Math 70300

Homework 5

Due: November 14

1. Calculate the integrals using contour integration. Complete explanations are required.

L[ dx [ cosz o [ (logx)?
(1)/0 ] (11)/0 x2+1d:c, (111)/0 T4 a2 dx

(iv) /Omf(”(—“%dz (a.b>0), (v) /O”/Qd_e @0, (v /0°° 2da

2+ b?) a +sin? 6 x4+ 52246

N dx o [ logx _ 2 do

(Vll) /OO m <V111)/0 mdl’ (IX)\/(; m (a > ].)
Answers: (1) 27/(3v/3), (ii) me1/2, (iii) 73/8, (iv) 7(14-ab)e™®/(4b%), (v) 7/(2Va® + a),
(vi) (V3—V2)1/2, (vii) 1-3:5--- (2n—1)7/(2-4-6 - - - (2n)), (viii) —7/4, (ix) 27a/(a®—
1)%/2,
(i) We consider the contour in Figure 1 and f(z) = 1/(2® + 1). The only pole of the
denominator 2% + 1 = (x 4+ 1)(2% — 2 + 1) = (z + 1)(x — e™/3)(z — >™/3) inside the
contour is e™/3,

, , 1 1 1
w/3\ . 1; _ mi/3 — L _ - -

by L’Hopital’s rule. We get on the horizontal segment [0, R] that z(z) = z, on the
segment from 0 to Re?™/3 that z(z) = 2e*™/3,0 < x < R. The part of the contour
on a circle of radius R is denoted by vg. These give:

R R 27i/3
dx dz e dx ,
- ——— =2miR mi/3)
/o x3+1+/7Rz3+1 /o permig ] o es(f,e™”)

Notice that on the slanted segment 2% = (2e2™/3)3 = 23¢?™ = 23. This is what makes
this the right contour. So we get

/R dx N / dz omif3 /R dx 2mi
— € = — -
o w3+1 ), 2B3+1 o x3+1  3emi/3

The integral over v tends to 0 as R — oo. This is because on vg for R > 1 we have

1 1
<
z3+1‘_R3—1




P

aNpl 1)

Figure 1: Contours for (i) and (ii)

by the triangle inequality (|2 +1| > |2|> =1 = R*—1). On the other hand the length
of the arc is 2rR/3. This gives

d: _ 27R/3
< .
/sz3+1_R3—1_>0’ ft =0

/ > dx omi/3 / > dx 2mi
— —c = A
0 xd+1 o xd4+1  3e2m/3

/ *odr 2mi B 2m 2mi 2
o w3+1 B 3e2mi/3(1 — e2mi/3)

The result is

T 3(e2m/3 — Mmif3) T 3.2isin(27/3) 33

(i) We use the function f(z) = ¢*/(1 + 2?) inside the contour in Figure 1. The only
pole is at ¢ with residue

Res(/.) = lim(z — Z)m -2

We notice that

R iz R T 0 T R T R —iz
/ 26 dz = / 26 dx + / 26 dr = / 26 dx + / 2 dx
_p2*+1 o x¢+1 _pxrc+1 o T4+1 o T4+1

/Rei‘”—i—e_imd 2/R cosz_,
— " dr = —dx
o r2+1 0o r2+17

with a change on variable x = —y on [—R,0]. The semicircle is denoted by vyz. On
it |ei*| = |eiRe”| = e~ Rsin® < 1 because 0 € [0, n]. This gives

e TR
dz| < 0, R
/71%,22—1-12‘_1?,2—1—> ’ — %0

2




using the triangle inequality in the denominator (|2% + 1| > |z|*> — 1 = R* — 1). The
result is that

> cosx COS T Te~
2/0 o dx = 2mie™ ' /(2i) = me” ﬁ/ x2+1x— 5

(iii) We use the function
_ (log =)

f(z) = 2241
with logz = log |z| + iargz, —n/2 < argz < 37/2 (non-principal branch of log).
This works on the upper-half plane, where our contour is located, with the exception
of 0. This is why to make the small semicircle 7, part of our contour. There are two
poles of the integrand, but only one ¢ lies inside the contour.

(log 2)* (log?)?  (iw/2)*? —x?

Res(f)_ﬁlili(z_i)(z—i)(zﬂ'): 2 2 8

We call the large semicircle vz and the small one v, both traversed in the positive
sense. The residue theorem gives

R 2 2 —r N2 2 2
1 1 1 1 —
Py U oy TR g R A
. x?2+1 e 221 _R x2+1 a 2241 8¢
since on the negative real axis x < 0 the argument is 7, which gives log z = log |z|+i.
On vg we have |log z| = |log R + iarg(z)| < log R + 7, therefore,

2 2
/ (log 2) dZ‘SWR(logR—i-W) o
TR

R
2241 R?2 -1 — %%

since log R and its powers grow slower than any power of R. On , we have |log z| =
|log r +iarg(z)| <logr + m. This gives

| 2 | 2
/(ZgZ) dz'gw(ogrwf)
v 2241 1—172

—0, r—0,

since the triangle inequality in the denominator gives |22 — 1| > 1 — [z]*> = 1 — r?,
and rlogr, rlog®r tend to 0 for » — 0. If you are not familiar with this, consider
(change variables x = log )

ok (1)t

limr(logr)* = lim e*z" = lim = lim —— =0,
r—0 T——00 z——00 € 7T y—00 ey

since e grows more quickly than any power of y. For the integral on the segment on
the negative axis we have by expanding the numerator

—-r 1 - \2 —-r 1 2 71"1 -r 1
/ —( og || + im) dx:/ —( og|z]) da:+27ri/ Og|x|daj—7r2/ dx.
_R 1+ 22 _r 2241 _p r?2+1 _rpr?+1
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We now change variable in the first integral x = —y to get

R 2 R R
| 1 1
——/ (logy) dy+2m'/ ogy) dy—7r2/ dy
P YAl P YPt1 r o yr+1

(e%e] 1 2 ool 9] 1
_>/ (ng) dx+27ri/ o8y dy—7r2/ dx
0 :E-l—l 0 1+y2 0 ZE2-|—1

as 7 — 0, R — oo. The last integral is elementary as arctan(z)’ = 1/(1 + 2?) and

gives
< 1
/ 5 de ==,
o x°+1 2

We do not need to worry about the middle integral. It comes with an imaginary
coefficient, while the integral is real. This means that we can take real parts and its
contribution will be zero. Another approach is to notice that the integral is actually
exactly zero:

> 1 | <1 *log(1/y) —d > 1
/ ;)gx dx:/ 08T dx—i—/ o8t dx:—/ —Og( /y)—y—}—/ o8t dz,
o r241 0o r2+1 1 r?+1 1 2 +1 2 L+ 2?
where we changed variables © = 1/y, dz = —dy/y?. Finally this gives
/°° logxd /°° logyd +/°° logmd 0
€r = — xr = U.
o 241 L 1+2 7T ) T

Bringing all the results together we get

* (log z)? o 3 /°° (log x)? 17 x
2 do—m X =T dr=-2 T
/0 211t T Ty . 21T 24 TR

(iv) We consider the function

iaz
€

f(z):m

on the contour in Figure 2. There is only one pole inside the contour and this is at
1b. Tt is a double pole. We calculate the residue
d e iae"*(z + ib) — 2¢'*

. . d 2 - ;
Res(f,ib) = lim 2~ (= — )" f(2) = lim - apE - m (2 + ib)?

dae™®(2ib) — 2¢ jae”2ib — 2e7"  e7(2ab + 2)

(2ib)3 B —i8b3 B 8ib3

We call the semicircular contour vz and estimate the integral over it (R > b) as

1
Sﬂ'RmHO, R—>OO,




since |ef@fe’”| = ¢=aRsin® < 1 o the contour. We also have, after splitting the integral

on the negative numbers and substituting z = —y,

R iax 0 iax R iax R —iay R iax
Sy Y L (R G
B B e S e N R u S R A e Rk

R —iax iax R oo
:/ et e dr — 2/ cos(ax) dr — 2/ (cos(ax) e, R — oo,
0 0 0

($2 +b2)2 (332 +b2>2 xr2 _|_b2)2

We use the residue theorem in the contour of Figure 2, let R — oo to get

oo —ab 2 92 1 —ab
/ (cos(ax) dr — 9 (2ab+2)  (ab+1)e ™
0

22 + b?)? 8ib3 B 203

(iv) Since

/7‘(’/2 A6 B 1/27r d6
o a-+sin’0 4J), a+sin?6’

as sin® § takes the same values in every quadrant, we consider the function
1 1
f(e) = s

a+ ()7

on the contour of Figure 3 |z| = 1. Notice that we substituted sin = (z — z71)/(24),

since on |z| = 1, i.e. 2z = €¥ this holds. Moreover, notice that we multiplied with
1/z, so that dz/z = ie??df/e? = idf. We get
1 1 1 1 4z
f(z) = — = =

o— G2 a—2/A—z?/A42/4z (da+2)2 -2 -1
We solve the biquadratic equation —z* + (4a 4+ 2)2* — 1 = 0.

P =2a+14++y/(2a+1)2-1=2a+1+2Va?+a.

There are two solutions for 22 but only is inside the circle, since the solutions are
real and positive and their product is 1. Clearly this is the smaller solution b? =
2a 4+ 1 —2v/a? + a. This gives two solutions for z, z = +b. The poles are simple. We
set ¢2 =2a+ 1+ 2va?+a.

Res(f,b) = li (2~ D)4 i b kL 1
VEATE DR -A) (b)) 2P —A) 2 ta

Res(f,—b) = lim (z+b)dz , 4z —4b 1
’ b —(22 =02 (22— ?) b —(2—0)(22— %) 2012 —¢?)  2Val+a

0

Using the parametrization z = e we get

2 ) ) 2 1 1 ' o 1
f(Z)dZ = / f(ewl'ezed@ — / —_Z'ewde _ / do
|Z‘:1 0 0 0

: - : (4
a + sin® @ e a + sin? 0
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=2mi ZRes(f, 2;) = 2mi

a?+a

1 s
/0 a+ sin? 6 \/a2+a / a + sin? 9 2va? +a
Alternative method:

/”/2 g /”/2 o _, /”/2 df
o a+sin?0 J, g4 lzees@) T o (2a + 1) — cos(26)

2

_/” dx _/0 dy
Jo 2a+1)—cosz J . (2a+1)+cosy’

with the change of variables © = m —y. Now we use the example in p. 155 of Ahlfors:
we take for a the expression 2a + 1 to get

/0 dy B s B s
(a4 1)+cosy /(2a+1)2—1 4a®+4a

(vi) We take

22

1) = 244+ 52246

on the contour in Figure 3 We have
A 452246 = (22 +3)(22+2) = (2 +iV3) (2 — iV3)(z + iV2) (2 — iV?2).
The poles inside the contour are z'\/i, and iv/3.

(iv/2)? _ -2 V2
(2iv2)((1v2)2 +3) 22 2

(iv/3)? _ -3 i3
(2if)(('\/_)2+2) —i2v/3 2

The function is even so f f(z)dz =2 fo x)dz. The residue theorem gives

o 2lda (V2 V3 V3 V2
2/0 er/va(z)dz:sz(———):27T<7—7>.

The integral over g tends to zero:

Res(f,iv2) =

Res(f,iV3) =

2
SWRR—_)(L R_>OO)

f(z)dz RF—5R?—6

since |2 + 522 + 6| > |2%] — [52% + 6] > |2]|* — 5|2|* — 6. Taking the limit as R — oo
we get

/°° ?de w(V3-— \/5)

4+ 52246 2
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Alternative method: This integral can be computed without complex integration. We
use partial fractions
x? A B
215216 243 212
which gives A+ B =1, 2A + 3B = 0 and, therefore, A =3, B = —2.

> * 3 2 > 3v/3d > 9./2dt
/ xzdxm4+5x2+6:/ d:p:/ ﬂdy—/ le\/gg—\/_g,
0 0 0 0

2+3 22 +2 3(y2 + 1) 212 + 1)

where we substituted x = \/gy and © = /2t.
(vii) We consider f(z) =1/(2*+1)"" and the contour of (ii). The only relevant pole
is at ¢ but it is of multiplicity n + 1. We remark that

mn

w('z-i—l')_”_l — (_n—l)(—n—Q) - (—n—n)(z+i)—"—1—" - (n+1)(n+2) - (QH)(—l)n(Z+Z)_2n_1

This gives
—lﬂ z— )"t L :ln n e (2n) (=) (24) 2t
- DB B yyagoancn et A DOAD ) gy Ly

(n+1)n+2)---(2n)
nl22n+1

We estimate that the integral over the semicircle v tends to 0 as R — oo:

/ dz
L (14 22)n

The residue theorem gives

R dx dz
/R (14 2)nt! * /m (14 22)n+t miRtes(f, 1)

Taking the limit as R — oo we get

1
STFRW—)O, R — o0.

= dx o (n+1)(n+2)---2n 1-2---n(n+1)(n+2)---(2n)
/ et = 2mi(—i) [ont1 = 2T
—oo (14 27) n!2 219 .1.2...m-1-2---m,
B 1-2---2n _1-3---(2n—1)
_7T2.4...(2n).2.4...(2n)_7T 2.4...9n

Alternative method: The substitution x = tan gives, as 1 + 2% = (cos0)72, do =

(cos 0)~2d6,

00 /2 /2 1-3---(2n—1
/ _dr / (cos? 6)"+1d—0 = / (cos0)*'df = 7 3 (2n - 1)
e (1 + x2)n+1 )2 cos2 f /2 2.4... (2n)
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by problem 2a in Homework 4. Notice that cos? takes the same value on any
quadrant.

(viii) We use the same contour as in (iii) and the function

log z
&)=ty
with nonprincipal branch of log z given by

logz =log|z| +iargz, —m/2<argz < 3m/2.

Inside the contour there is a double pole at ¢. We compute the residue

, o d , log z . 27X z+14)—2logz  i712i—2logi
R = Tim (2 — i)? —1 -
estod) =l oz =i e — (z+i)3 (20)3
C2-2%ir/2)  2—im
=& =8i

For the integral over vz we have

log 2 ‘ logR+7
————dz| <TR—- — 0, R — o0,
/m (14 22)? (R*—1)2

the same way as in (iii). For the integral over 7, we have

log 2z logr +m
/mdz‘gﬂ'rm—)[), r — 0.
Yr

The residue theorem gives

R Jogxdx /” log |x| + im log 2 log z
— Tt —dx+/ —dz+/ ————dz = 2miRes(f,1).
[ oot ), Gy BTl M e (59

We take the limit as R — oo, 7 — 0 to get

< log zdx O log|z| Y dx 2—ir (it —=2)w
| arert [arerte [ e

We substitute y = —z in the second integral, take real parts (notice that ff)oo(l +
2?)7%dw is real) to get

> logx -2 > logx T
[ ot =) aret
(ix) We use the same contour as in (v). The function to integrate is

4 B 4z B 4z

1 1
Qa+z+21)2z2 (242 1+2a)222  (22+2az+1)%

(a+ (z4271)/2)2

f(z) =

1
z
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We solve 22 + 2az + 1 = 0 by completing the square
(z4+a)l+1-a*>=0=z+a=F+Val= 2z, =—-a+Va>—1.

The two roots are real, as a > 1 is given. They have negative sum and product 1.
This means that only one is inside the circle |z| = 1. Call it z; = —a++v/a? — 1, while

29 = —a —va? — 1 < —1. The pole at z; is double. We calculate the residue
. d (2= 21)%42 Az —2) =242 —A(z+ )
es(f 1) 22 e (z — 21)%(z — 22)? e (z — 29)3 s (z — 29)3
A+ ) —4(—2a) a
(21 _ 22)3 (2 /CL2 — 1)3 (a2 _ 1)3/2-
The residue theorem gives
2 1 I 2mia
dz = — —ie"dp = 2miR ) = ————75
- (z)dz /o (@ T cosd)? e miRes(f, 1) 1)
2 1 2ma
/0 (a + cos 9)? (a? —1)3/2
. Prove that
- 1 2 =1 2
= 7 - -
n:z—oo (u+mn)?  sin®(mu) (v g 2), ; n?2 6’
t
using the function f(z) = %(W;) integrated over the boundary of the square
u+z

[—(N+1/2),N+1/2] x [-(N +1/2),N+1/2], N > |u|, N € N. This is one of the
many derivations of the value > 1/n?, due originally to Euler. The function

B _ mcos(mz)
g(z) = meot(mz) = sin(r2)
has poles at n € Z. Since (sin(wz))’ = mcos(wz), which does not vanish at the

integers, the poles are simple. We calculate the residues

Res(g,n) = lim (2 — n)M — lim (‘Z — n)WC?S(WZ) _ mceosTn
Zom sin(7z) son Sin(rz) —sin(rn)  wcosmn

L,

using the definition of the derivative of sin(nz) at n. If u ¢ 7Z, the function

1

f(z) = g(z)m

has poles at the integers and has an extra pole at —u. This is a double pole with
residue

—7'('2 7T2

d
Res(f, —u) o (z +u)"f(2) g (2) A sin?(7z) sin?(7u)




Moreover,
1

Res(f,n) = CEeEL n € 7.
This formula is true for n # 0 and u = 0 as well.
There is a modification needed for u = 0: In this case f(z) has a triple pole at 0. We
have

d? smweot(mz) w 2 COS T2 1 cos Tz

1
R 0) = = lim —2z————~ = i =—1li
es(£,0) =g m 757 207z — (m2)3)6+ - 22001 — 72226+ ---

using the Taylor series of sin wz. The easiest way to proceed is to find the reciprocal
the power series in the denominator:

-1
(1_7T2Z2+7T4Z4_...> 14T

6 5!

The technique is to assume that the reciprocal has a power series > a,2" and match
coefficients.

w222 it

2
—1-ap=1, 1-a,+0-ay=0, 1-a2—%a0:0,...

Now we multiply with the Taylor series of cos(mz) and differentiate twice to get

1 d? w222 w222
—lim=—u (1= . 1 .
Res(f,0) = lim . ( 5 + ) ( + 5 + )

2 7.‘_2

—T; 1d 2 2 71 2 _
_£%§@(1+w (—1/2+1/6)z +~~~)—§~27r (1/6—1/2)_—?

The alternative would be successive differentiation of 22 f(z), which is not easier.

If we can show that the integrals over the boundary of the square Sk tend to 0, then
the residue theorem gives (R > |ul):

1 w2

n+u)?  sin®(mu)

f(z)dz = 2mi Z (

95k In|<R

2

1 T
— O e —_ ,
nGZZ (n+u)?  sin®(ru)

which gives the result for u € Z. If u = 0, the residue theorem gives:

2

1
(2)dz = 2mi Z — = %
n

95k [n|<R,n#0
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and finally
=1 7 = 1
2 anl 2 3 Z: n?

On the line z = N + 1/2 + iy we have

cosmz| |cos(N +1/24iy)m| |cos(N + 1/2)m cos(mwiy) — sin(N + 1/2)m sin(7iy)
sinrz | |sin(N +1/2+idy)rw| |sin(N + 1/2)7 cos(wiy) + sin(wiy) cos(N + 1/2)7
siniy | [e7™ — ™|
~|cosmiy| e~ +em

which is bounded. On the line z = x + (N + 1/2) we have

2 |cos(x £i(N +1/2))7 2

|sin(@x £i(N +1/2)7

2 _ |cosam cos(mi(N 4+ 1/2)) F sinxwsin(mwi(N + 1/2))
sin xm cos(mi(N + 1/2)) £ sin(wi(N + 1/2)) cos xm

‘COS?TZ

sin 7z

Since sinmi(N + 1/2) is purely imaginary and
—m(N+1/2) +€7T(N+1/2)
2

—m(N+1/2) _ e7r(N+1/2) -1
¥ = — sinh(7(N + 1/2))
i i

cosmi(N +1/2) =

= cosh(m(N +1/2))

sinmi(N +1/2) =

we get

’cos Tz ‘2 _ cos®(zm) cosh?(m(N +1/2)) + sin’(7x) sinh?(7(N + 1/2))

sinz sin?(rz) cosh?(m(N + 1/2)) + cos?(xn) sinh?(7(N + 1/2))

and this expression is bounded for —(N +1) <2z < N+ 1/2 and N — co. Let K be
an upper bound of | cot(7z)| on the sides of all the squares Sg = Sg,. The length of
the boundary of the square is 4 - 2(N + 1/2). This gives

/8 L

since on 0Sg, we have |z +u| > |z| — |u| > (N +1/2) — |u| (the closest points to the
origin on the sides of the square are the points on the real and imaginary axes).

K

<8N +1/2)m s

—0, N — o0,

. In this problem f > denotes a contour integral along the vertical line R(s) = ¢
traversed upwards.

etioo gs logz, x>1,
(a) Prove that for ¢ > 0 we have i) ?d { 0, 0<z<l.
For x > 1 we use the contour with the semicircle vz on the left in Figure 5. If R

is sufficiently large, the contour contains the double pole at s = 0. We compute the
residue:

d S
Res(f,0) = lim — (s2x—> = hII(l) z¥logr = 2’logx = log x.

s—0 ds 52 s5—

11



On v we have

<7mR — 0, R — o0,

x® 1
Z ds -
/m 52 (R —c)?

since on Yg(t) = ¢+ Re®, /2 < t < 37w/2, |s?*| = |c + Re®)* > (R — ¢)* and
|29 = |e*loeT| = elogaRls) = elogaletfcost) < g gince cost < 0 on the left semicircle,
while logx > 0. The choice of this contour depends exactly on this fact that. We
apply the residue theorem gives

c+ico .5

gds = 2milog x,

xs ct+iR .TS
/ gds - / —ds = 2miRes(f,0) = 2milogr =
TR c

—iR S c—100
by letting R — oo.

For 0 < x <1 we use the contour with the semicircle v on the right in Figure 5. On
1

vr we have
:L.S
~d -
/VR 52 ° (R—c)?

since on Yg(t) = ¢+ Re", —m/2 < t < /2, |s*] = |c + Re")* > (R — ¢)? and
|2°| = |esloe®| = elogaR(s) = elogwl(ctficost) < ¢ gince cost > 0 on the right semicircle,

while log x < 0. The choice of this contour depends exactly on this fact that.

<7R — 0, R — oo,

Inside the contour there is no pole, so Cauchy’s theorem gives

.TS c+iR xs c+oo xs
/ —2d5 +/ —ds =0—= —2d8 = 0,
TR S c

—ir S c—ico S
by taking R — oo.
1 c+i00 5 1, T > 1,
(b) Prove that, for ¢ > 0, Py —ds=1¢ 1/2, z=1, (Perron formula)
i ° 0, 0<wz<l

c—100

We use the same contours as in (a) for the same x with the exception of = = 1.
However, the argument is a bit trickier because we have one power less in the denom-
inator.

For x > 1, inside the contour there is a pole at s = 0, which is simple:

Res(f,0) = liné s =20 =1.
s— S

We need to control the integral on yz. As above, on the left semicircle s(t) = ¢+ Re™,
/2 <t < 3m/2.

slogx | _ logz(ct+Rcost)

|°] = [e
We also remark that the inequality siny > 2y/m holds for 0 < y < 7/2. This follows
from the concavity of siny on [0, 7/2]. The secant line 2y/7 from (0,0) to (7/2,1) is

below the graph. Now
™ c.—Rsiny ) T .c.—Rsiny
/ _rr )Rezydy‘ < / re - Rdy
0 0

s 3w/2 ,.c,Rcost

x xtx ,

—d —_ _iRe"dt .

[m s /7T/2 ¢+ Reit ¢ ¢ + Reilytm/2 R—c

e

12



with the substitution ¢ = y + 7/2. The last integral can be split into two equal
integrals over [0, 7/2] and [r/2, 7], since siny takes the same values in both. We get

s w/2 c,.—Rsiny w/2 c.—R2y/m c —2Ry/7m /2
/x—dSSZ/ Rx‘x dy§2/ Rxtx dy — Rz [ x ]
vn S 0 R—c 0 R—c¢ R —c [—R(logz)2/m ],

mxe _R
= — 1
(R—c)(log:c)Q( v A1) =0 R,

as x > 1.

For 0 < x < 1 the parametrization of the right semicircle is s(t) = ¢ + Re', —7/2 <

t < m/2. We substitute t =y — 7/2:
pRcost ' ™/2 ¢ .Rcost /2 Raycylsiny
= / tzRe’tdt < / RLdt = 2/ Laly
_7|—/2 C+R€2 _ﬂ./2 R_C 0 R_C

Now x < 1, so logx < 0 and

—ds

stmy — 6longsmy < elogrRZy/Tr — xQRy/w.

/ x—ds <2
'YRS

/2 RxchZy/ﬂd Rzx¢ xZRy/w /2
/0 R—c VTR _c {R(logx)Q/ﬂL

T’

(R —c¢)(logz)2 (

xR—l)—>O, R — o0,

as r < 1.

For x = 1 we compute the integral directly:

1 et 1 [ Gdt 1 [® ¢ it 1/°°c

— —ds = — = — — dt = — —
omi Jo i s 2mi c+it  2m J_cA+t2 2412 21 J_oo 2+ 12

C—100 o0

as the function ¢/(c® + t?) is odd. This integral is elementary: substitute ¢t = cu to
get

1 et 1 [ c-cdt 1 /°° du [arctam(u)]C>O 1 1

_ _d e — _— =
omi ) . s on o+ cAur 2m J_ 1+ 27

C—100

(c) Let the function f(s) be defined by the absolutely convergent series

S)ZZ%’ R(s) >a > 0.

3
—

Show that for x € Z



R(s

Since |n°| = n®™*) and the series converges absolutely for R(s) > a, we have that the

series

= |ay]
Z R < R(s) > a.
n=1

This implies that, if we fix ®(s) = ¢ > a, then the convergence of the series in the
s variable is uniform (Weierstrafl test). Moreover, on the vertical line R(s) = ¢ we

have
S

IC

S

s
which is bounded so we get uniform convergence of the series even when multiplied
by x*/s. This means we can interchange summation and integration to get

1 c+i00

PR R GO0 I S A
el IR S I xR DS RN S SIS

. o )
c—1i00 100 n—=1
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Figure 2: Contours for (iii) and (iv)

Figure 3: Contours for (v) and (vi)
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Figure 4: Contour for Problem 2

Figure 5: Contours for Problem 3: on the left x > 1, on the right < 1.
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