Math 70300

Homework 2

Due: September 28, 2006

1. Suppose that f is holomorphic in a region Ω, i.e. an open connected set. Prove that in any of the following cases
(a) $\Re(f)$ is constant; (b) $\Im(f)$ is constant; (c) $|f|$ is constant; (d) $\arg (f)$ is constant; we can conclude that f is a constant.
See also Ahlfors, p. 72.
If $f^{\prime}(z)=0$ for all $z \in \Omega$, we fix a point $z_{0} \in \Omega$ and join it with any path γ to z. Then

$$
f(z)-f\left(z_{0}\right)=\int_{\gamma} f^{\prime}(z) d z=0
$$

So $f(z)$ is a constant. We set $f(z)=u+i v$. For (a) we note that if u is constant, then $u_{x}=0$ and $u_{y}=0$. But $f^{\prime}(z)=u_{x}+i v_{x}=u_{x}-i u_{y}=0$. So the previous statement gives that f is constant. For (b) we note that if v is constant, then $v_{x}=v_{y}=0$. But $f^{\prime}(z)=v_{y}+i v_{x}=0$. So again f is constant. For (c) we argue as follows: If $u^{2}+v^{2}=k$, then we get by differentiation

$$
2 u u_{x}+2 v v_{x}=0, \quad 2 u u_{y}+2 v v_{y}=0 .
$$

Using the Cauchy-Riemann equations we get:

$$
2 u u_{x}-2 v u_{y}=0, \quad 2 u u_{y}+2 v u_{x}=0 .
$$

We now have a homogeneous system with unknowns u_{x} and u_{y}. The determinant is

$$
\left|\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right|=4\left(u^{2}+v^{2}\right)
$$

If $u^{2}+v^{2} \neq 0$ the system has a unique solution $u_{x}=u_{y}=0$, which implies that u is constant and we can use (a). If $u^{2}+v^{2}=0$ at some point, then automatically $u^{2}+v^{2}=0$ for all points, and the function f vanishes.
For (d) we set $u=k v$ for fixed k. Consider the analytic function $g(z)=(1+k i)(u+i v)$, which has real part $u-k v=0$. Then by (a), $g(z)$ is constant, which implies that f is constant.
2. Show that if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

then

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L
$$

This is the ratio test and it can be used for the calculation of the radius of convergence of a power series.
Hint: Show that

$$
\lim \inf \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \leq \lim \inf \left|a_{n}\right|^{1 / n} \leq \lim \sup \left|a_{n}\right|^{1 / n} \leq \lim \sup \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

We only need to prove the hint, since

$$
\lim x_{n}=L \Leftrightarrow \liminf x_{n}=\limsup x_{n}=L
$$

Also since we work with absolute values, we might as well prove the result for the sequence $b_{n}=\left|a_{n}\right|$. Set

$$
l=\lim \inf \frac{b_{n+1}}{b_{n}}, \quad L=\liminf \sqrt[n]{b_{n}}, \quad M=\lim \sup \sqrt[n]{b_{n}}, \quad m=\lim \sup \frac{b_{n+1}}{b_{n}}
$$

Fix $\epsilon>0$. Since $m=\limsup b_{n+1} / b_{n}=\inf _{N} \sup _{n \geq N} b_{n+1} / b_{n}$, the number $m+\epsilon$ is not a lower bound, i.e., we can find a N such that $\sup _{n \geq N} b_{n+1} / b_{n}<m+\epsilon$, i.e. for all $n \geq N$ we have

$$
\frac{b_{n+1}}{b_{n}}<m+\epsilon
$$

We apply this successively for $n=N, N+1, \ldots, n-1$ to get

$$
\begin{aligned}
b_{N+1} & <(m+\epsilon) b_{N} \\
b_{N+2} & <(m+\epsilon) b_{N+1} \\
\vdots & \vdots \\
b_{n} & <(m+\epsilon) b_{n-1} .
\end{aligned}
$$

We multiply together to get, after cancellations,

$$
b_{n}<(m+\epsilon)^{n-N} b_{N}
$$

We take n-th roots to get

$$
\sqrt[n]{b_{n}}<(m+\epsilon)\left(\frac{b_{N}}{(m+\epsilon)^{N}}\right)^{1 / n}, \quad n \geq N
$$

We take limsup of both sides, taking into account that this does not depend on a finite number of initial terms and that $c^{1 / n} \rightarrow 1$ for $c>0$. This gives:

$$
\limsup \sqrt[n]{b_{n}} \leq(m+\epsilon)
$$

Since this is true for all $\epsilon>0$, we get limsup $\sqrt[n]{b_{n}}=M \leq m$.
For the liminf we work analogously: Fix $\epsilon>0$. Find N such that $\inf _{n \geq N} b_{n+1} / b_{n}>$ $l-\epsilon$, which implies, for $n \geq N, b_{n+1} / b_{n}>l-\epsilon$. We apply this successively for $n=N, N+1, \ldots, n-1$ to get

$$
\begin{aligned}
b_{N+1} & >(l-\epsilon) b_{N} \\
b_{N+2} & >(l-\epsilon) b_{N+1} \\
\vdots & \vdots \\
b_{n} & >(l-\epsilon) b_{n-1} .
\end{aligned}
$$

We multiply together to get, after cancellations,

$$
b_{n}>(l-\epsilon)^{n-N} b_{N} .
$$

We take n-th roots to get

$$
\sqrt[n]{b_{n}}>(l-\epsilon)\left(\frac{b_{N}}{(l-\epsilon)^{N}}\right)^{1 / n}, \quad n \geq N
$$

We take liminf of both sides, taking into account that this does not depend on a finite number of initial terms and that $c^{1 / n} \rightarrow 1$ for $c>0$. This gives:

$$
\liminf \sqrt[n]{b_{n}} \geq(l-\epsilon)
$$

Since this is true for all $\epsilon>0$, we get $\liminf \sqrt[n]{b_{n}}=L \geq l$.
3. (a) Find the radius of convergence of the hypergeometric series

$$
F(\alpha, \beta, \gamma ; z)=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{n!\gamma(\gamma+1) \cdots(\gamma+n-1)} z^{n} .
$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0,-1,-2, \ldots$
We use the ratio test. We must assume that the terms are nonzero. This happens as long as α and β are not negative integers (or zero). If either is a negative integer (or zero), the power series terminates and we get a polynomial with infinite radius of convergence. We get in the general case

$$
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}= & \frac{|\alpha(\alpha+1) \cdots(\alpha+n-1)(\alpha+n) \beta(\beta+1) \cdots(\beta+n-1)(\beta+n)|}{|\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)|} \\
& \cdot \frac{n!|\gamma(\gamma+1) \cdots(\gamma+n-1)(\gamma+n)|}{(n+1)!|\gamma(\gamma+1) \cdots(\gamma+n-1)|}=\frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)} \rightarrow 1, n \rightarrow \infty
\end{aligned}
$$

This implies that $R=1$.
(b) Find the radius of convergence of the Bessel function of order r :

$$
J_{r}(z)=\left(\frac{z}{2}\right)^{r} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+r)!}\left(\frac{z}{2}\right)^{2 n}, \quad r \in \mathbb{N} .
$$

We use the ratio test

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{2^{2 n} n!(n+r)!}{2^{2 n+2}(n+1)!(n+1+r)!}=\frac{1}{4(n+1)(n+1+r)} \rightarrow 0, \quad n \rightarrow \infty .
$$

So the radius of convergence is ∞.
4. Prove that, although all the following power series have $R=1$,
(a) $\sum n z^{n}$ does not converge on any point of the unit circle,
(b) $\sum z^{n} / n^{2}$ converges at every point of the unit circle,
(c) $\sum z^{n} / n$ converges at every point of the unit circle except $z=1$. (Hint: Use summation by parts.)

Since $\lim \sqrt[n]{n}=1$ it is easy to see that $R=1$. For (a) we notice that on $|z|=1$, $\left|n z^{n}\right|=n \rightarrow \infty$, so the series cannot converge, as the general term does not go to 0 . For (b) we notice that we can apply the comparison test with $b_{n}=n^{-2}$, where $\sum b_{n}<\infty$. We have on $|z|=1$ the bound $\left|z^{n} / n^{2}\right|=b_{n}$. The comparison test implies that the series converges.
For (c) and $z=1$ we notice that we get the harmonic series $\sum n^{-1}$, which diverges by the integral test: compare with the integral

$$
\int_{1}^{\infty} \frac{1}{x} d x=\infty
$$

For $z \neq 1$ and $|z|=1$ we get by summation by parts, setting $s_{N}=\sum_{n=1}^{N} z^{n}=$ $\left(1-z^{N+1}\right) /(1-z), s_{0}=0$

$$
\begin{aligned}
& \sum_{n=1}^{M} \frac{z^{n}}{n}=\sum_{n=1}^{M} \frac{s_{n}-s_{n-1}}{n}=\sum_{1}^{M} \frac{s_{n}}{n}-\sum_{0}^{M-1} \frac{s_{n}}{n+1} \\
= & \frac{s_{M}}{M}+\sum_{1}^{M-1} s_{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\frac{s_{M}}{M}+\sum_{1}^{M-1} \frac{s_{n}}{n(n+1)} .
\end{aligned}
$$

Since $\left|s_{M}\right| \leq 2 /|1-z|$ (note that it is exactly in this geometric series that we use $z \neq 1$), the first term goes to zero, while the series can be compared with

$$
\frac{1}{|1-z|} \sum_{1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{|1-z|}
$$

5. The Fibonacci numbers are defined by $c_{0}=1, c_{1}=1$,

$$
c_{n}=c_{n-1}+c_{n-2}, \quad n=2,3, \ldots
$$

Define their generating function as

$$
F(z)=\sum_{n=0}^{\infty} c_{n} z^{n} .
$$

(a) Find a quadratic polynomial $A z^{2}+B z+C$ such that

$$
\left(A z^{2}+B z+C\right) F(z)=1
$$

We get

$$
\begin{gathered}
\sum_{n=0}^{\infty} A c_{n} z^{n+2}+\sum_{n=0}^{\infty} B c_{n} z^{n+1}+\sum_{n=0}^{\infty} C c_{n} z^{n}=1 \\
\sum_{n=2}^{\infty} A c_{n-2} z^{n}+\sum_{n=1}^{\infty} B c_{n-1} z^{n}+\sum_{n=0}^{\infty} C c_{n} z^{n}=1 \\
\sum_{n=2}^{\infty}\left(A c_{n-2}+B c_{n-1}+C c_{n}\right) z^{n}+\left(B c_{0}+C c_{1}\right) z+C c_{0}=1
\end{gathered}
$$

By the uniqueness of the coefficients of the power series, we get

$$
A c_{n-2}+B c_{n-1}+C c_{n}=0, \quad B c_{0}+C c_{1}=0, \quad C c_{0}=1
$$

Using $c_{0}=c_{1}=1$ we get $C=1, B=-1$, while the first equation becomes $A c_{n-2}-$ $c_{n-1}+c_{n}=0$. The recurrence formula $c_{n}=c_{n-1}+c_{n-2}$ implies $A=-1$. So the quadratic polynomial is $-z^{2}-z+1$.
(b) Use partial fractions to determine the following closed expression for c_{n}.

$$
c_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}
$$

(Qualifying exam Sept. 2006)
The roots of the quadratic polynomial are

$$
\rho_{1,2}=\frac{-1 \pm \sqrt{5}}{2}
$$

with $\rho_{1} \rho_{2}=-1$. We set

$$
\frac{1}{-z^{2}-z+1}=\frac{A}{z-\rho_{1}}+\frac{B}{z-\rho_{2}}
$$

to get

$$
-1=A\left(z-\rho_{2}\right)+B\left(z-\rho_{1}\right) \Longrightarrow A=\frac{1}{\rho_{2}-\rho_{1}}, \quad B=\frac{1}{\rho_{1}-\rho_{2}}=-A
$$

This gives $A=-1 / \sqrt{5}, B=1 / \sqrt{5}$. We expand the fractions into geometric series valid for $\left|z / \rho_{1}\right|<1$ and $\left|z / \rho_{2}\right|<1$ respectively to get

$$
\frac{A}{z-\rho_{1}}=\frac{1}{\sqrt{5}} \frac{1}{\rho_{1}\left(1-z / \rho_{1}\right)}=\frac{1}{\sqrt{5}} \sum_{0}^{\infty} \frac{z^{n}}{\rho_{1}^{n+1}}
$$

and

$$
\frac{B}{z-\rho_{1}}=\frac{-1}{\sqrt{5}} \frac{1}{\rho_{2}\left(1-z / \rho_{2}\right)}=\frac{-1}{\sqrt{5}} \sum_{0}^{\infty} \frac{z^{n}}{\rho_{2}^{n+1}} .
$$

This gives, by the uniqueness of the power series

$$
\begin{gathered}
c_{n}=\frac{1}{\sqrt{5}}\left(\frac{1}{\rho_{1}^{n+1}}-\frac{1}{\rho_{2}^{n+1}}\right) \\
c_{n}=\frac{1}{\sqrt{5}}\left(\left(-\rho_{2}\right)^{n+1}-\left(-\rho_{1}\right)^{n+1}\right)
\end{gathered}
$$

using $\rho_{1} \rho_{2}=-1$.
6. Expand $(1-z)^{-m}$ in powers of z, for $m \in \mathbb{N}$. Let

$$
(1-z)^{-m}=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

then

$$
a_{n} \sim \frac{1}{(m-1)!} n^{m-1}, \quad n \rightarrow \infty
$$

where \sim means that the quotient of the expressions to the left and the right of it tends to 1 .
The geometric series is

$$
(1-z)^{-1}=\sum_{n=0}^{\infty} z^{n}, \quad|z|<1 .
$$

We differentialte m - 1-times to get
$\frac{(m-1)!}{(1-z)^{m}}=\sum_{n=m-1}^{\infty} n(n-1)(n-2) \cdots(n-m+2) z^{n-m+1}=\sum_{n=0}^{\infty}(n+m-1)(n+m-2) \cdots(n+1) z^{n}$.
So

$$
a_{n}=\frac{(n+m-1) \cdots(n+1)}{(m-1)!} .
$$

Since m is fixed and $n \rightarrow \infty$ we easily see that

$$
\frac{a_{n}}{n^{m-1} /(m-1)!} \rightarrow 1, n \rightarrow \infty
$$

as a_{n} has $m-1$ factors in the numerator.
7. Show that for $|z|<1$ we have

$$
\begin{equation*}
\frac{z}{1-z^{2}}+\frac{z^{2}}{1-z^{4}}+\cdots+\frac{z^{2^{n}}}{1-z^{2^{n+1}}}+\cdots=\frac{z}{1-z} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z}{1+z}+\frac{2 z^{2}}{1+z^{2}}+\cdots+\frac{2^{k} z^{2^{k}}}{1+z^{2^{k}}}+\cdots=\frac{z}{1-z} . \tag{2}
\end{equation*}
$$

Justify any change in the order of summation.
Hint: Use the dyadic expansion of an integer and the sum $1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1$. We first prove the Lemma:

Every positive integer n has a unique expression of the $2^{t}+k_{t} 2^{t+1}$, with $t \geq 0, k_{t} \geq 0$. We use for this the dyadic expansion of n. If

$$
n=a_{0}+a_{1} 2+a_{2} 2^{2}+\cdots+a_{s} 2^{s}, \quad a_{i} \in\{0,1\}
$$

we pick t to be the first nonzero a_{i} : i.e. $a_{t}=1$, while $a_{0}=a_{1}=\cdots a_{t-1}=0$. Then

$$
n=2^{t}+a_{t+1} 2^{t+1}+\cdots+a_{s} 2^{s}=2^{t}+2^{t+1}\left(a_{t+1}+\cdots+a_{s} 2^{s-t-1}\right)=2^{t}+2^{t+1} k_{t} .
$$

This expression is unique as

$$
2^{t}+k_{t} 2^{t+1}=2^{j}+2^{j+1} k_{j}, j \neq t
$$

implies that either $j>t$ or $j<t$. By symmetry we assume $j>t$, i.e., $j \geq t+1$. Look at the remainder when we divide by 2^{t+1}. The left-hand side gives 2^{t}, while the right-hand side gives 0 .
We expand the left-side of (1) using the geometric series to get

$$
\sum_{k_{1}=0}^{\infty} z^{2 k_{1}+1}+\sum_{k_{2}=0}^{\infty} z^{4 k_{2}+2}+\cdots+\sum_{k_{m}=0}^{\infty} z^{2^{m+1} k_{m}+2^{m}}+\cdots
$$

while the right-hand side is just $\sum_{n=1}^{\infty} z^{n}$. The lemma proves the identity, provided that we have absolute convergence of the double series

$$
\sum_{m=0}^{\infty} \sum_{k_{m}=0}^{\infty} z^{2^{m+1} k_{m}+2^{m}}
$$

which would mean that we can rearrange the terms in whatever way we would like. But the lemma shows that the series

$$
\sum_{m=0}^{\infty} \sum_{k_{m}=0}^{\infty}\left|z^{2^{m+1} k_{m}+2^{m}}\right|
$$

is exactly the geometric series $\sum|z|^{n},|z|<1$, which converges.
For (2) we expand the left-hand side to get

$$
\begin{aligned}
& z \sum_{0}(-1)^{n} z^{n}+2 z^{2} \sum_{0}(-1)^{n} z^{2 n}+\cdots+2^{k} z^{2^{k}} \sum_{0}(-1)^{n} z^{2^{k} n}+\cdots \\
= & \sum_{1}(-1)^{m+1} z^{m}+2 \sum_{1}(-1)^{m+1} z^{2 m}+\cdots+2^{k} \sum_{1}(-1)^{m+1} z^{2^{k} m}+\cdots .
\end{aligned}
$$

Looking at the dyadic expansion of n we pick the first $a_{t}=1$, such that $a_{0}=a_{1}=$ $\cdots=a_{t-1}=0$. Then $2^{i} \mid n$ for $i \leq t$, while 2^{t+1} does not divide n and the same is true for higher powers of 2 . For $i \leq t-1, n=2^{i} * l$ with l even, so the coefficient it picks from the i-series in the sum is $2^{i}(-1)^{l+1}=-2^{i}$. On the other hand for $i=t$, $n=2^{t} * l$ with l odd, so that it picks a coefficient $2^{t}(-1)^{l+1}=2^{t}$. For $i>t$ it picks nothing. So the coefficient of z^{n} is

$$
-1+(-2)+\left(-2^{2}\right)+\cdots+\left(-2^{t-1}\right)+2^{t}=1
$$

by the identity $1+2+\cdots+2^{k}=2^{k+1}-1$.
Example: $n=4+$ higher powers of 2 . We write the first 4 series in the sum:

$$
\begin{array}{r}
z-z^{2}+z^{3}-z^{4}+\cdots \\
2\left(z^{2}-z^{4}+z^{6}-z^{8}+\cdots\right) \\
4\left(z^{4}-z^{8}+z^{12}-z^{16}+\cdots\right) \\
8\left(z^{8}-z^{16}+z^{24}-z^{32}+\cdots\right)
\end{array}
$$

The first three give to z^{4} coefficients $-1,-2,4$, while the last and the subsequent ones give 0 .

We need to explain the interchange of summations. We look at the series with absolute values on the terms. This is

$$
\sum_{k=0}^{\infty} \sum_{m=1}^{\infty} 2^{k}|z|^{2^{k} m}
$$

If this converges, then the original double sum converges absolutely and we can sum in whatever order we like. In this series the coefficient of $|z|^{n}$ is equal to

$$
\sum_{2^{k} \mid m} 2^{k}=\sum_{k \leq t} 2^{k}=2^{t+1}-1<2^{t+1} \leq 2 n, \quad n=2^{t}+a_{t+1} 2^{t+1}+\cdots
$$

So we compare with the series $\sum 2 n|z|^{n}$, which has radius of convergence 1. This suffices.
8. Find the holomorphic function of z that vanishes at $z=0$ and has real part

$$
u(x, y)=\frac{x\left(1+x^{2}+y^{2}\right)}{1+2 x^{2}-2 y^{2}+\left(x^{2}+y^{2}\right)^{2}} .
$$

We substitute $z+\bar{z}=2 x, x^{2}-y^{2}=\Re\left(z^{2}\right)=\left(z^{2}+\bar{z}^{2}\right) / 2$ and $z \bar{z}=x^{2}+y^{2}$ to get

$$
u(x, y)=\frac{1}{2} \frac{(z+\bar{z})(1+z \bar{z})}{1+z^{2}+\bar{z}^{2}+z^{2} \bar{z}^{2}}=\frac{1}{2} \frac{z+\bar{z}+z^{2} \bar{z}+\bar{z}^{2} z}{\left(1+z^{2}\right)\left(1+\bar{z}^{2}\right)}=\frac{1}{2}\left(\frac{z}{1+z^{2}}+\frac{\bar{z}}{1+\bar{z}^{2}}\right) .
$$

We set $f(z)=z /\left(1+z^{2}\right)$, which is holomorphic, to get

$$
u(x, y)=\frac{1}{2}(f(z)+\bar{f}(z))
$$

i.e., $u(x, y)$ is the real part of $f(z)$, and $f(z)=0$, this gives the answer to be $f(z)$.

Second method: (Look at p. 27 in Ahlfors) Since $f(z)$ is holomorphic, the conjugate function $g(x, y)=\overline{f(z)}$ depends only on \bar{z}, so we write $g(\bar{z})=\overline{f(z)}$ to get

$$
u(x, y)=\frac{1}{2}(f(z)+g(\bar{z}))=\frac{1}{2}(f(x+i y)+g(x-i y)) .
$$

This is true for x and y real. Formally we can plug $x=z$ and $y=z /(2 i)$, so that

$$
u(z / 2, z /(2 i))=\frac{1}{2}(f(z)+g(0)) .
$$

This determines $f(z)$ up to a constant. If $u(0,0)=0$ and we ask for $f(0)=0$, then $g(0)=0$.
In our case

$$
f(z)=2 u(z / 2, z /(2 i))=2 \frac{(z / 2)\left(1+\left(z^{2} / 4\right)+\left(-z^{2} / 4\right)\right)}{1+2\left(z^{2} / 4+z^{2} / 4\right)+\left(z^{2} / 4-z^{2} / 4\right)^{2}}=\frac{z}{1+z^{2}} .
$$

9. (i) Show that the Laplace operator can be calculated as

$$
\Delta=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} .
$$

(ii) Show that for any analytic function $f(z)$ we have

$$
\Delta|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}, \quad \text { and } \quad \Delta \log \left(1+|f(z)|^{2}\right)=\frac{4\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}
$$

(i) We have for a function f with continuous second partial derivatives

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

which gives

$$
\begin{aligned}
& 4 \frac{\partial^{2} f}{\partial z \partial \bar{z}}=\left(\frac{\partial}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\left(\frac{\partial}{\partial x}-i \frac{\partial f}{\partial y}\right) f_{x}+i\left(\frac{\partial}{\partial x}-i \frac{\partial f}{\partial y}\right) f_{y} \\
& =f_{x x}-i f_{y x}+i\left(f_{x y}-i f_{y y}\right)=f_{x x}-i f_{y x}+i f_{x y}+f_{y y}=f_{x x}+f_{y y}=\Delta f
\end{aligned}
$$

since the mixed partial $f_{x y}, f_{y x}$ are equal for functions with continuous second partial derivatives. Reversing the order of the calculation gives $4 \partial_{\bar{z}} \partial_{z} f=\Delta f$.
(ii) For an analytic function $\partial_{z} f(z)=f^{\prime}(z)$, while $\partial_{\bar{z}} \overline{f(z)}=\overline{f^{\prime}(z)}$, since f does not depend on \bar{z}, so the result from applying $\partial_{\bar{z}}$ on its conjugate can be calculated from $f^{\prime}(z)$: e.g. $f(z)=z^{2}, \overline{f(z)}=\bar{z}^{2}, \partial_{\bar{z}} \overline{f(z)}=2 \bar{z}=\overline{2 z}=\overline{\partial_{z} f(z)}$. This gives:
$\Delta|f(z)|^{2}=4 \partial_{z} \partial_{\bar{z}}(f(z) \overline{f(z)})=4 \partial_{z}\left(f(z) \overline{f^{\prime}(z)}\right)=4 \overline{f^{\prime}(z)} \partial_{z} f(z)=4 \overline{f^{\prime}(z)} f^{\prime}(z)=4\left|f^{\prime}(z)\right|^{2}$,
since $f(z)$ is a constant when we differentiate in \bar{z}, and $\overline{f^{\prime}(z)}$ is a constant when we differentiate in z, as it does not depend on z.
For the second part we will use the chain rule as expressed in z and \bar{z} coordinates (exercise 13 in homework 1). We use $g(w)=\log (1+w)$, which is holomorphic in w for $\Re w>-1$ (there is no difficulty in defining the argument of $1+w$ in this domain. For f we have $|f(z)|^{2} \geq 0$. We have

$$
\begin{aligned}
g_{\bar{w}} & =0, \quad \text { and } \quad g_{w}=\frac{1}{1+w} \\
\partial_{z} \log \left(1+|f(z)|^{2}\right) & =\frac{1}{1+|f(z)|^{2}}\left(1+|f(z)|^{2}\right)_{z}=\frac{\overline{f(z)} f^{\prime}(z)}{1+|f(z)|^{2}}
\end{aligned}
$$

We now apply the quotient rule

$$
\begin{aligned}
& 4 \partial_{\bar{z}} \partial_{z} \log \left(1+|f(z)|^{2}\right)=4 \partial_{\bar{z}} \frac{\overline{f(z)} f^{\prime}(z)}{1+|f(z)|^{2}}=4 \partial_{\bar{z}} \frac{\overline{f(z)} f^{\prime}(z)}{1+f(z) \overline{f(z)}} \\
= & 4 \frac{\partial_{\bar{z}}\left(\overline{f(z)} f^{\prime}(z)\right)\left(1+|f(z)|^{2}\right)-\overline{f(z)} f^{\prime}(z) \partial_{\bar{z}}(1+\overline{f(z)} f(z))}{\left(1+|f(z)|^{2}\right)^{2}} \\
= & 4 \frac{\overline{f^{\prime}(z)} f^{\prime}(z)\left(1+|f(z)|^{2}\right)-\overline{f(z)} f^{\prime}(z) f^{\prime}(z)}{} f(z) \\
\left(1+|f(z)|^{2}\right)^{2} & \frac{4 \overline{f^{\prime}(z)} f^{\prime}(z)}{\left(1+|f(z)|^{2}\right)^{2}} .
\end{aligned}
$$

10. Let $f(z)$ be holomorphic and one-to-one on a set containing the unit disc \mathbb{D}. Let $D^{\prime}=f(\mathbb{D})$. Then the area $A\left(D^{\prime}\right)$ of D^{\prime} is given by

$$
A\left(D^{\prime}\right)=\pi \sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}
$$

where $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.
(Qualifying exam September 2006)

The Jacobian of the mapping $w=f(z)$ as a mapping from $\mathbb{D} \rightarrow \mathbb{C}$ is $\left|f^{\prime}(z)\right|^{2}$. So by the change of variables formula

$$
A\left(D^{\prime}\right)=\iint_{D^{\prime}} 1 d u d v=\iint_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d x d y
$$

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, then

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \Longrightarrow\left|f^{\prime}(z)\right|^{2}=\sum_{n, m=1}^{\infty} n m a_{n} \bar{a}_{m} z^{n-1} \bar{z}^{m-1} .
$$

We switch to polar coordinates $z=r e^{i \theta}$ to get $(d x d y=r d r d \theta)$

$$
A\left(D^{\prime}\right)=\int_{0}^{1} \int_{0}^{2 \pi} \sum_{n, m=1}^{\infty} n m a_{n} \bar{a}_{m} r^{n+m-2} e^{i \theta(n-m)} r d r d \theta
$$

If $n-m \neq 0$, the integral $\int_{0}^{2 \pi} e^{i \theta(n-m)} d \theta=0$, while for $n=m$ we get 2π. This gives

$$
A\left(D^{\prime}\right)=\int_{0}^{1} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-1} 2 \pi=2 \pi \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}\left[\frac{r^{2 n}}{2 n}\right]_{0}^{1}=\pi \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} n
$$

11. (a) Compute the integral

$$
\int_{|z|=r} x d z
$$

for the positive sense of the circle, in two ways: first by using a parametrization, and second, by observing that $x=(1 / 2)(z+\bar{z})=(1 / 2)\left(z+r^{2} / z\right)$ on the circle.
First Method: Parametrization of the circle as $z=r e^{i \theta}, x=r \cos \theta, d z=r i e^{i \theta}$. We get

$$
\begin{aligned}
& \int_{|z|=r} x d z=\int_{0}^{2 \pi} r \cos \theta r i e^{i \theta} d \theta=\int_{0}^{2 \pi} r^{2} i \cos \theta(\cos \theta+i \sin \theta) d \theta=\int_{0}^{2 \pi} r^{2} i\left(\cos ^{2} \theta+i \cos \theta \sin \theta\right) d \theta \\
& \quad=r^{2} i \int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2}+\frac{i}{2} \sin (2 \theta) d \theta=r^{2} i\left[\frac{\theta}{2}+\frac{\sin 2 \theta}{4}+\frac{-i \cos 2 \theta}{4}\right]_{0}^{2 \pi}=r^{2} i \pi
\end{aligned}
$$

Second method: On the circle $|z|=r$, we have $z \bar{z}=r^{2} \Longrightarrow \bar{z}=r^{2} / z$, so that $x=(z+\bar{z}) / 2=(1 / 2)\left(z+r^{2} / z\right)$. We plug into the integral to get

$$
\int_{|z|=r} x d z=\int_{|z|=r} \frac{z}{2}+\frac{r^{2}}{2 z} d z=\frac{r^{2}}{2} 2 \pi i=r^{2} i \pi
$$

since we know that $\int_{|z|=r} z^{n} d z=0$ for $n \neq-1$ and for $n=-1$ we get $2 \pi i$.
(b) Compute the integral

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

for the positive sense of the circle. Hint: Find a primitive function of the integrand.
We use partial fractions to find that

$$
\frac{1}{z^{2}-1}=\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z+1}\right)
$$

We would like to integrate to get $(\log (z-1)-\log (z+1)) / 2$. However, this cannot make sense in the region we are working: The $\log (z-1)$ requires a cut from, say $-\infty$ to 1 and $\log (z+1)$ requires a cut from $-\infty$ to -1 . These cuts meet our domain, since the circle $|z|=2$ contains both points -1 and 1 . Make sense can be thought of being single-valued holomorphic functions that give us the primitive of the terms we consider. However, if we write the expected answer as

$$
F(z)=\frac{1}{2} \log \left(\frac{z-1}{z+1}\right)
$$

things are much better: First of all, $(z-1) /(z+1)$ is real only for real z. This is seen as follows:
$\frac{z-1}{z+1} \in \mathbb{R} \Leftrightarrow \frac{z-1}{z+1}=\frac{\bar{z}-1}{\bar{z}+1} \Leftrightarrow z \bar{z}+z-\bar{z}-1=z \bar{z}+\bar{z}-z-1 \Leftrightarrow 2(z-\bar{z})=0 \Leftrightarrow \Im(z)=0$.
Moreover, it is a negative number exactly between -1 and 1 . So on the complement of $[-1,1]$ the function takes nonnegative values. If we define the principal branch of the logarithm to be

$$
\log w=\log |w|+i \arg w, \quad-\pi<\arg w<\pi,
$$

then $F(z)$ as the composition of holomorphic maps is holomorphic and is the primitive of $1 /\left(z^{2}-1\right)$ in a region that contains our contour. Consequently $d z /\left(z^{2}-1\right)$ is exact and the integral is 0 .
Remark: One can solve this problem with the residue theorem, which will be seen later in the course.

