# Math 70300 <br> Homework 6 

## Due: December 5

1. Let $f(z)$ be a holomorphic function in the disc $|z|<R_{1}$ and set

$$
M(r)=\sup _{|z|=r}|f(z)|, \quad A(r)=\sup _{|z|=r} \Re(f(z)), \quad 0 \leq r<R_{1} .
$$

(a) Show that $M(r)$ is monotonic and, in fact, strictly increasing, unless $f$ is a constant.
(b) Show that $A(r)$ is monotonic and, in fact, strictly increasing, unless $f$ is constant.
2. Assume $f(z)$ is a holomorphic function on $|z| \leq 1$ with $|f(z)| \leq 1$. Show that

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

When does equality hold for a point $z_{0}$ inside $|z|<1$ ?
3. Let $\mathbb{D}=\{z:|z|<1\}$. Suppose that $f: \mathbb{D} \rightarrow \mathbb{D}$ is analytic, $f(1 / 3)=0$ and $f^{\prime}(1 / 3)=0$. Show that $|f(0)| \leq 1 / 9$.
4. Prove that if $f(z): \mathbb{H} \rightarrow \mathbb{H}$ is an analytic function from the upper-half plane to itself, then

$$
\frac{\mid f(z)-f\left(z_{0} \mid\right.}{\mid f(z)-\overline{f\left(z_{0}\right) \mid}} \leq \frac{\left|z-z_{0}\right|}{\left|z-\overline{z_{0}}\right|}, \quad z, z_{0} \in \mathbb{H}
$$

and

$$
\frac{\left|f^{\prime}(z)\right|}{\Im f(z)} \leq \frac{1}{\Im z}, \quad z \in \mathbb{H} .
$$

When does equality hold?
5. Suppose $z=\phi(\zeta)$ and $w=\psi(\zeta)$ are one-to-one analytic maps from the unit disc $D(0,1)$ onto the regions $G_{1}$ and $G_{2}$. Set $\phi(0)=z_{0}$ and $\psi(0)=w_{0}$. Let $0<r<1$ and $\Omega_{1}(r)=\phi(D(0, r)), \Omega_{2}(r)=\psi(D(0, r))$. Assume $f: G_{1} \rightarrow G_{2}$ be a holomorphic map with $f\left(z_{0}\right)=w_{0}$. Show that

$$
f\left(\Omega_{1}(r)\right) \subset \Omega_{2}(r)
$$

6. Show that if an entire function $f$ maps the real axis into itself and the imaginary axis into itself, then $f$ is an odd function, i.e., $f(-z)=-f(z)$ for any $z$.
Give two proofs, which are really different.
7. (a) Consider two rectangles $R=[0, a] \times[0, b]$ and $R^{\prime}=\left[0, a^{\prime}\right] \times\left[0, b^{\prime}\right]$. Suppose $f: R \rightarrow R^{\prime}$ is a homeomorphism which is holomorphic in the interior of $R$ and maps $a$-sides to $a^{\prime}$-sides and $b$-sides to $b^{\prime}$-sides (i.e., $f([0, a] \times\{0\})=\left[0, a^{\prime}\right] \times\{0\}$, $f([0, a] \times\{b\})=\left[0, a^{\prime}\right] \times\left\{b^{\prime}\right\}, f(\{0\} \times[0, b])=\{0\} \times\left[0, b^{\prime}\right]$, and $f(\{a\} \times[0, b])=$ $\left.\left\{a^{\prime}\right\} \times\left[0, b^{\prime}\right]\right)$. Show that $a / b=a^{\prime} / b^{\prime}$.
(b) Let $A=\left\{z, R_{1} \leq|z| \leq R_{2}\right\}$ and $B=\left\{w, r_{1} \leq|w| \leq r_{2}\right\}$ be two annuli and $f: A \rightarrow B$ be a holomorphic one-to-one and onto map that maps $|z|=R_{i}$ to $|w|=r_{i}, i=1,2$. Show that there exists a $c \in \mathbb{C},|c|=1$ such that

$$
\frac{R_{1}}{R_{2}}=\frac{r_{1}}{r_{2}}
$$

and

$$
f(z)=c \frac{r_{1}}{R_{1}} z
$$

8. (a) Let $f$ be analytic in a bounded region $D$ and its boundary $C$, such that $|f(z)|=1$ on $C$. Show that $f$ has at least one zero inside $D$, unless $f$ is a constant.
(b) Let $f(z)$ be an analytic function in a region $D$ except for one simple pole and assume $|f(z)|=1$ on the boundary of $D$. Prove that every value $a$ with $|a|>1$ is taken by $f(z)$ inside $D$ once and once only.
9. (a) How many roots of the equation $z^{4}-6 z+3=0$ have their modulus between 1 and 2 ?
(b) Find the number of the roots of the equation

$$
z^{6}-5 z^{4}+8 z-1=0
$$

in the annulus $\{z: 1<|z|<2\}$.
10. Let $\lambda$ be real and $\lambda>1$, Show that the equation

$$
z e^{\lambda-z}=1
$$

has exactly one solution in the disc $|z|=1$, which is real and positive.

