
Math 70300

Homework 5

Due: November 14

1. Calculate the integrals using contour integration. Complete explanations are required.

(i)

∫ ∞

0

dx

x3 + 1
(ii)

∫ ∞

0

cos x

x2 + 1
dx, (iii)

∫ ∞

0

(log x)2

1 + x2
dx

(iv)

∫ ∞

0

cos(ax)

(x2 + b2)2
dx (a, b > 0), (v)

∫ π/2

0

dθ

a + sin2 θ
(a > 0), (vi)

∫ ∞

0

x2dx

x4 + 5x2 + 6

(vii)

∫ ∞

−∞

dx

(1 + x2)n+1
(viii)

∫ ∞

0

log x

(1 + x2)2
dx (ix)

∫ 2π

0

dθ

(a + cos θ)2
(a > 1).

Answers: (i) 2π/(3
√

3), (ii) πe−1/2, (iii) π3/8, (iv) π(1+ab)e−ab/(4b3), (v) π/(2
√

a2 + a),
(vi) (

√
3−
√

2)π/2, (vii) 1·3·5 · · · (2n−1)π/(2·4·6 · · · (2n)), (viii) −π/4, (ix) 2πa/(a2−
1)3/2.

(i) We consider the contour in Figure 1 and f(z) = 1/(z3 + 1). The only pole of the
denominator x3 + 1 = (x + 1)(x2 − x + 1) = (x + 1)(x− eπi/3)(x− e5πi/3) inside the
contour is eπi/3.

Res(f, eπi/3) = lim
z→eπi/3

(z − eπi/3)
1

z3 + 1
= lim

z→eπi/3

1

3z2
=

1

3e2πi/3

by L’Hôpital’s rule. We get on the horizontal segment [0, R] that z(x) = x, on the
segment from 0 to Re2πi/3 that z(x) = xe2πi/3, 0 ≤ x ≤ R. The part of the contour
on a circle of radius R is denoted by γR. These give:∫ R

0

dx

x3 + 1
+

∫
γR

dz

z3 + 1
−
∫ R

0

e2πi/3dx

x3e2πi + 1
= 2πiRes(f, eπi/3).

Notice that on the slanted segment z3 = (xe2πi/3)3 = x3e2πi = x3. This is what makes
this the right contour. So we get∫ R

0

dx

x3 + 1
+

∫
γR

dz

z3 + 1
− e2πi/3

∫ R

0

dx

x3 + 1
=

2πi

3e2πi/3
.

The integral over γR tends to 0 as R →∞. This is because on γR for R > 1 we have∣∣∣∣ 1

z3 + 1

∣∣∣∣ ≤ 1

R3 − 1
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Figure 1: Contours for (i) and (ii)

by the triangle inequality (|z3 +1| ≥ |z|3−1 = R3−1). On the other hand the length
of the arc is 2πR/3. This gives∫

γR

dz

z3 + 1
≤ 2πR/3

R3 − 1
→ 0, R →∞.

The result is ∫ ∞

0

dx

x3 + 1
− e2πi/3

∫ ∞

0

dx

x3 + 1
=

2πi

3e2πi/3

=⇒
∫ ∞

0

dx

x3 + 1
=

2πi

3e2πi/3(1− e2πi/3)
=

2πi

3(e2πi/3 − e4πi/3)
=

2πi

3 · 2i sin(2π/3)
=

2π

3
√

3
.

(ii) We use the function f(z) = eiz/(1 + z2) inside the contour in Figure 1. The only
pole is at i with residue

Res(f, i) = lim
z→i

(z − i)
eiz

(z − i)(z + i)
=

eii

2i
=

e−1

2i
.

We notice that∫ R

−R

eiz

z2 + 1
dz =

∫ R

0

eix

x2 + 1
dx +

∫ 0

−R

eix

x2 + 1
dx =

∫ R

0

eix

x2 + 1
dx +

∫ R

0

e−ix

x2 + 1
dx

=

∫ R

0

eix + e−ix

x2 + 1
dx = 2

∫ R

0

cos x

x2 + 1
dx,

with a change on variable x = −y on [−R, 0]. The semicircle is denoted by γR. On
it |eiz| = |eiReiθ | = e−R sin θ ≤ 1, because θ ∈ [0, π]. This gives∣∣∣∣∫

γR

eiz

z2 + 1
dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0, R →∞,
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using the triangle inequality in the denominator (|z2 + 1| ≥ |z|2 − 1 = R2 − 1). The
result is that

2

∫ ∞

0

cos x

x2 + 1
dx = 2πie−1/(2i) = πe−1 =⇒

∫ ∞

0

cos x

x2 + 1
dx =

πe−1

2
.

(iii) We use the function

f(z) =
(log z)2

z2 + 1

with log z = log |z| + i arg z, −π/2 < arg z < 3π/2 (non-principal branch of log).
This works on the upper-half plane, where our contour is located, with the exception
of 0. This is why to make the small semicircle γε part of our contour. There are two
poles of the integrand, but only one i lies inside the contour.

Res(f, i) = lim
z→i

(z − i)
(log z)2

(z − i)(z + i)
=

(log i)2

2i
=

(iπ/2)2

2i
=
−π2

8i
.

We call the large semicircle γR and the small one γr both traversed in the positive
sense. The residue theorem gives∫ R

r

(log x)2

x2 + 1
dx+

∫
γR

(log z)2

z2 + 1
dz+

∫ −r

−R

(log |x|+ iπ)2

x2 + 1
dx−

∫
γr

(log z)2

z2 + 1
dz = 2πi

−π2

8i
= −π3/4,

since on the negative real axis x < 0 the argument is π, which gives log x = log |x|+iπ.
On γR we have | log z| = | log R + i arg(z)| ≤ log R + π, therefore,∣∣∣∣∫

γR

(log z)2

z2 + 1
dz

∣∣∣∣ ≤ πR
(log R + π)2

R2 − 1
→ 0, R →∞,

since log R and its powers grow slower than any power of R. On γr we have | log z| =
| log r + i arg(z)| ≤ log r + π. This gives∣∣∣∣∫

γr

(log z)2

z2 + 1
dz

∣∣∣∣ ≤ πr
(log r + π)2

1− r2
→ 0, r → 0,

since the triangle inequality in the denominator gives |z2 − 1| ≥ 1 − |z|2 = 1 − r2,
and r log r, r log2 r tend to 0 for r → 0. If you are not familiar with this, consider
(change variables x = log r)

lim
r→0

r(log r)k = lim
x→−∞

exxk = lim
x→−∞

xk

e−x
= lim

y→∞

(−1)kyk

ey
= 0,

since ey grows more quickly than any power of y. For the integral on the segment on
the negative axis we have by expanding the numerator∫ −r

−R

(log |x|+ iπ)2

1 + x2
dx =

∫ −r

−R

(log |x|)2

x2 + 1
dx + 2πi

∫ −r

−R

log |x|
x2 + 1

dx− π2

∫ −r

−R

1

x2 + 1
dx.
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We now change variable in the first integral x = −y to get

=

∫ R

r

(log y)2

y2 + 1
dy + 2πi

∫ R

r

log y)

y2 + 1
dy − π2

∫ R

r

1

y2 + 1
dy

−→
∫ ∞

0

(log x)2

x2 + 1
dx + 2πi

∫ ∞

0

log y

1 + y2
dy − π2

∫ ∞

0

1

x2 + 1
dx

as r → 0, R → ∞. The last integral is elementary as arctan(x)′ = 1/(1 + x2) and
gives ∫ ∞

0

1

x2 + 1
dx =

π

2
.

We do not need to worry about the middle integral. It comes with an imaginary
coefficient, while the integral is real. This means that we can take real parts and its
contribution will be zero. Another approach is to notice that the integral is actually
exactly zero:∫ ∞

0

log x

x2 + 1
dx =

∫ 1

0

log x

x2 + 1
dx+

∫ ∞

1

log x

x2 + 1
dx = −

∫ ∞

1

log(1/y)

1/y2 + 1

−dy

y2
+

∫ ∞

1

log x

1 + x2
dx,

where we changed variables x = 1/y, dx = −dy/y2. Finally this gives∫ ∞

0

log x

x2 + 1
dx = −

∫ ∞

1

log y

1 + y2
dy +

∫ ∞

1

log x

1 + x2
dx = 0.

Bringing all the results together we get

2

∫ ∞

0

(log x)2

x2 + 1
dx− π2π

2
= −π3

4
=⇒

∫ ∞

0

(log x)2

x2 + 1
dx =

1

2

π3

4
=

π3

8
.

(iv) We consider the function

f(z) =
eiaz

(z2 + b2)2

on the contour in Figure 2. There is only one pole inside the contour and this is at
ib. It is a double pole. We calculate the residue

Res(f, ib) = lim
z→ib

d

dz
(z − ib)2f(z) = lim

z→ib

d

dz

eiaz

(z + iab)2
= lim

z→ib

iaeiaz(z + ib)− 2eiaz

(z + ib)3

=
iaeiaib(2ib)− 2eiaib

(2ib)3
=

iae−ab2ib− 2e−ab

−i8b3
=

e−ab(2ab + 2)

8ib3
.

We call the semicircular contour γR and estimate the integral over it (R > b) as∣∣∣∣∫
γR

eiaz

(z2 + b2)2
dz

∣∣∣∣ ≤ πR
1

(R2 − b2)2
→ 0, R →∞,
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since |eiaReiθ | = e−aR sin θ ≤ 1 on the contour. We also have, after splitting the integral
on the negative numbers and substituting x = −y,∫ R

−R

eiax

(x2 + b2)2
dx =

∫ 0

−R

eiax

(x2 + b2)2
dx+

∫ R

0

eiax

(x2 + b2)2
dx =

∫ R

0

e−iay

(y2 + b2)2
dy+

∫ R

0

eiax

(x2 + b2)2
dx

=

∫ R

0

e−iax + eiax

(x2 + b2)2
dx = 2

∫ R

0

cos(ax)

(x2 + b2)2
dx → 2

∫ ∞

0

cos(ax)

(x2 + b2)2
dx, R →∞.

We use the residue theorem in the contour of Figure 2, let R →∞ to get∫ ∞

0

cos(ax)

(x2 + b2)2
dx = 2πi

e−ab(2ab + 2)

8ib3
=

(ab + 1)e−abπ

2b3
.

(iv) Since ∫ π/2

0

dθ

a + sin2 θ
=

1

4

∫ 2π

0

dθ

a + sin2 θ
,

as sin2 θ takes the same values in every quadrant, we consider the function

f(z) =
1

a +
(

z−z−1

2i

)2 1

z

on the contour of Figure 3 |z| = 1. Notice that we substituted sin θ = (z− z−1)/(2i),
since on |z| = 1, i.e. z = eiθ this holds. Moreover, notice that we multiplied with
1/z, so that dz/z = ieiθdθ/eiθ = idθ. We get

f(z) =
1

a− (z−z−1)2

4

1

z
=

1

a− z2/4− z−2/4 + 2/4

1

z
=

4z

(4a + 2)z2 − z4 − 1
.

We solve the biquadratic equation −z4 + (4a + 2)z2 − 1 = 0.

z2 = 2a + 1±
√

(2a + 1)2 − 1 = 2a + 1± 2
√

a2 + a.

There are two solutions for z2 but only is inside the circle, since the solutions are
real and positive and their product is 1. Clearly this is the smaller solution b2 =
2a + 1− 2

√
a2 + a. This gives two solutions for z, z = ±b. The poles are simple. We

set c2 = 2a + 1 + 2
√

a2 + a.

Res(f, b) = lim
z→b

(z − b)4z

−(z2 − b2)(z2 − c2)
= lim

z→b

4z

−(z + b)(z2 − c2)
=

4b

−2b(b2 − c2)
=

1

2
√

a2 + a

Res(f,−b) = lim
z→−b

(z + b)4z

−(z2 − b2)(z2 − c2)
= lim

z→−b

4z

−(z − b)(z2 − c2)
=

−4b

2b(b2 − c2)
=

1

2
√

a2 + a

Using the parametrization z = eiθ we get∫
|z|=1

f(z)dz =

∫ 2π

0

f(eiθieiθdθ =

∫ 2π

0

1

a + sin2 θ

1

eiθ
ieiθdθ =

∫ 2π

0

1

a + sin2 θ
idθ
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= 2πi
∑

Res(f, zj) = 2πi
1√

a2 + a

=⇒
∫ 2π

0

1

a + sin2 θ
dθ =

2π√
a2 + a

=⇒
∫ π/2

0

1

a + sin2 θ
dθ =

π

2
√

a2 + a
.

Alternative method:∫ π/2

0

dθ

a + sin2 θ
=

∫ π/2

0

dθ

a + 1−cos(2θ)
2

= 2

∫ π/2

0

dθ

(2a + 1)− cos(2θ)

=

∫ π

0

dx

(2a + 1)− cos x
=

∫ 0

−π

dy

(2a + 1) + cos y
,

with the change of variables x = π− y. Now we use the example in p. 155 of Ahlfors:
we take for a the expression 2a + 1 to get∫ 0

−π

dy

(2a + 1) + cos y
=

π√
(2a + 1)2 − 1

=
π√

4a2 + 4a
.

(vi) We take

f(z) =
z2

z4 + 5z2 + 6

on the contour in Figure 3 We have

z4 + 5z2 + 6 = (z2 + 3)(z2 + 2) = (z + i
√

3)(z − i
√

3)(z + i
√

2)(z − i
√

2).

The poles inside the contour are i
√

2, and i
√

3.

Res(f, i
√

2) =
(i
√

2)2

(2i
√

2)((i
√

2)2 + 3)
=

−2

i2
√

2
=

i
√

2

2
.

Res(f, i
√

3) =
(i
√

3)2

(2i
√

3)((i
√

3)2 + 2)
=

−3

−i2
√

3
=
−i
√

3

2
.

The function is even so
∫ R

−R
f(x)dx = 2

∫ R

0
f(x)dx. The residue theorem gives

2

∫ R

0

x2dx

x4 + 5x2 + 6
+

∫
γR

f(z)dz = 2πi

(
i
√

2

2
− i
√

3

2

)
= 2π

(√
3

2
−
√

2

2

)
.

The integral over γR tends to zero:∣∣∣∣∫
γR

f(z)dz

∣∣∣∣ ≤ πR
R2

R4 − 5R2 − 6
→ 0, R →∞,

since |z4 + 5z2 + 6| ≥ |z4| − |5z2 + 6| ≥ |z|4 − 5|z|2 − 6. Taking the limit as R →∞
we get ∫ ∞

0

x2dx

x4 + 5x2 + 6
=

π(
√

3−
√

2)

2
.
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Alternative method: This integral can be computed without complex integration. We
use partial fractions

x2

x4 + 5x2 + 6
=

A

x2 + 3
+

B

x2 + 2

which gives A + B = 1, 2A + 3B = 0 and, therefore, A = 3, B = −2.∫ ∞

0

x2dxx4 + 5x2 + 6 =

∫ ∞

0

3

x2 + 3
− 2

x2 + 2
dx =

∫ ∞

0

3
√

3dy

3(y2 + 1)
dy−

∫ ∞

0

2
√

2dt

2(t2 + 1)
=
√

3
π

2
−
√

2
π

2
,

where we substituted x =
√

3y and x =
√

2t.

(vii) We consider f(z) = 1/(z2 +1)n+1 and the contour of (ii). The only relevant pole
is at i but it is of multiplicity n + 1. We remark that

dn

dzn
(z+i)−n−1 = (−n−1)(−n−2) · · · (−n−n)(z+i)−n−1−n = (n+1)(n+2) · · · (2n)(−1)n(z+i)−2n−1.

This gives

Res(f, i) =
1

n!

dn

dzn

(
(z − i)n+1 1

(z − i)n+1(z + i)n+1

)
|z=i

=
1

n!
(n+1)(n+2) · · · (2n)(−1)n(2i)−2n−1

=
(n + 1)(n + 2) · · · (2n)

n!
(−1)n2−2n−1(−i)2n+1 =

(n + 1)(n + 2) · · · (2n)

n!
(−1)n 1

22n+1
(−i)(−1)n

= −i
(n + 1)(n + 2) · · · (2n)

n!22n+1
.

We estimate that the integral over the semicircle γR tends to 0 as R →∞:∣∣∣∣∫
γR

dz

(1 + z2)n+1

∣∣∣∣ ≤ πR
1

(R2 − 1)n+1
→ 0, R →∞.

The residue theorem gives∫ R

−R

dx

(1 + x2)n+1
+

∫
γR

dz

(1 + z2)n+1
= 2πiRes(f, i).

Taking the limit as R →∞ we get∫ ∞

−∞

dx

(1 + x2)n+1
= 2πi(−i)

(n + 1)(n + 2) · · · 2n
n!2n+1

= 2π
1 · 2 · · ·n(n + 1)(n + 2) · · · (2n)

22n2 · 1 · 2 · · ·n · 1 · 2 · · ·n

= π
1 · 2 · · · 2n

2 · 4 · · · (2n) · 2 · 4 · · · (2n)
= π

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
.

Alternative method: The substitution x = tan θ gives, as 1 + x2 = (cos θ)−2, dx =
(cos θ)−2dθ,∫ ∞

−∞

dx

(1 + x2)n+1
=

∫ π/2

−π/2

(cos2 θ)n+1 dθ

cos2 θ
=

∫ π/2

−π/2

(cos θ)2ndθ = π
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
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by problem 2a in Homework 4. Notice that cos2 θ takes the same value on any
quadrant.

(viii) We use the same contour as in (iii) and the function

f(z) =
log z

(1 + z2)2

with nonprincipal branch of log z given by

log z = log |z|+ i arg z, −π/2 < arg z < 3π/2.

Inside the contour there is a double pole at i. We compute the residue

Res(f, i) = lim
z→i

d

dz
(z − i)2 log z

(z − i)2(z + i)2
= lim

z→i

z−2(z + i)− 2 log z

(z + i)3
=

i−12i− 2 log i

(2i)3

=
2− 2(iπ/2)

−8i
=

2− iπ

−8i
.

For the integral over γR we have∣∣∣∣∫
γR

log z

(1 + z2)2
dz

∣∣∣∣ ≤ πR
log R + π

(R2 − 1)2
→ 0, R →∞,

the same way as in (iii). For the integral over γr we have∣∣∣∣∫
γr

log z

(1 + z2)2
dz

∣∣∣∣ ≤ πr
log r + π

(1− r2)2
→ 0, r → 0.

The residue theorem gives∫ R

r

log xdx

(1 + x2)2
+

∫ −r

−R

log |x|+ iπ

(1 + x2)2
dx+

∫
γR

log z

(1 + z2)2
dz+

∫
γr

log z

(1 + z2)2
dz = 2πiRes(f, i).

We take the limit as R →∞, r → 0 to get∫ ∞

0

log xdx

(1 + x2)2
+

∫ 0

−∞

log |x|
(1 + x2)2

dx + iπ

∫ 0

−∞

dx

(1 + x2)2
= 2πi

2− iπ

−8i
=

(iπ − 2)π

4
.

We substitute y = −x in the second integral, take real parts (notice that
∫ 0

−∞(1 +

x2)−2dx is real) to get

2

∫ ∞

0

log x

(1 + x2)2
dx =

−2π

4
=⇒

∫ ∞

0

log x

(1 + x2)2
dx = −π

4
.

(ix) We use the same contour as in (v). The function to integrate is

f(z) =
1

(a + (z + z−1)/2)2

1

z
=

4

(2a + z + z−1)2

1

z
=

4z

(z + z−1 + 2a)2z2
=

4z

(z2 + 2az + 1)2
.
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We solve z2 + 2az + 1 = 0 by completing the square

(z + a)2 + 1− a2 = 0 =⇒ z + a = ±
√

a−1 =⇒ z1,2 = −a±
√

a2 − 1.

The two roots are real, as a > 1 is given. They have negative sum and product 1.
This means that only one is inside the circle |z| = 1. Call it z1 = −a+

√
a2 − 1, while

z2 = −a−
√

a2 − 1 < −1. The pole at z1 is double. We calculate the residue

Res(f, z1) = lim
z→z1

d

dz

(z − z1)
24z

(z − z1)2(z − z2)2
= lim

z→z1

4(z − z2)− 2 · 4z
(z − z2)3

= lim
z→z1

−4(z + z2)

(z − z2)3

=
−4(z1 + z2)

(z1 − z2)3
=

−4(−2a)

(2
√

a2 − 1)3
=

a

(a2 − 1)3/2
.

The residue theorem gives∫
|z|=1

f(z)dz =

∫ 2π

0

1

(a + cos θ)2

1

eiθ
ieiθdθ = 2πiRes(f, i) =

2πia

(a2 − 1)3/2

=⇒
∫ 2π

0

1

(a + cos θ)2
dθ =

2πa

(a2 − 1)3/2
.

2. Prove that
∞∑

n=−∞

1

(u + n)2
=

π2

sin2(πu)
(u 6∈ Z),

∞∑
n=1

1

n2
=

π2

6
,

using the function f(z) =
π cot(πz)

(u + z)2
integrated over the boundary of the square

[−(N + 1/2), N + 1/2]× [−(N + 1/2), N + 1/2], N ≥ |u|, N ∈ N. This is one of the
many derivations of the value

∑
1/n2, due originally to Euler. The function

g(z) = π cot(πz) =
π cos(πz)

sin(πz)

has poles at n ∈ Z. Since (sin(πz))′ = π cos(πz), which does not vanish at the
integers, the poles are simple. We calculate the residues

Res(g, n) = lim
z→n

(z − n)
π cos(πz)

sin(πz)
= lim

z→n

(z − n)π cos(πz)

sin(πz)− sin(πn)
=

π cos πn

π cos πn
= 1,

using the definition of the derivative of sin(πz) at n. If u 6∈ Z, the function

f(z) = g(z)
1

(z + u)2

has poles at the integers and has an extra pole at −u. This is a double pole with
residue

Res(f,−u) = lim
z→−u

d

dz
(z + u)2f(z) = lim

z→−u
g′(z) = lim

z→−u

−π2

sin2(πz)
= − π2

sin2(πu)
.
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Moreover,

Res(f, n) =
1

(n + u)2
, n ∈ Z.

This formula is true for n 6= 0 and u = 0 as well.

There is a modification needed for u = 0: In this case f(z) has a triple pole at 0. We
have

Res(f, 0) =
1

2!
lim
z→0

d2

dz2
z3π cot(πz)

z2
=

π

2
lim
z→0

z cos πz

πz − (πz)3/6 + · · ·
=

1

2
lim
z→0

cos πz

1− π2z2/6 + · · ·

using the Taylor series of sin πz. The easiest way to proceed is to find the reciprocal
the power series in the denominator:(

1− π2z2

6
+

π4z4

5!
− · · ·

)−1

= 1 +
π2

6
z2 + · · ·

The technique is to assume that the reciprocal has a power series
∑

anz
n and match

coefficients. (
1− π2z2

6
+

π4z4

5!
− · · ·

)(
a0 + a1z + a2z

2 + · · ·
)

= 1

=⇒ 1 · a0 = 1, 1 · a1 + 0 · a0 = 0, 1 · a2 −
π2

6
a0 = 0, . . .

Now we multiply with the Taylor series of cos(πz) and differentiate twice to get

Res(f, 0) = lim
z→0

1

2

d2

dz2

(
1− π2z2

2
+ · · ·

)(
1 +

π2z2

6
+ · · ·

)

= lim
z→0

1

2

d2

dz2

(
1 + π2(−1/2 + 1/6)z2 + · · ·

)
=

1

2
· 2π2(1/6− 1/2) = −π2

3
.

The alternative would be successive differentiation of z3f(z), which is not easier.

If we can show that the integrals over the boundary of the square SR tend to 0, then
the residue theorem gives (R > |u|):

∫
∂SR

f(z)dz = 2πi

∑
|n|<R

1

(n + u)2
− π2

sin2(πu)


=⇒ 0 =

∑
n∈Z

1

(n + u)2
− π2

sin2(πu)
,

which gives the result for u 6∈ Z. If u = 0, the residue theorem gives:∫
∂SR

f(z)dz = 2πi

 ∑
|n|<R,n6=0

1

n2
− π2

3


10



and finally

2
∞∑

n=1

1

n2
=

π2

3
=⇒

∞∑
n=1

1

n2
=

π2

6
.

On the line z = N + 1/2 + iy we have∣∣∣cos πz

sin πz

∣∣∣ =

∣∣∣∣cos(N + 1/2 + iy)π

sin(N + 1/2 + iy)π

∣∣∣∣ =

∣∣∣∣cos(N + 1/2)π cos(πiy)− sin(N + 1/2)π sin(πiy)

sin(N + 1/2)π cos(πiy) + sin(πiy) cos(N + 1/2)π

∣∣∣∣
=

∣∣∣∣ sin πiy

cos πiy

∣∣∣∣ =
|e−πy − eπy|
e−πy + eπy

which is bounded. On the line z = x± i(N + 1/2) we have∣∣∣cos πz

sin πz

∣∣∣2 =

∣∣∣∣cos(x± i(N + 1/2))π

sin(x± i(N + 1/2))π

∣∣∣∣2 =

∣∣∣∣cos xπ cos(πi(N + 1/2))∓ sin xπ sin(πi(N + 1/2))

sin xπ cos(πi(N + 1/2))± sin(πi(N + 1/2)) cos xπ

∣∣∣∣2
Since sin πi(N + 1/2) is purely imaginary and

cos πi(N + 1/2) =
e−π(N+1/2) + eπ(N+1/2)

2
= cosh(π(N + 1/2))

sin πi(N + 1/2) =
e−π(N+1/2) − eπ(N+1/2)

2i
=
−1

i
sinh(π(N + 1/2))

we get ∣∣∣cos πz

sin πz

∣∣∣2 =
cos2(xπ) cosh2(π(N + 1/2)) + sin2(πx) sinh2(π(N + 1/2))

sin2(πx) cosh2(π(N + 1/2)) + cos2(xπ) sinh2(π(N + 1/2))

and this expression is bounded for −(N + 1) ≤ x ≤ N + 1/2 and N →∞. Let K be
an upper bound of | cot(πz)| on the sides of all the squares SR = SRN

. The length of
the boundary of the square is 4 · 2(N + 1/2). This gives∣∣∣∣∣

∫
∂SRN

f(z)dz

∣∣∣∣∣ ≤ 8(N + 1/2)π
K

(N + 1/2− |u|)2
→ 0, N →∞,

since on ∂SRN
we have |z + u| ≥ |z| − |u| ≥ (N + 1/2)− |u| (the closest points to the

origin on the sides of the square are the points on the real and imaginary axes).

3. In this problem
∫ c+i∞

c−i∞ denotes a contour integral along the vertical line <(s) = c
traversed upwards.

(a) Prove that for c > 0 we have
1

2πi

∫ c+i∞

c−i∞

xs

s2
ds =

{
log x, x > 1,

0, 0 < x ≤ 1.

For x > 1 we use the contour with the semicircle γR on the left in Figure 5. If R
is sufficiently large, the contour contains the double pole at s = 0. We compute the
residue:

Res(f, 0) = lim
s→0

d

ds

(
s2xs

s2

)
= lim

s→0
xs log x = x0 log x = log x.
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On γR we have ∣∣∣∣∫
γR

xs

s2
ds

∣∣∣∣ ≤ πR
1

(R− c)2
→ 0, R →∞,

since on γR(t) = c + Reit, π/2 ≤ t ≤ 3π/2, |s2| = |c + Reit|2 ≥ (R − c)2 and
|xs| = |es log x| = elog x<(s) = elog x(c+R cos t) ≤ xc since cos t ≤ 0 on the left semicircle,
while log x ≥ 0. The choice of this contour depends exactly on this fact that. We
apply the residue theorem gives∫

γR

xs

s2
ds +

∫ c+iR

c−iR

xs

s2
ds = 2πiRes(f, 0) = 2πi log x =⇒

∫ c+i∞

c−i∞

xs

s2
ds = 2πi log x,

by letting R →∞.

For 0 < x ≤ 1 we use the contour with the semicircle γR on the right in Figure 5. On
γR we have ∣∣∣∣∫

γR

xs

s2
ds

∣∣∣∣ ≤ πR
1

(R− c)2
→ 0, R →∞,

since on γR(t) = c + Reit, −π/2 ≤ t ≤ π/2, |s2| = |c + Reit|2 ≥ (R − c)2 and
|xs| = |es log x| = elog x<(s) = elog x(c+R cos t) ≤ xc since cos t ≥ 0 on the right semicircle,
while log x ≤ 0. The choice of this contour depends exactly on this fact that.

Inside the contour there is no pole, so Cauchy’s theorem gives∫
γR

xs

s2
ds +

∫ c+iR

c−iR

xs

s2
ds = 0 =⇒

∫ c+∞

c−i∞

xs

s2
ds = 0,

by taking R →∞.

(b) Prove that, for c > 0,
1

2πi

∫ c+i∞

c−i∞

xs

s
ds =


1, x > 1,

1/2, x = 1,
0, 0 < x < 1.

(Perron formula)

We use the same contours as in (a) for the same x with the exception of x = 1.
However, the argument is a bit trickier because we have one power less in the denom-
inator.

For x > 1, inside the contour there is a pole at s = 0, which is simple:

Res(f, 0) = lim
s→0

s
xs

s
= x0 = 1.

We need to control the integral on γR. As above, on the left semicircle s(t) = c+Reit,
π/2 ≤ t ≤ 3π/2.

|xs| = |es log x| = elog x(c+R cos t)

We also remark that the inequality sin y ≥ 2y/π holds for 0 ≤ y ≤ π/2. This follows
from the concavity of sin y on [0, π/2]. The secant line 2y/π from (0, 0) to (π/2, 1) is
below the graph. Now∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣
∫ 3π/2

π/2

xcxR cos t

c + Reit
iReitdt

∣∣∣∣∣ =

∣∣∣∣∫ π

0

xcx−R sin y

c + Rei(y+π/2)
Reiydy

∣∣∣∣ ≤ ∫ π

0

xcx−R sin y

R− c
Rdy
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with the substitution t = y + π/2. The last integral can be split into two equal
integrals over [0, π/2] and [π/2, π], since sin y takes the same values in both. We get∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ ≤ 2

∫ π/2

0

Rxcx−R sin y

R− c
dy ≤ 2

∫ π/2

0

Rxcx−R2y/π

R− c
dy =

Rxc

R− c

[
x−2Ry/π

−R(log x)2/π

]π/2

0

=
πxc

(R− c)(log x)2

(
−x−R + 1

)
→ 0, R →∞,

as x > 1.

For 0 < x < 1 the parametrization of the right semicircle is s(t) = c + Reit, −π/2 ≤
t ≤ π/2. We substitute t = y − π/2:∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣
∫ π/2

−π/2

xcxR cos t

c + Reit
iReitdt

∣∣∣∣∣ ≤
∫ π/2

−π/2

R
xcxR cos t

R− c
dt = 2

∫ π/2

0

RxcxR sin y

R− c
dy

Now x < 1, so log x < 0 and

xR sin y = elog xR sin y ≤ elog xR2y/π = x2Ry/π.∣∣∣∣∫
γR

xs

s
ds

∣∣∣∣ ≤ 2

∫ π/2

0

RxcxR2y/π

R− c
dy =

Rxc

R− c

[
x2Ry/π

R(log x)2/π

]π/2

0

=
πxc

(R− c)(log x)2

(
xR − 1

)
→ 0, R →∞,

as x < 1.

For x = 1 we compute the integral directly:

1

2πi

∫ c+i∞

c−i∞

1

s
ds =

1

2πi

∫ ∞

∞

idt

c + it
=

1

2π

∫ ∞

−∞

c

c2 + t2
− it

c2 + t2
dt =

1

2π

∫ ∞

−∞

c

c2 + t2
dt

as the function t/(c2 + t2) is odd. This integral is elementary: substitute t = cu to
get

1

2πi

∫ c+i∞

c−i∞

1

s
ds =

1

2π

∫ ∞

−∞

c · cdt

c2 + c2u2
=

1

2π

∫ ∞

−∞

du

1 + u2
=

[
arctan(u)

2π

]∞
−∞

=
1

2π
π =

1

2
.

(c) Let the function f(s) be defined by the absolutely convergent series

f(s) =
∞∑

n=1

an

ns
, <(s) > a ≥ 0.

Show that for x 6∈ Z ∑
n≤x

an =
1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds, c > a.
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Since |ns| = n<(s) and the series converges absolutely for <(s) > a, we have that the
series

∞∑
n=1

|an|
n<(s)

< ∞, <(s) > a.

This implies that, if we fix <(s) = c > a, then the convergence of the series in the
s variable is uniform (Weierstraß test). Moreover, on the vertical line <(s) = c we
have ∣∣∣∣xs

s

∣∣∣∣ =
xc

|s|
,

which is bounded so we get uniform convergence of the series even when multiplied
by xs/s. This means we can interchange summation and integration to get

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds =

∞∑
n=1

an
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s
ds =

∞∑
n=1

an

{
0, x < n,
1, x > n

}
=
∑
n<x

an.
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Figure 2: Contours for (iii) and (iv)

Figure 3: Contours for (v) and (vi)
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Figure 4: Contour for Problem 2

Figure 5: Contours for Problem 3: on the left x > 1, on the right x < 1.
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