Math 70300

Homework 4

Due: within 72 hours

1. (a) Let z_{1} and z_{2} be two points on a circle C. Let z_{3} and z_{4} be symmetric with respect to the circle. Show that the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ has absolute value 1 .
(b) Let $a d-b c=1, c \neq 0$ and consider $T(z)=\frac{a z+b}{c z+d}$. Show that it increases lengths and areas inside the circle $|c z+d|=1$ and decreases lengths and areas outside the circle $|c z+d|=1$.
2. (a) By considering the contour integral

$$
\int_{|z|=1}\left(z+\frac{1}{z}\right)^{2 n} \frac{d z}{z}
$$

prove that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

(b) Prove that

$$
\int_{0}^{\pi / 2} \sin ^{2 n} \theta d \theta=\frac{\pi}{2} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} .
$$

3. Map conformally the region inside both circles $|z-1|<1$ and $|z+i|<1$ to the upper-half plane $\mathbb{H}=\{z \in \mathbb{C}, \Im(z)>0\}$.
Hint: Use first the map $w=z^{-1}$ and at some later stage use $w=z^{2}$.
4. Let $f(z)$ be holomorphic on the unit disc and $f(0)=1$. By working with

$$
\frac{1}{2 \pi i} \int_{|z|=1}\left[2 \pm\left(z+\frac{1}{z}\right)\right] f(z) \frac{d z}{z}
$$

prove that

$$
\frac{2}{\pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \cos ^{2} \frac{\theta}{2} d \theta=2+f^{\prime}(0), \quad \frac{2}{\pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \sin ^{2} \frac{\theta}{2} d \theta=2-f^{\prime}(0) .
$$

(b) If $f(z)$ is holomorphic on $|z| \leq 1, f(0)=1$, and for all $|z| \leq 1$ we have $\Re(f(z)) \geq 0$, then $-2 \leq \Re\left(f^{\prime}(0)\right) \leq 2$.
5. Let $f(z)$ be holomorphic in the region $|z| \leq R$ with power series expansion $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$. Let the partial sum of the series be defined as

$$
s_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n}
$$

Show that for $|z|<R$ we have

$$
s_{N}(z)=\frac{1}{2 \pi i} \int_{|w|=R} f(w) \frac{w^{N+1}-z^{N+1}}{w-z} \frac{d w}{w^{N+1}}
$$

6. Let C be a circle enclosing the distinct points $z_{1}, z_{2}, \ldots z_{n}$. Let

$$
p(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

be (the) polynomial of degree n with roots at these points. Let $f(z)$ be holomorphic in a disc that includes C. Show that

$$
P(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{p(w)} \frac{p(w)-p(z)}{w-z} d w
$$

is a polynomial of degree $n-1$, with the property

$$
P\left(z_{i}\right)=f\left(z_{i}\right), \quad i=1,2, \ldots n
$$

7. Let $f(z)$ be holomorphic on $|z|<1$ and $|f(z)|<\frac{1}{1-|z|}$ for $|z|<1$. Show that the Taylor coefficients a_{n} of $f(z)$ satisfy

$$
\left|a_{n}\right| \leq(n+1)\left(1+\frac{1}{n}\right)^{n}<e(n+1)
$$

8. Calculate the Fresnel integrals

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\sqrt{2 \pi} / 4
$$

Hint: Consider the function $f(z)=e^{i z^{2}}$ and a contour that includes the line segment from 0 to $R e^{i \pi / 4}$ and the circular arc from R to $R e^{i \pi / 4}$.
9. Let $f(z)=u+i v$ be an analytic function, $\psi(u, v)$ any function with second order partial derivatives and $g(u, v)$ any function with first partial derivatives.
(a) Let $\Delta_{x, y}$ be the Laplace operator in x, y coordinates, i.e. $\Delta_{x, y}=\partial_{x}^{2}+\partial_{y}^{2}$, and $\Delta_{u, v}$ be the Laplace operator in u, v coordinates, i.e. $\Delta_{u, v}=\partial_{u}^{2}+\partial_{v}^{2}$. Show that

$$
\Delta_{x, y}(\psi \circ f)=\Delta_{u, v} \psi \cdot\left|f^{\prime}(z)\right|^{2}
$$

(b) Let $\nabla_{u, v}=\partial_{u} \mathbf{i}+\partial_{v} \mathbf{j}$ be the gradient vector in u, v, and $\nabla_{x, y}=\partial_{x} \mathbf{i}+\partial_{y} \mathbf{j}$ the gradient vector in x, y coordinates. Show that

$$
\left|\nabla_{x, y}(g \circ f)\right|^{2}=\left|\nabla_{u, v} g\right|^{2} \cdot\left|f^{\prime}(z)\right|^{2}
$$

where $|\cdot|$ is the euclidean norm in \mathbb{C}.

