Math 70300

Homework 2

Due: September 28, 2006

1. Suppose that f is holomorphic in a region €2, i.e. an open connected set. Prove that
in any of the following cases

(a) R(f) is constant; (b) J(f) is constant; (c) |f| is constant; (d) arg(f) is constant;
we can conclude that f is a constant.

See also Ahlfors, p. 72.

If f'(z) =0 for all z € Q, we fix a point zy €  and join it with any path « to z.
Then

F(2) = fz0) = / F(2)dz =0,

So f(z) is a constant. We set f(z) = u+iv. For (a) we note that if u is constant, then
u, =0 and u, = 0. But f'(2) = u, + iv, = u, — iu, = 0. So the previous statement
gives that f is constant. For (b) we note that if v is constant, then v, = v, = 0.
But f'(z) = v, +iv, = 0. So again f is constant. For (c) we argue as follows: If
u? 4+ v? = k, then we get by differentiation

2uu, + 2vv, =0,  2uu, + 2vv, = 0.
Using the Cauchy-Riemann equations we get:
2uuy — 2vuy =0,  2uuy + 2vu, = 0.
We now have a homogeneous system with unknowns u, and u,. The determinant is

‘ 2u —2v ) 4(u® +v?).

20 2u

If u? + v? # 0 the system has a unique solution u, = u, = 0, which implies that u
is constant and we can use (a). If u*> +v? = 0 at some point, then automatically
u? +v?* = 0 for all points, and the function f vanishes.

For (d) we set u = kv for fixed k. Consider the analytic function g(z) = (1+ki)(u+iv),
which has real part u — kv = 0. Then by (a), g(2) is constant, which implies that f
is constant.



2. Show that if {a,}°, is a sequence of non-zero complex numbers such that

lim |an+1| — I

n—oo | ay| ’
then
lim |a,|"" = L.

n—oo

This is the ratio test and it can be used for the calculation of the radius of convergence
of a power series.

Hint: Show that

< lim sup %.
Qn

lim inf 1] < lim inf |a, |*/" Ln

< lim sup |ay,|
|an

We only need to prove the hint, since
limz, = L < liminf z,, = limsupz,, = L.

Also since we work with absolute values, we might as well prove the result for the
sequence b, = |a,|. Set

| = liminf bz“, L = liminf ¥/b,, M =limsup ¥/b,, m = limsup b’;“

n n

Fix € > 0. Since m = limsupb,,1/b, = infy sup,~y bnt1/bn, the number m + € is
not a lower bound, i.e., we can find a N such that _supn>N bui1/bn < m+e, ie. for
all n > N we have -
bn+1
bn,

We apply this successively forn = N, N +1,...,n—1 to get

< m —+e€.

bN+1 < (m+e)bN
bN+2 < (m+e)bN+1

b, < (m+e€)b,_1.
We multiply together to get, after cancellations,
b, < (m + E)niNbN.

We take n-th roots to get

bN 1/n



We take limsup of both sides, taking into account that this does not depend on a
finite number of initial terms and that ¢/ — 1 for ¢ > 0. This gives:

limsup /b, < (m + €).
Since this is true for all € > 0, we get limsup /b, = M < m.

For the liminf we work analogously: Fix € > 0. Find N such that inf,>y by41/b, >
[ — €, which implies, for n > N, b,.1/b, > | —e. We apply this successively for
n=N,N+1...,n—1to get

bN+1 > (Z—G)bN
bN+2 > (Z—E)bN+1

by, > (I—e)b,_.
We multiply together to get, after cancellations,
by > (1 — )" Nby.

We take n-th roots to get

bN 1/n

We take liminf of both sides, taking into account that this does not depend on a
finite number of initial terms and that ¢/ — 1 for ¢ > 0. This gives:

liminf /b, > (I —€).
Since this is true for all € > 0, we get liminf /b, = L > [.

. (a) Find the radius of convergence of the hypergeometric series

L “ala+1)--(a+n—-1)pB+1)---(B4+n—1)
Fleofry2) =1+ nly(y+1)---(y+n—1) o

n=1

Here a, 6 € C and v # 0,—1,—-2,....

We use the ratio test. We must assume that the terms are nonzero. This happens
as long as a and [ are not negative integers (or zero) . If either is a negative integer
(or zero), the power series terminates and we get a polynomial with infinite radius of
convergence. We get in the general case

— 1,n — oc.

jana| _ Jela+1)---(a+n—=1)(a+n)8(B+1)---(B+n—1)(5+n)
| (@ +1) - (a+n=1)3(B+1)--(B+n-1)
G+ +n=D+n)|l _ (a+n)(f+n)
|

(m+Dy(y+1) - (v+n—1) (n+1)(y+n)
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This implies that R = 1.
(b) Find the radius of convergence of the Bessel function of order r:
N e (=1)" sz\2n
T(z) = (5) ; nl(n+r)! (5) , TEN.

We use the ratio test

|yi1| 220l (n +r)! 1 0
— - — n — oo.
|a | 222(n+ )l (n+1+7r) 4n+1)(n+1+7r) ’

So the radius of convergence is oo.

. Prove that, although all the following power series have R = 1,
(a) > nz" does not converge on any point of the unit circle,
(b) 3" 2"/n? converges at every point of the unit circle,

(c) > 2™/n converges at every point of the unit circle except z = 1. (Hint: Use
summation by parts.)

Since lim /n = 1 it is easy to see that R = 1. For (a) we notice that on |z| = 1,
|nz"| = n — oo, so the series cannot converge, as the general term does not go to
0. For (b) we notice that we can apply the comparison test with b, = n™2, where
> b, < co. We have on |z| = 1 the bound |2"/n?| = b,. The comparison test implies
that the series converges.

1

For (c) and z = 1 we notice that we get the harmonic series > n~', which diverges

by the integral test: compare with the integral

1
/ —dzr = 0.
. T

For z # 1 and |z| = 1 we get by summation by parts, setting sy = Zﬁ;l PARE
(1=2"1)/(1—2),5=0

Since |sp| < 2/|1 — z| (note that it is exactly in this geometric series that we use
z # 1), the first term goes to zero, while the series can be compared with

1 — 1 1
|1—z|zl:n(n+1) 1=z



5. The Fibonacci numbers are defined by ¢ =1, ¢; =1,

Cph=Cp 1+ Cho, N=223....

Define their generating function as
F(z) = i 2"
n=0
(a) Find a quadratic polynomial Az? + Bz + C such that
(A2 + B2+ C)F(z2) = 1.

We get

i Acp 2" + f: Be, 2"+ f: Cep, 2" =1,
n=0 n=0 n=0
i Ac, 02" + f: Be, 12" + f: Cep,2" =1,
n=2 n=1 n=0

Z(Acn_g + Beyo1 + Cey)2" + (Beg 4+ Cey)z + Cey = 1.

n=2

By the uniqueness of the coefficients of the power series, we get
Ac,_o+ Be,,_1+Cec, =0, Becg+Ceci =0, Ccy=1.

Using ¢y = ¢y = 1 we get C' =1, B = —1, while the first equation becomes Ac, o —
Cn—1 + ¢, = 0. The recurrence formula ¢, = ¢,_1 + ¢,_» implies A = —1. So the
quadratic polynomial is —z? — z + 1.

(b) Use partial fractions to determine the following closed expression for ¢,.

<1+\/5>n+1 B (1_\/5>n+1
2 2

V5

Cp =

(Qualifying exam Sept. 2006)

The roots of the quadratic polynomial are

—1++5
pra=——p—

with p1ps = —1. We set

1 A B
= +
-2 —z4+1 z—p1 z2—po
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to get

1 1
B = = —A.

—1=A(z—p2) + B(z—p1) = A= , = =
P2 — P P1— P2

This gives A = —1/v/5, B = 1/v/5. We expand the fractions into geometric series
valid for |z/p;| < 1 and |z/ps| < 1 respectively to get

A1 1 1 i 2"
z=pr Vopi(L=2/p) V545 pitt

and
B -1 1

-1 zZ"
z=p VEpaAl—2/p2) ﬁzojpél“'

This gives, by the uniqueness of the power series

1 ( 1 1 )
€ ==\ TnF1 T at
vV \pitt
1 n n
Cn = ﬁ ((=p2)"*" = (=p)"*")

using p1pe = —1.

. Expand (1 — 2)™™ in powers of z, for m € N. Let

(1—2)""= ianz",

n=0

then

1
ap ~ ——n™ 1 n— oo,

(m —1)!
where ~ means that the quotient of the expressions to the left and the right of it
tends to 1.

The geometric series is

(1—2)""= Zz", |z| < 1.
n=0

We differentialte m — 1-times to get

(m — 1)' > n—m-+1 = n
T n(n—1)(n—=2)--- (n—m+2)z = (ntm—1)(n+m-2) - (n+1)z".

— 2z m
n=m-—1 n=0
So




Since m is fixed and n — oo we easily see that

nm=1/(m —1)!

—1,n— o0

as a, has m — 1 factors in the numerator.

. Show that for |z| < 1 we have

: 22 P 22" L ® 1)
1—22 1-—24 1 — 2t 1=z
and .
2z N 222 . 2k 2 e 2z @)
1+2 1422 1+ 22* C1—2z

Justify any change in the order of summation.
Hint: Use the dyadic expansion of an integer and the sum 1424224 .- 42F = 2k+1 1,
We first prove the Lemma:
Every positive integer n has a unique expression of the 2+ k2 with t > 0, k, > 0.
We use for this the dyadic expansion of n. If
n=ay+ a2+ a2*+---+a2*, a; €{0,1}
we pick t to be the first nonzero a;: i.e. a; = 1, while ag =a; = ---a;—1 = 0. Then
n=2"4+a 12+ 0,28 =28+ 2 (apy - e 28) = 20 4 20,
This expression is unique as
20+ 2! =27 4 2T s gLt

implies that either 7 > ¢ or 7 < t. By symmetry we assume j > ¢, i.e., 7 > ¢t + 1.
Look at the remainder when we divide by 2!7!. The left-hand side gives 2¢, while the
right-hand side gives 0.

We expand the left-side of (1) using the geometric series to get
oo o oo
St N ka2 N7 2 e
k1=0 ka=0 k=0

while the right-hand side is just >~ 2"”. The lemma proves the identity, provided
that we have absolute convergence of the double series

[e.e] oo
2m+1k +2m
PID DR

m=0 k=0
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which would mean that we can rearrange the terms in whatever way we would like.
But the lemma shows that the series

e.9] oo
>3 e

m=0 ky, =0

is exactly the geometric series Y |z|", |z| < 1, which converges.

For (2) we expand the left-hand side to get

ZZ(_l —|—2Z Z n 2n +2k22 Z n 2’“
0
:Z(_ m+1 m+2z m+122m+".+2k2(_1)m+122km+”‘
1 1

Looking at the dyadic expansion of n we pick the first a; = 1, such that ay = a; =
- = ay_; = 0. Then 2Yn for i < ¢, while 27! does not divide n and the same is
true for higher powers of 2. For i <t — 1, n = 2 % [ with [ even, so the coefficient it
picks from the i-series in the sum is 2/(—1)""! = —2%. On the other hand for i = ¢,
n = 2! % [ with [ odd, so that it picks a coefficient 2!(—1)""! = 2. For i > ¢ it picks
nothing. So the coefficient of 2" is
14+ (=2)+ (=29 + -+ (2" +2' =1
by the identity 14 2 4 --- +2F = 2k+1 1,
Example: n = 4+higher powers of 2. We write the first 4 series in the sum:
z—22 42—
2022 — 2t 20 -2
4(24—Z8+212—216+"-)
8(25 — 216 4 520 532 4

The first three give to z* coefficients —1, —2, 4, while the last and the subsequent
ones give 0.

We need to explain the interchange of summations. We look at the series with absolute

values on the terms. This is
o0 o
D IPAE RS

k=0 m=1
If this converges, then the original double sum converges absolutely and we can sum
in whatever order we like. In this series the coefficient of |z|" is equal to

=N "ob =2 1 <2 <on, =2+ a2 4
2k|m k<t

So we compare with the series Y 2n|z|", which has radius of convergence 1. This
suffices.



8. Find the holomorphic function of z that vanishes at z = 0 and has real part

(z.1) z(l+2% +y°)
u(z,y) = )
Y 14222 — 2y + (22 + y2)?

We substitute z + z = 2z, 2% — y* = R(2?) = (2 + 2%)/2 and 2z = 2% + y* to get

u(r,y) =

T 21+ 2+ 2+2222 2 (1+22)(1+22) 2

1 (z42)(1+22) lz+z+222+72%2 1 z z
_ = — + -
1422 1+ 22

We set f(z) = z/(1 + 2?), which is holomorphic, to get

u(e,) = 5(£(2) + ()

i.e., u(z,y) is the real part of f(z), and f(z) = 0, this gives the answer to be f(z).
Second method: (Look at p. 27 in Ahlfors) Since f(z) is holomorphic, the conjugate
function g(z,y) = f(2) depends only on Zz, so we write g(z) = f(z) to get

1

u(e,) = 5(£() + () = 37 + i) + gl — i)

This is true for « and y real. Formally we can plug x = z and y = z/(2i), so that

u(/2,/(20)) = 5(/(2) + 9(0)).

This determines f(z) up to a constant. If «(0,0) = 0 and we ask for f(0) = 0, then
9(0) = 0.
In our case
(z/2)(A+ (/) +(=2*/4) =z
1+ 2(22/4+ 22/4) + (22/4 — 22/4)2 1422

f(z) =2u(z/2,2/(2i)) =2

9. (i) Show that the Laplace operator can be calculated as

0 0 0 0

(ii) Show that for any analytic function f(z) we have

41 (=)

AFEI =4f (P, and Ao+ 1f(G)) = 3 Fame

(i) We have for a function f with continuous second partial derivatives

of 1 (of af\ of 1[of of
L-3(E-2). %3

ox Zay Ox lay
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which gives

of (0 Of . (0 Of [0 of
48,282 B (% _Za_y> (fe +ify) = <£ —Za—y) Jeti (% —za—y> 1

- fm: - nyx + Z(fzy - ifyy) - fmr - Ucyr + Zfl"y + fyy - fxm + fyy = Af’

since the mixed partial f;,, f,» are equal for functions with continuous second partial
derivatives. Reversing the order of the calculation gives 40:0,f = Af.

(ii) For an analytic function 0. f(z) = f'(z), while 0s:f(2) = f'(z), since f does not
depend on Z, so the result from applying s on its conjugate can be calculated from

fl(2): eg. f(z) =22 f(2)=220:f(2) =22 = 22 = 0. f(z). This gives:

Alf(2)? = 40.0:(f(2) f(2)) = 40:(f(2) F'(2)) = 4F (2)0.f (2) = 4 (2) f'(z) = 4If (=) P,

since f(z) is a constant when we differentiate in z, and f’(z) is a constant when we
differentiate in z, as it does not depend on z.

For the second part we will use the chain rule as expressed in z and Zz coordinates
(exercise 13 in homework 1). We use g(w) = log(1 + w), which is holomorphic in w
for w > —1 (there is no difficulty in defining the argument of 1+ w in this domain.
For f we have |f(z)|*> > 0. We have

go =0, and gy — HLW
1 FIaY
0.og(1 + |f(:)F) = 1+ P = S
We now apply the quotient rule
10.0.10g(1 + | F(2)2) = 40, LGy JE()

L+ I/EE 1t f()f6)
O:(f(2) ' (2) (L + | f(2)]}) = F(2) f'(2)0:(1 + f(2)f(2))
1+ [f(2)[2)?

_JSENEAA+FEP) - 11 f(2) _ AF()](2)

(1 +[f(=)?)? I+ 1P

10. Let f(z) be holomorphic and one-to-one on a set containing the unit disc . Let
D' = f(D). Then the area A(D') of D’ is given by

=4

ADY=m Z nla,|?,
n=1
where f(z) =Y 7 a,2". (Qualifying exam September 2006)
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11.

The Jacobian of the mapping w = f(z) as a mapping from D — C is | f'(2)[®. So by
the change of variables formula

A(D’):///1dudv=//ﬂ)|f’(z)|2dxdy.

If f(z) =37, an2", then

o0 oo
f'(z) = Znanz”_l — |f'(2)] = Z NNy G 2™ 2™ 1
n=1 n,m=1

We switch to polar coordinates z = re? to get (dwdy = rdrdf)

1 2T X
A(D") :/ / Z My Gy 26?0 dr df
o Jo

n,m=1

If n —m # 0, the integral fozﬂ e?=m) d§ = 0, while for n = m we get 2. This gives

A(D') = / Zn2|an|2r2”_127r = 2W2n2|an|2 [%] = WZ |an|*n.
0 n=1 n=1 0 n=1

/ rdz
|z|=r

for the positive sense of the circle, in two ways: first by using a parametrization, and
second, by observing that = = (1/2)(z + z) = (1/2)(z + r?/z) on the circle.
0

(a) Compute the integral

First Method: Parametrization of the circle as z = re?, x = rcosf, dz = rie®®. We

get

2m 2m 2m
/ rdz = / r cos Orie” df = / 1% cos §(cos O+isin 0)df = / 7%i(cos® O+ cos 0 sin §)df
|z|=r 0 0 0

] 20) i 0  sin20 —icos20]”
—r2i/0 H%()jL%sin(%)dQ—r?i {i—i-snil + ZCZS 10 = r?im.

Second method: On the circle |z| = r, we have 2z = > = z = r?/z, so that
r=(2+2)/2=(1/2)(z +r*/z). We plug into the integral to get

2 2
/ a:dz:/ E—i—r—dz:r—Zm':rQiﬂ,
Jl=r ol=r 2 22 2

since we know that f‘z|:r 2"dz =0 for n # —1 and for n = —1 we get 2mi.
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(b) Compute the integral

/ dz
jel=2 #° — 1

for the positive sense of the circle. Hint: Find a primitive function of the integrand.

We use partial fractions to find that

1 1 1 1
m—§<z_1 z+1>'
We would like to integrate to get (log(z — 1) — log(z + 1))/2. However, this cannot
make sense in the region we are working: The log(z — 1) requires a cut from, say —oo
to 1 and log(z + 1) requires a cut from —oo to —1. These cuts meet our domain,
since the circle |z| = 2 contains both points —1 and 1. Make sense can be thought of

being single-valued holomorphic functions that give us the primitive of the terms we
consider. However, if we write the expected answer as

1 z—1

things are much better: First of all, (z — 1)/(z + 1) is real only for real z. This is
seen as follows:

z—le @z—l_é—l
z+1 24+1 z+4+1

& 2Z+z2—2-1=z2z24z2—2-12(z—2) =0 < J(z) = 0.

Moreover, it is a negative number exactly between —1 and 1. So on the complement
of [—=1, 1] the function takes nonnegative values. If we define the principal branch of
the logarithm to be

logw = log |w| +iargw, —m <argw <,

then F'(z) as the composition of holomorphic maps is holomorphic and is the primitive
of 1/(2*> —1) in a region that contains our contour. Consequently dz/(z? —1) is exact
and the integral is 0.

Remark: One can solve this problem with the residue theorem, which will be seen
later in the course.
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