Math 70300

Homework 3

Due: October 19, 2006

1. Let $f(z)$ be an analytic function with nonzero derivative. Let $f(z)=u(x, y)+i v(x, y)$ and consider the level curves of u and v, i.e., the sets

$$
\left\{z=x+i y \in \mathbb{C}: u(x, y)=u_{0}\right\}, \quad\left\{z=x+i y \in \mathbb{C}: v(x, y)=v_{0}\right\}
$$

for fixed numbers u_{0}, v_{0}. Prove that the set of level curves of u and the set of level curves of v are orthogonal to each other.
2. (a) Let $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle. Show that z_{1}, z_{3}, z_{4} and z_{2}, z_{3}, z_{4} determine the same orientation iff $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)>0$.
(b) Let $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle and be the consecutive vertices of a quadrilateral. Prove that

$$
\left|z_{1}-z_{3}\right| \cdot\left|z_{2}-z_{4}\right|=\left|z_{1}-z_{2}\right| \cdot\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right| \cdot\left|z_{1}-z_{4}\right| .
$$

Interpret the result geometrically.
3. Let $T(z)=\frac{a z+b}{c z+d}$. Assume that it maps the real line to the real line. Show that we can choose a, b, c, d to be real numbers. The converse is obvious.
4. (a) Let $-\infty<a<b<\infty$ and set $M(z)=\frac{z-i a}{z-i b}$. Define the lines $L_{1}=\{z: \Im(z)=$ $b\}, L_{2}=\{z: \Im(z)=a\}$ and $L_{3}=\{z: \Re(z)=0\}$. The three lines split the complex plane into 6 regions. Determine the image of them in the complex plane.
(b) Let \log be the principal branch of the logarithm. Show that $\log (M(z))$ is defined for all $z \in \mathbb{C}$ with the exception of the line segment from $i a$ to $i b$.
(c) Define $h(z)=\Im(\log (M(z)))$ for $\Re(z)>0$. Show that h is harmonic and that $0<h(z)<\pi$.
(d) Show that $\log (z-i c)$ is defined for $\Re(z)>0$ and any real number c. Prove that $|\Im(\log (z-i c))|<\pi / 2$ in this region.
(e) Prove that $h(z)=\Im(\log (z-i a)-\log (z-i b))$.
(f) Use the fundamental theorem of calculus to show that

$$
\int_{a}^{b} \frac{d t}{z-i t}=i(\log (z-i b)-\log (z-i a))
$$

(g) Combine (e) and (f) to show that

$$
h(x+i y)=\int_{a}^{b} \frac{x d t}{x^{2}+(y-t)^{2}}=\arctan ((y-a) / x)-\arctan ((y-b) / x) .
$$

(h) Interpret (g) geometrically by showing that $h(z)$ measures (with sign) the interior angle of the triangle with vertices $i a$, $i b$ and z at the vertex z. What are the limits of $h(z)$ as $\Re(z) \rightarrow 0$ for $\Im(z) \in(a, b)$ and for $\Im(z) \notin[a, b]$?

5. Suppose that C_{1} and C_{2} are two circles with real centers, tangent to each other at $a \in \mathbb{R}$. Assume that the one is contained inside the other. Call G the region between the two circles. Map conformally G to the unit disc \mathbb{D}.

Hint: First try $(z-a)^{-1}$.

6. Let Ω be the upper half of the unit disc \mathbb{D}. Find a conformal mapping $f: \Omega \rightarrow \mathbb{D}$ that maps $\{-1,0,1\}$ to $\{-1,-i, 1\}$. Find $z \in \Omega$ with $f(z)=0$.
Hint: $f=T_{1} \circ S \circ T_{2}$, where T_{i} are linear fractional transformations and $S(z)=z^{2}$.
7. Let z and z^{\prime} be points in \mathbb{C} with corresponding points on the unit sphere Z and Z^{\prime} by stereographic projection. Let N be the north pole $N(0,0,1)$.
(a) Show that Z and Z^{\prime} are diametrically opposite on the unit sphere iff $z \overline{z^{\prime}}=-1$.
(b) Show that the triangles $N z^{\prime} z$ and $N Z Z^{\prime}$ are similar. The order of the vertices is important and is as given. Use this to derive the formula for the euclidean distance in \mathbb{R}^{3}

$$
d\left(Z, Z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}
$$

Note: Ahlfors and Conway denotes this distance $d\left(z, z^{\prime}\right)$.
(c) Show that the stereographic projection preserves angles by looking at two lines l_{1} and l_{2} through the point z in the complex plane and their images of the Riemann sphere, which are two arcs through the north pole. Compare the angle between l_{1} and l_{2} with the angle of the arcs at N and at the image Z of z under the projection. This part can be done solely with geometry.
8. Consider the function $f(z)=e^{z}$ and the set

$$
D_{\epsilon}=\{z \in \mathbb{C}, a-\epsilon \leq \Re(z) \leq a+\epsilon,-\epsilon \leq \Im(z) \leq \epsilon\},
$$

where $\epsilon \in(0, \pi)$.
(a) Compute the area of $f\left(D_{\epsilon}\right)$ in two ways: First geometrically and second using the formula

$$
A\left(f\left(D_{\epsilon}\right)\right)=\int_{D_{\epsilon}}\left|f^{\prime}(z)\right|^{2} d x d y
$$

(b) Compute the limit

$$
\lim _{\epsilon \rightarrow 0} \frac{A\left(f\left(D_{\epsilon}\right)\right)}{A\left(D_{\epsilon}\right)}
$$

Interpret the result.

