[
y = m(u - u_1) + \log J(u_1) = \frac{\log I_2(r_2) - \log I_2(r_1)}{\log r_2 - \log r_1} (u - \log r_1) + \log I_2(r_1).
\]

At a given \(u = \log r \) this line segment is higher in the plane than the point on the graph \((u, \log J(u))\):
\[
\log J(u) = \log I_2(r) \leq \frac{\log I_2(r_2) - \log I_2(r_1)}{\log r_2 - \log r_1} (\log r - \log r_1) + \log I_2(r_1)
\]
\[
= \left(1 + \frac{\log r_1 - \log r}{\log r_2 - \log r_1}\right) \log I_2(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log I_2(r_2).
\]

Now we add the fraction and 1 in parentheses to get the required inequality.

7. Let \(U(\xi) \) be piecewise continuous and bounded for all real \(\xi \). Show that
\[
P_U(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x - \xi)^2 + y^2} U(\xi) d\xi
\]
is a harmonic function in the upper half plane with boundary values \(U(\xi) \) at points of continuity. This is the Poisson integral for the half-plane.

This is really an exercise in changing variables in the integral using
\[
T: \mathbb{H} \to \mathbb{D}, \quad w = T(z) = \frac{z - i}{z + i}, \quad T'(z) = \frac{2i}{(z + i)^2}.
\]
We set \(T(\xi) = e^{it} \). We define \(V(t) = V(e^{it}) = U(\xi), \) i.e. we set \(V \circ T = U \) and we consider the circle to be parametrized with \(t \in [0, 2\pi] \). Since \(i e^{it} dt = T'(\xi) d\xi \), we get that
\[
dt = \frac{T'(\xi) d\xi}{i T(\xi)} = \frac{2i/(\xi + i)^2}{i(\xi - i)/(\xi + 1)} d\xi = \frac{2d\xi}{\xi^1 + 1}.
\]

We know that the Poisson integral \(P_V(w) \) is a harmonic function in the unit disc with boundary values \(V(e^{it}) \) at points of continuity. Since the composition of a harmonic function with a holomorphic function is still harmonic, we need to show that \(P_V(w) \) can be written as \(P_U(z) \) in the \(z, \xi \) variables. The boundary behavior is obvious since \(T(\mathbb{R}) \) is the unit circle. We have with \(w = re^{i\theta} = T(z) \)
\[
P_V(w) = \frac{1}{2\pi} \int_0^{2\pi} \Re \left(\frac{1 + re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} \right) V(e^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} \Re \left(\frac{1 + we^{-it}}{1 - we^{-it}} \right) V(e^{it}) dt
\]
\[
= \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |w|^2}{|1 - we^{-it}|^2} V(e^{it}) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1 - |T(z)|^2}{|1 - T(z)|^2} U(\xi) \frac{2}{\xi^2 + 1} d\xi
\]
\[
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1 - |(z - i)/(z + i)|^2}{|1 - T(\xi)(z - i)/(z + i)|^2} U(\xi) \frac{2}{\xi^2 + 1} d\xi = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|z + i|^2 - |z - i|^2}{|z + i - T(\xi)(z - i)|^2} U(\xi) \frac{d\xi}{\xi^2 + 1}
\]
We calculate the numerator and denominator in the fraction with \(z = x + iy \):

\[
|z + i|^2 - |z - i|^2 = x^2 + (y + i)^2 - (x^2 + (y - 1)^2) = 4y,
\]

\[
|(z+i)-(z-i)(\xi+i)/(\xi-i)|^2 = \frac{4}{\xi^2 + 1}((x-\xi)^2 + y^2).
\]

This gives finally

\[
P_{\nu}(T(z)) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{4y}{4((x-\xi)^2 + y^2)} U(\xi) d\xi,
\]

which is exactly the given formula.

8. Let

\[
P_r(t) = \Re \left(\frac{1 + z}{1 - z} \right), \quad z = re^{it}
\]

be the Poisson kernel for the unit disc \(|z| < 1\). Let \(U(\theta) \) be a continuous function of the interval \([0, \pi]\) with \(U(0) = U(\pi) = 0 \). Show that the function

\[
u(re^{i\theta}) = \frac{1}{2\pi} \int_{0}^{\pi} \{P_r(t - \theta) - P_r(t + \theta)\} U(t) dt
\]

is harmonic in the half-disc

\[
\{re^{i\theta}, 0 \leq r < 1, 0 \leq \theta \leq \pi\}
\]

and has the following limiting behavior on the boundary:

\[
\lim_{z \to e^{i\theta_0}} u(z) = U(\theta_0), \quad 0 < \theta_0 < \pi
\]

\[
u(x) = 0, \quad -1 < x < 1.
\]

We define the following function as an extension of \(U \) from \([0, \pi]\) to the interval \([-\pi, \pi]\):

\[
U(\theta) = \begin{cases}
U(\theta), & \theta \in [0, \pi] \\
-U(-\theta), & \theta \in [-\pi, 0]
\end{cases}
\]

We recall that the Poisson kernel is an even function of the angle. We consider \(P_{\nu}(z) \), the convolution integral of \(U \) with the Poisson kernel \((z = re^{i\theta}) \):

\[
P_{\nu}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t)U(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-t)(-U(-t))dt + \frac{1}{2\pi} \int_{0}^{\pi} P_r(\theta-t)U(t)dt
\]

\[
= -\frac{1}{2\pi} \int_{0}^{\pi} P_r(\theta+s)U(s)ds + \frac{1}{2\pi} \int_{0}^{\pi} P_r(\theta-t)U(t)dt = \frac{1}{2\pi} \int_{0}^{2\pi} \{P_r(\theta - t) - P_r(\theta + t)\} U(t)dt.
\]
This explains our choice for extending U as an odd function: we get the formula given. Moreover, we know that $P_U(z)$ is harmonic on the whole unit disc, so, in particular, it is harmonic in the upper half of it. We examine the limiting behavior. Since $U(\theta)$ is continuous, its extension is continuous on the whole circle, so Schwarz’ theorem gives

$$\lim_{r \to 1} P_U(re^{it}) = U(e^{it}) = U(e^{it}), \quad t \in [0, \pi].$$

It remains to show the behavior on the segment $(-1, 1)$. These points are interior to the unit disc. For $0 < x < 1$ we have $\theta = 0$, which gives

$$u(x) = \frac{1}{2\pi} \int_0^\pi \{P_x(t - 0) - P_x(t + 0)\} U(t)dt = \frac{1}{2\pi} \int_0^\pi 0U(t)dt = 0.$$

For $-1 < x < 0$, we have $\theta = \pi$. Since $P_r(\pi + t) = P_r(-\pi - t)$ we get

$$2\pi u(x) = \int_0^\pi \{P_{-x}(\pi - t) - P_{-x}(\pi + t)\} U(t)dt =$$

$$\int_0^\pi \left\{ \Re \left(\frac{1 + re^{i(\pi-t)}}{1 - re^{i(\pi-t)}} \right) - \Re \left(\frac{1 + re^{i(-\pi-t)}}{1 - re^{i(-\pi-t)}} \right) \right\} U(t)dt = \int_0^\pi \Re \left(\frac{1 - re^{-it}}{1 + re^{-it}} - \frac{1 - re^{-it}}{1 + re^{-it}} \right) U(t)dt = 0$$

since $e^{i\pi} = -1 = e^{-i\pi}$.