
Math 70300

Homework 6

Due: December 5

1. Let f(z) be a holomorphic function in the disc |z| < R1 and set

M(r) = sup
|z|=r

|f(z)|, A(r) = sup
|z|=r

<(f(z)), 0 ≤ r < R1.

(a) Show that M(r) is monotonic and, in fact, strictly increasing, unless f is a
constant.

This is nothing more than the maximum modulus principle. If r < s < R1, we
apply the maximum modulus principle on |z| ≤ s. This implies that for |z| ≤ s
|f(z)| ≤ M(s), in particular this holds for |z| = r and gives by taking supremum
M(r) ≤ M(s). Equality for |z| = r implies equality in the maximum modulus
principle, so f is constant.

(b) Show that A(r) is monotonic and, in fact, strictly increasing, unless f is constant.

We introduce g(z) = ef(z) so that |g(z)| = e<f(z). This gives with the obvious notation
M(g, r) = sup|z|=r |g(z)|

M(g, r) = eA(r), r < R1.

Since g is holomorphic M(g, r) is increasing and by (a) strictly increasing, unless g
is a constant. Since ex is also strictly increasing, A(r) is strictly increasing, unless
g(z) is a constant. But in this case g(z) = ef(z) = k and this gives e<f(z) = |k| =⇒
<f(z) = log |k| is constant. But we know that analytic functions with constant real
part are also constant.

2. Assume f(z) is a holomorphic function on |z| ≤ 1 with |f(z)| ≤ 1. Show that

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

When does equality hold for a point z0 inside |z| < 1?

Fix z ∈ D. We set

φa(w) =
w − a

1− āw
, |w| < 1, |a| < 1.

We remark that

φ′a(w) =
1− |a|2

(1− āw)2
, φ′a(0) = 1− |a|2, φ′a(a) =

1

1− |a|2
.
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We consider the function

g = φf(z) ◦ f ◦ φ−z : D → D,

g(0) = φf(z)(f(φ−z(0))) = φf(z)(f(z)) = 0.

By Schwarz lemma |g′(0| ≤ 1, with equality only if g is a rotation, i.e. g(w) = eiθw,
θ ∈ [0, 2π]. We calculate with the chain rule.

|φ′f(z)(f(φ−z(0)))f ′(φ−z(0))φ
′
−z(0)| ≤ 1 ⇔ |φ′f(z)(f(z))||f ′(z)||φ′−z(0)| ≤ 1

⇔
∣∣∣∣ 1

1− |f(z)|2

∣∣∣∣ |f ′(z)||1− |z|2| ≤ 1 ⇔ |f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

If equality holds then g(w) = eiθw. We get (note that φ−1
a = φ−a)

φf(z0) ◦ f ◦ φ−z0 = eiθ Id ⇔ f(φ−z0(w)) = φ−f(z0)(e
iθw) ⇔ f(z) = φ−f(z0)(e

iθφz0(z)).

3. Let D = {z : |z| < 1}. Suppose that f : D → D is analytic, f(1/3) = 0 and
f ′(1/3) = 0. Show that |f(0)| ≤ 1/9.

Let

φ(z) = φ−1/3(z) =
z + 1/3

1 + z/3

be the linear fractional transformation with φ : D → D and φ(−1/3) = 0, φ(0) = 1/3.
Then f ◦φ : D → D and f(φ(0)) = f(1/3) = 0, so we can apply Schwarz lemma. The
result is |f(φ(z))| ≤ |z|, |z| < 1. Applying this for z = −1/3 we get

|f(φ(−1/3))| ≤ 1/3 ⇔ |f(0)| ≤ 1/3.

This is short of what we want to prove, since we have not used f ′(1/3) = 0. To
exploit the information on the derivative, we consider the function

g(z) =
f(φ(z))

z
.

Since (f ◦ φ)(0) = f(1/3) = 0, g(z) has in fact a removable singularity at 0. Since
(f ◦ φ)′(0) = f ′(φ(0))φ′(0) = f ′(1/3)φ′(0) = 0, we get the value g(0) = 0. We apply
Schwarz lemma to get |g(z)| ≤ |z|. We set z = −1/3 to get

|g(−1/3)| =
∣∣∣∣f(φ(−1/3))

1/3

∣∣∣∣ =

∣∣∣∣f(0)

1/3

∣∣∣∣ ≤ 1/3 =⇒ |f(0)| ≤ 1

9
.

4. Prove that if f(z) : H → H is an analytic function from the upper-half plane to itself,
then

|f(z)− f(z0|
|f(z)− f(z0)|

≤ |z − z0|
|z − z0|

, z, z0 ∈ H
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and
|f ′(z)|
=f(z)

≤ 1

=z
, z ∈ H.

When does equality hold?

We map the upper-half plane conformally to the unit disc D with appropriate holo-
morphic transformations. More, precisely we define

φ(z) =
z − z0

z − z̄0

, z ∈ H, ψ(w) =
w − f(z0)

w − f(z0)
, w ∈ H.

Since for z ∈ R, |z − z0| = |z − z̄0|, we have φ(R) = {z, |z| = 1}. Notice that we
mapped z0 to the center of the disc and its symmetric point with respect to the real
axis, i.e. z̄0 to the point symmetric with respect to the circle, i.e. ∞. This shows
that φ : H → D. Similar considerations apply for ψ and, in particular, ψ(f(z0)) = 0.
We consider the function

g = ψ ◦ f ◦ φ−1 : D → D,

g(0) = ψ(f(φ−1(0))) = ψ(f(z0)) = 0,

so that we can apply Schwarz lemma. This gives |g(ζ)| ≤ |ζ|. We set φ(z) = ζ ⇔
z = φ−1(ζ). This gives

|ψ(f(φ−1(ζ)))| ≤ |ζ| ⇔ |ψ(f(z))| ≤ |φ(z)| ⇔

∣∣∣∣∣f(z)− f(z0)

f(z)− f(z0)

∣∣∣∣∣ ≤
∣∣∣∣z − z0

z − z̄0

∣∣∣∣ , z, z0 ∈ H.

For the second inequality we use |g′(0)| ≤ 1. First we notice that

φ′(z) =
z0 − z̄0

(z − z̄0)2
=⇒ φ′(z0) =

1

2i=z0

.

Similarly

ψ′(w) =
f(z0)− f(z0)

(w − f(z0))2
=⇒ ψ′(f(z0)) =

1

2i=f(z0)
.

By the chain rule we get

|ψ′(f(φ−1(0)))||f ′(φ−1(0))||(φ−1)′(0)| ≤ 1 ⇔ |ψ′(f(z0))||f ′(z0)|
1

|φ′(z0)|
≤ 1,

since (φ−1)′(z) = 1/φ′(φ−1(z)). As a result

|f ′(z0)|
|2i=f(z0)|

≤ 1

|2i=z0|

and this clearly implies the inequality for an arbitrary point z0 in H. If equality holds
in either of the inequalities, g(ζ) = cζ with |c| = 1. This gives

g(ζ) = ψ(f(φ−1(ζ))) = cζ ⇔ ψ(f(z)) = cφ(z) ⇔ f(z) = ψ−1(cφ(z)).
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5. Suppose z = φ(ζ) and w = ψ(ζ) are one-to-one analytic maps from the unit disc
D(0, 1) onto the regions G1 and G2. Set φ(0) = z0 and ψ(0) = w0. Let 0 < r < 1
and Ω1(r) = φ(D(0, r)), Ω2(r) = ψ(D(0, r)). Assume f : G1 → G2 be a holomorphic
map with f(z0) = w0. Show that

f(Ω1(r)) ⊂ Ω2(r).

We have that g = ψ−1◦f ◦φ : D → D. Moreover, g(0) = ψ−1(f(φ(0))) = ψ−1(f(z0)) =
ψ−1(w0) = 0. This means we can apply Schwarz lemma to get |g(ζ)| ≤ |ζ|. Let
z ∈ Ω1(r) ⇔ z = φ(ζ), |ζ| < r. Then

|ψ−1(f(z))| = |ψ−1(f(φ(ζ)))| ≤ |ζ| < r

This gives that f(z) ∈ ψ(D(0, r)) = Ω2(r).

6. Show that if an entire function f maps the real axis into itself and the imaginary axis
into itself, then f is an odd function, i.e., f(−z) = −f(z) for any z.

Give two proofs, which are really different.

First proof: Use of Taylor series. We have in the whole complex plane

f(z) =
∞∑

n=0

anz
n.

We plug z = x ∈ R and force f(x) to be real:

f(x) = f(x) ⇔
∞∑

n=0

anx
n =

∞∑
n=0

anx
n, x ∈ R.

By uniqueness of the Taylor expansion we get

an = an, n = 1, 2, . . . =⇒ an ∈ R.

Now we plug z = ix, z ∈ R and force f(ix) to be purely imaginary.

f(ix) = −f(ix) ⇔
∞∑

n=0

ani
nxn = −

∞∑
n=0

aninxn = −
∞∑

n=0

an(−i)nxn.

By uniqueness of the Taylor series we get

ani
n = −an(−i)n ⇔ an = −(−1)nan =⇒ a2k = 0, k = 1, 2, . . . .

Since the Taylor series has only odd terms, the function f(z) is odd.

Second proof: We use the Schwarz reflection principle twice. Since f is real on the
real axis, symmetric points with respect to the real line are mapped to symmetric
points with respect to the real axis. This gives

f(z) = f(z̄), z ∈ C.
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Since f maps the imaginary axis to the imaginary axis, it maps points symmetric
with respect to the imaginary axis to points symmetric with respect to the imaginary
axis. We notice that the symmetric point of z has the same imaginary part and
opposite real part, i.e. z∗ = −z̄. Similarly w∗ = −w̄. This gives

f(z) = −f(z∗) = −f(−z̄).

Combined the two equations for f(z) we get

f(z) = −(f(−z̄) = −f(−z) = −f(−z), z ∈ C.

7. (a) Consider two rectangles R = [0, a] × [0, b] and R′ = [0, a′] × [0, b′]. Suppose
f : R → R′ is a homeomorphism which is holomorphic in the interior of R and
maps a-sides to a′-sides and b-sides to b′-sides (i.e., f([0, a] × {0}) = [0, a′] × {0},
f([0, a] × {b}) = [0, a′] × {b′}, f({0} × [0, b]) = {0} × [0, b′], and f({a} × [0, b]) =
{a′} × [0, b′]). Show that a/b = a′/b′.

We use the Schwarz reflection principle applied first along each side of R. Since f
maps {0} × [0, b] to {0} × [0, b′] we reflect the rectangle R along the imaginary axis
and R′ similarly. The reflections are given by z∗ = −z, w∗ = −w. The analytic
continuation of f is given by f(z∗) = (f(z))∗ ⇔ f(−z̄) = −f(z). The image of R
under the reflection is the rectangle R∗ = [−a, 0] × [0, b] and it is mapped by the
analytic continuation of f to R′∗ = [−a′, 0]× [0, b′]. On the union R∪R∗ the function
f is still one-to-one, since it is on R and R∗ is mapped onto R′∗ in a one-to-one way
and R′∗ is disjoint from R′.

The reflection can be repeated along the sides {a}× [0, b] (resp. {a′}× [0, b′]), [0, a]×
{0} (resp. [0, a′] × {0}), [0, a] × {b} (resp. [0, a′] × {b′}). After these reflections we
keep reflecting along the sides of the new rectangles we created: this is possible, say,
along the side {−a}× [0, b] since the values of f on it are the reflected values of f on
{a}× [0, b], which lie on {a′}× [0, b′]. The reflection of this last side is {−a′}× [0, b′].
The rectangles form a tesselation of the z and of the w planes, and every rectangle in
the z-plane corresponds to a unique one in the w-plane. See Figure 1. The analytic
continuation of f on C is still one-to-one, since the values on any rectangle in the z
plane lie inside only one of the rectangles in the w plane. This way we get a one-to-
one mapping on C, which is holomorphic. We need to examine what happens at ∞.
We claim that it is a pole. We need to show that limz→∞ f(z) = ∞. Let R be given.
Let r be chosen in such a way that every rectangle that intersects |z| > r corresponds
to a rectangle inside |w| > R. The correspondence is achieved with the help of f . As
a result f is a polynomial which is one-to-one, so it is a linear function f(z) = cz+d.
Since f(0) = 0, we get d = 0. Now f(a) = a′ =⇒ c = a′/a, f(b) = b′ =⇒ c = b′/b.
This gives a/b = a′/b′.

(b) Let A = {z, R1 ≤ |z| ≤ R2} and B = {w, r1 ≤ |w| ≤ r2} be two annuli and
f : A → B be a holomorphic one-to-one and onto map that maps |z| = Ri to
|w| = ri, i = 1, 2. Show that there exists a c ∈ C, |c| = 1 such that

R1

R2

=
r1
r2
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Figure 1: The tesselations on the z- and w-planes. The function f maps the rectangles on
the left to the rectangles on the right with the same color.

Figure 2: The function f maps the circles on the left to the circles on the right with the
same color.
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and
f(z) = c

r1
R1

z.

We apply the Schwarz reflection principle. We reflect as first step along |z| = R2 and
|w| = r2. The reflection of the annulus R1 < |z| < R2 will be mapped into an annulus
determined by the reflection of |w| = r1 along |w| = r2. The reflection maps circles
to circles according to the formula

(w∗ − a)w − a = r2
2, a = 0.

For |w| = r1 we get a circle of radius r2
2/r1. So the reflection of the annulus r1 < |w| <

r2 is the annulus r2 < |w| < r2
2/r1. Similarly the reflection of the annulus R1 < |z| <

R2 along |z| = R2 is the annulus R2 < |z| < R2
2/R1. Because 0 6∈ {w, r1 < |w| < r2},

the analytic continuation of f is a mapping that is still holomorphic (under a reflection
0 is mapped to ∞). We keep reflecting outwards and analytically continue f on the
annulus R2

2/R1 < |z| < R3
2/R

2
1 with values in the annulus r2

2/r1 < |w| < r3
2/r

2
1 and

continue until we cover the whole region R1 < |z| on the domain and the region r1 <
|w| in the image of f . But we can also reflect inwards: this continues f(z) analytically
on the annulus R2

1/R2 < |z| < R1 with values in the annulus r2
1/r2 < |w| < r1 and we

continue until we cover the region 0 < |z| < R1 with values in 0 < |w| < r1. Notice
that the radii are a geometric progression with ratios R2/R1 and r2/r1 respectively.
So they tend to infinity outwards and 0 inwards as we apply repeatedly the Schwarz
reflection principle. See Figure 2.

We study the behavior of f at 0 and ∞. The function has a removable singularity
at 0, since it tends to 0 at 0 (look at the images of the shrinking annuli, they are
shrinking annuli as well). We set f(0) = 0. The function has a pole at ∞, since
limz→∞ f(z) = ∞ (look at the images of expanding annuli, they are expanding annuli
as well). Such an entire function is a polynomial. Moreover, since f was one-to-one
inside the annulus R1 < |z| < R2, and because of the images we get by reflection,
it is clear that the analytic continuation of f(z) is also one-to-one on C. This forces
the polynomial to be of degree 1. Moreover, f(0) = 0, so f(z) = dz. Since |z| = R1

is mapped to |w| = r1, this gives |d| = r1/R1. Similarly, |d| = r2/R2. This gives
R1/R2 = r1/r2 and d = cr1/R1 with |c| = 1.

8. (a) Let f be analytic in a bounded region D and its boundary C, such that |f(z)| = 1
on C. Show that f has at least one zero inside D, unless f is a constant.

By the maximum modulus principle, |f(z)| ≤ 1 inside D. If f(z) does not have a
zero inside D, then the function g(z) = 1/f(z) is holomorphic in D and also satisfies
|g(z)| = 1 on the boundary. By the maximum modulus principle we get |g(z)| ≤ 1
inside D, i.e. |f(z)| ≥ 1. This gives |f(z)| = 1 inside D and as a result f is constant.

(b) Let f(z) be an analytic function in a region D except for one simple pole and
assume |f(z)| = 1 on the boundary of D. Prove that every value a with |a| > 1 is
taken by f(z) inside D once and once only.

7



Let Γa = (f−a)(∂D) = {w, |w+a| = 1} the image of the boundary curve of D under
f(z)− a. By the argument principle

1

2πi

∫
∂D

f ′(z)

f(z)− a
dz = n(Γa, 0) = #{aj ∈ D, f(aj)−a = 0}−#{bj ∈ D, bj pole of f(z)−a}.

Clearly f(z)−a has one simple pole inside D, exactly where f does. The aj’s are the
points where f(z) assumes the value a. If |a| > 1, 0 is not inside the circle |z+a| = 1,
so n(Γa, 0) = 0. This gives

#{aj ∈ D, f(aj) = a} = 1.

9. (a) How many roots of the equation z4 − 6z + 3 = 0 have their modulus between 1
and 2?

Let f(z) = z4 and g(z) = −6z + 3. On the circle |z| = 2 we have

|f(z)| = |z|4 = 24 = 16, |g(z)| = | − 6z + 3| ≤ 6|z|+ 3 = 6 · 2 + 3 = 15 < |f(z)|.

By Rouché’s theorem, f has the same number of zeros inside the circle |z| = 2 as
f(z) + g(z) = z4 − 6z + 3. Since f(z) has a fourth order zero at 0 and no other
zeros, we get for the given polynomial 4 zeros inside |z| = 2. We need to subtract the
number of zeros inside |z| = 1. Now we set f(z) = −6z, g(z) = z4 + 3. We get on
|z| = 1:

|f(z)| = | − 6z| = 6|z| = 6, |g(z)| = |z4 + 3| ≤ |z|4 + 3 = 1 + 3 = 4 < 5 = |f(z)|.

Since f(z) has one simple zero at 0, we get that f(z) + g(z) = −6z + z4 + 3 has one
zero inside |z| = 1. As a result there are 3 zeros inside the annulus.

(b) Find the number of the roots of the equation

z6 − 5z4 + 8z − 1 = 0

in the annulus {z : 1 < |z| < 2}.
For the disc |z| ≤ 1 we use f(z) = 8z, g(z) = z6− 5z4− 1, so that on |z| = 1 we have

|f(z)| = |8z| = 8, |g(z)| = |z6−5z4−1| ≤ |z|6+5|z|4+1 = 1+5+1 = 7 < 8 = |f(z)|.

Since f(z) has one zero at 0, the function f(z) + g(z) = z6 − 5z4 + 8z − 1 has the
same number of zeros inside |z| = 1, i.e. 1. (Rouché’s theorem).

For the disc |z| = 2, the above technique does not work. With any choice of splitting
in one plus three or two plus two terms of the polynomial, we cannot apply Rouché’s
theorem. Here are the calculations:

|z6| = 26 = 64, | − 5z4 + 8z − 1| ≤ 5 · 24 + 8 · 2 + 1 = 80 + 16 + 1 > 64,

| − 5z4| = 5 · 16 = 80, |z6 + 8z − 1| ≤ 26 + 8 · 2 + 1 = 64 + 16 + 1 = 81 > 80,
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|8z| = 16, |z6 − 5z4 − 1| ≤ 26 + 5 · 24 + 1 = 64 + 80 + 1 > 16,

|1| = 1, |z6 − 5z4 + 8z| ≤ 26 + 5 · 16 + 16 > 1,

|z6 − 5z4| = |z|4|z2 − 5| ≥ 16 · 1 = 16, |8z − 1| ≤ 8|z|+ 1 = 17 > 16,

|z6 + 8z| = |z||z5 + 8| ≥ 2 · (32− 8) = 48, | − 5z4 − 1| ≤ 80 + 1 > 48,

|z6 − 1| ≥ 63, | − 5z5 + 8z| = |z|| − 5z4 + 8| ≤ 2 · (80 + 8) > 63.

Here is a trick. We choose a smaller disc of radius 3/2 and find the number of zeros
inside |z| = 3/2. We set f(z) = −5z4, g(z) = z6 + 8z − 1, so that on |z| = 3/2 we
have

|f(z)| = 5(3/2)4 = 405/16, |g(z)| ≤ (3/2)6 + 8 · 3/2 + 1 = (3/2)6 + 13 < 405/16,

as

(3/2)6 < 197/16 ⇔ (81/16)(9/4) < 197/16 ⇔ 729/4 < 197 ⇔ 729 < 788.

By Rouché’s theorem 5z4 has the same number of zeros as z6 − 5z4 + 8z − 1 inside
|z| = 3/2, i.e. 4. However, this does not suffice to guarantee that inside the given
annulus 1 < |z| < 2 there are 3 zeros. It is possible that we have one or two more
zeros in the annulus 3/2 < |z| < 2. We use the intermediate value theorem on the
real axis:

f(−3) = 299, f(−2) = −33, f(2) = −1, f(3) = 347.

By the intermediate value theorem there exist one solution in (−3,−2) and another
in (2, 3). This accounts for all 6 roots. With Maple one can compute the roots to be

0.1251528553, 1.296061165, 2.023328803,−0.5358533086 + 0.9984804513i,

−2.372836206,−0.5358533086− 0.9984804513i.

10. Let λ be real and λ > 1, Show that the equation

zeλ−z = 1

has exactly one solution in the disc |z| = 1, which is real and positive.

We rewrite the equation as

zeλ = ez ⇔ zeλ − ez = 0,

so that we choose f(z) = zeλ and g(z) = −ez and apply Rouché’s theorem on |z| = 1.

|f(z)| = |z|eλ = eλ > e, as λ > 1,

|g(z)| = | − ez| = e<z ≤ e1 < |f(z)|,
so the function f(z) + g(z) = zeλ− ez has the same number of zeros inside |z| = 1 as
f(z), i.e. 1 solution. To prove that it is real and positive we apply the intermediate
value theorem on [0, 1]:

f(0) + g(0) = 0− e0 = −1, f(1) + g(1) = eλ − e1 > 0

as λ > 1. So there exists a solution in [0, 1].
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