
Math 70300

Homework 2

Due: September 28, 2006

1. Suppose that f is holomorphic in a region Ω, i.e. an open connected set. Prove that
in any of the following cases

(a) <(f) is constant; (b) =(f) is constant; (c) |f | is constant; (d) arg(f) is constant;

we can conclude that f is a constant.

See also Ahlfors, p. 72.

If f ′(z) = 0 for all z ∈ Ω, we fix a point z0 ∈ Ω and join it with any path γ to z.
Then

f(z)− f(z0) =

∫
γ

f ′(z) dz = 0.

So f(z) is a constant. We set f(z) = u+iv. For (a) we note that if u is constant, then
ux = 0 and uy = 0. But f ′(z) = ux + ivx = ux − iuy = 0. So the previous statement
gives that f is constant. For (b) we note that if v is constant, then vx = vy = 0.
But f ′(z) = vy + ivx = 0. So again f is constant. For (c) we argue as follows: If
u2 + v2 = k, then we get by differentiation

2uux + 2vvx = 0, 2uuy + 2vvy = 0.

Using the Cauchy-Riemann equations we get:

2uux − 2vuy = 0, 2uuy + 2vux = 0.

We now have a homogeneous system with unknowns ux and uy. The determinant is∣∣∣∣ 2u −2v
2v 2u

∣∣∣∣ = 4(u2 + v2).

If u2 + v2 6= 0 the system has a unique solution ux = uy = 0, which implies that u
is constant and we can use (a). If u2 + v2 = 0 at some point, then automatically
u2 + v2 = 0 for all points, and the function f vanishes.

For (d) we set u = kv for fixed k. Consider the analytic function g(z) = (1+ki)(u+iv),
which has real part u− kv = 0. Then by (a), g(z) is constant, which implies that f
is constant.
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2. Show that if {an}∞n=0 is a sequence of non-zero complex numbers such that

lim
n→∞

|an+1|
|an|

= L,

then
lim

n→∞
|an|1/n = L.

This is the ratio test and it can be used for the calculation of the radius of convergence
of a power series.

Hint: Show that

lim inf
|an+1|
|an|

≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup
|an+1|
|an|

.

We only need to prove the hint, since

lim xn = L ⇔ lim inf xn = lim sup xn = L.

Also since we work with absolute values, we might as well prove the result for the
sequence bn = |an|. Set

l = lim inf
bn+1

bn

, L = lim inf n
√

bn, M = lim sup n
√

bn, m = lim sup
bn+1

bn

.

Fix ε > 0. Since m = lim sup bn+1/bn = infN supn≥N bn+1/bn, the number m + ε is
not a lower bound, i.e., we can find a N such that supn≥N bn+1/bn < m + ε, i.e. for
all n ≥ N we have

bn+1

bn

< m + ε.

We apply this successively for n = N, N + 1, . . . , n− 1 to get

bN+1 < (m + ε)bN

bN+2 < (m + ε)bN+1

...
...

bn < (m + ε)bn−1.

We multiply together to get, after cancellations,

bn < (m + ε)n−NbN .

We take n-th roots to get

n
√

bn < (m + ε)

(
bN

(m + ε)N

)1/n

, n ≥ N.
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We take lim sup of both sides, taking into account that this does not depend on a
finite number of initial terms and that c1/n → 1 for c > 0. This gives:

lim sup n
√

bn ≤ (m + ε).

Since this is true for all ε > 0, we get lim sup n
√

bn = M ≤ m.

For the lim inf we work analogously: Fix ε > 0. Find N such that infn≥N bn+1/bn >
l − ε, which implies, for n ≥ N , bn+1/bn > l − ε. We apply this successively for
n = N, N + 1, . . . , n− 1 to get

bN+1 > (l − ε)bN

bN+2 > (l − ε)bN+1

...
...

bn > (l − ε)bn−1.

We multiply together to get, after cancellations,

bn > (l − ε)n−NbN .

We take n-th roots to get

n
√

bn > (l − ε)

(
bN

(l − ε)N

)1/n

, n ≥ N.

We take lim inf of both sides, taking into account that this does not depend on a
finite number of initial terms and that c1/n → 1 for c > 0. This gives:

lim inf n
√

bn ≥ (l − ε).

Since this is true for all ε > 0, we get lim inf n
√

bn = L ≥ l.

3. (a) Find the radius of convergence of the hypergeometric series

F (α, β, γ; z) = 1 +
∞∑

n=1

α(α + 1) · · · (α + n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn.

Here α, β ∈ C and γ 6= 0,−1,−2, . . ..

We use the ratio test. We must assume that the terms are nonzero. This happens
as long as α and β are not negative integers (or zero) . If either is a negative integer
(or zero), the power series terminates and we get a polynomial with infinite radius of
convergence. We get in the general case

|an+1|
|an|

=
|α(α + 1) · · · (α + n− 1)(α + n)β(β + 1) · · · (β + n− 1)(β + n)|

|α(α + 1) · · · (α + n− 1)β(β + 1) · · · (β + n− 1)|

·n!|γ(γ + 1) · · · (γ + n− 1)(γ + n)|
(n + 1)!|γ(γ + 1) · · · (γ + n− 1)|

=
(α + n)(β + n)

(n + 1)(γ + n)
→ 1, n →∞.
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This implies that R = 1.

(b) Find the radius of convergence of the Bessel function of order r:

Jr(z) =
(z

2

)r
∞∑

n=0

(−1)n

n!(n + r)!

(z

2

)2n

, r ∈ N.

We use the ratio test

|an+1|
|an|

=
22nn!(n + r)!

22n+2(n + 1)!(n + 1 + r)!
=

1

4(n + 1)(n + 1 + r)
→ 0, n →∞.

So the radius of convergence is ∞.

4. Prove that, although all the following power series have R = 1,

(a)
∑

nzn does not converge on any point of the unit circle,

(b)
∑

zn/n2 converges at every point of the unit circle,

(c)
∑

zn/n converges at every point of the unit circle except z = 1. (Hint: Use
summation by parts.)

Since lim n
√

n = 1 it is easy to see that R = 1. For (a) we notice that on |z| = 1,
|nzn| = n → ∞, so the series cannot converge, as the general term does not go to
0. For (b) we notice that we can apply the comparison test with bn = n−2, where∑

bn < ∞. We have on |z| = 1 the bound |zn/n2| = bn. The comparison test implies
that the series converges.

For (c) and z = 1 we notice that we get the harmonic series
∑

n−1, which diverges
by the integral test: compare with the integral∫ ∞

1

1

x
dx = ∞.

For z 6= 1 and |z| = 1 we get by summation by parts, setting sN =
∑N

n=1 zn =
(1− zN+1)/(1− z), s0 = 0

M∑
n=1

zn

n
=

M∑
n=1

sn − sn−1

n
=

M∑
1

sn

n
−

M−1∑
0

sn

n + 1

=
sM

M
+

M−1∑
1

sn

(
1

n
− 1

n + 1

)
=

sM

M
+

M−1∑
1

sn

n(n + 1)
.

Since |sM | ≤ 2/|1 − z| (note that it is exactly in this geometric series that we use
z 6= 1), the first term goes to zero, while the series can be compared with

1

|1− z|

∞∑
1

1

n(n + 1)
=

1

|1− z|
.
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5. The Fibonacci numbers are defined by c0 = 1, c1 = 1,

cn = cn−1 + cn−2, n = 2, 3, . . . .

Define their generating function as

F (z) =
∞∑

n=0

cnz
n.

(a) Find a quadratic polynomial Az2 + Bz + C such that

(Az2 + Bz + C)F (z) = 1.

We get
∞∑

n=0

Acnz
n+2 +

∞∑
n=0

Bcnz
n+1 +

∞∑
n=0

Ccnz
n = 1,

∞∑
n=2

Acn−2z
n +

∞∑
n=1

Bcn−1z
n +

∞∑
n=0

Ccnz
n = 1,

∞∑
n=2

(Acn−2 + Bcn−1 + Ccn)zn + (Bc0 + Cc1)z + Cc0 = 1.

By the uniqueness of the coefficients of the power series, we get

Acn−2 + Bcn−1 + Ccn = 0, Bc0 + Cc1 = 0, Cc0 = 1.

Using c0 = c1 = 1 we get C = 1, B = −1, while the first equation becomes Acn−2 −
cn−1 + cn = 0. The recurrence formula cn = cn−1 + cn−2 implies A = −1. So the
quadratic polynomial is −z2 − z + 1.

(b) Use partial fractions to determine the following closed expression for cn.

cn =

(
1+
√

5
2

)n+1

−
(

1−
√

5
2

)n+1

√
5

.

(Qualifying exam Sept. 2006)

The roots of the quadratic polynomial are

ρ1,2 =
−1±

√
5

2

with ρ1ρ2 = −1. We set

1

−z2 − z + 1
=

A

z − ρ1

+
B

z − ρ2
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to get

−1 = A(z − ρ2) + B(z − ρ1) =⇒ A =
1

ρ2 − ρ1

, B =
1

ρ1 − ρ2

= −A.

This gives A = −1/
√

5, B = 1/
√

5. We expand the fractions into geometric series
valid for |z/ρ1| < 1 and |z/ρ2| < 1 respectively to get

A

z − ρ1

=
1√
5

1

ρ1(1− z/ρ1)
=

1√
5

∞∑
0

zn

ρn+1
1

,

and
B

z − ρ1

=
−1√

5

1

ρ2(1− z/ρ2)
=
−1√

5

∞∑
0

zn

ρn+1
2

.

This gives, by the uniqueness of the power series

cn =
1√
5

(
1

ρn+1
1

− 1

ρn+1
2

)

cn =
1√
5

(
(−ρ2)

n+1 − (−ρ1)
n+1

)
using ρ1ρ2 = −1.

6. Expand (1− z)−m in powers of z, for m ∈ N. Let

(1− z)−m =
∞∑

n=0

anz
n,

then

an ∼
1

(m− 1)!
nm−1, n →∞,

where ∼ means that the quotient of the expressions to the left and the right of it
tends to 1.

The geometric series is

(1− z)−1 =
∞∑

n=0

zn, |z| < 1.

We differentialte m− 1-times to get

(m− 1)!

(1− z)m
=

∞∑
n=m−1

n(n−1)(n−2) · · · (n−m+2)zn−m+1 =
∞∑

n=0

(n+m−1)(n+m−2) · · · (n+1)zn.

So

an =
(n + m− 1) · · · (n + 1)

(m− 1)!
.
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Since m is fixed and n →∞ we easily see that

an

nm−1/(m− 1)!
→ 1, n →∞

as an has m− 1 factors in the numerator.

7. Show that for |z| < 1 we have

z

1− z2
+

z2

1− z4
+ · · ·+ z2n

1− z2n+1 + · · · = z

1− z
, (1)

and
z

1 + z
+

2z2

1 + z2
+ · · ·+ 2kz2k

1 + z2k + · · · = z

1− z
. (2)

Justify any change in the order of summation.

Hint: Use the dyadic expansion of an integer and the sum 1+2+22+· · ·+2k = 2k+1−1.

We first prove the Lemma:

Every positive integer n has a unique expression of the 2t +kt2
t+1, with t ≥ 0, kt ≥ 0.

We use for this the dyadic expansion of n. If

n = a0 + a12 + a22
2 + · · ·+ as2

s, ai ∈ {0, 1}

we pick t to be the first nonzero ai: i.e. at = 1, while a0 = a1 = · · · at−1 = 0. Then

n = 2t + at+12
t+1 + · · ·+ as2

s = 2t + 2t+1(at+1 + · · ·+ as2
s−t−1) = 2t + 2t+1kt.

This expression is unique as

2t + kt2
t+1 = 2j + 2j+1kj, j 6= t

implies that either j > t or j < t. By symmetry we assume j > t, i.e., j ≥ t + 1.
Look at the remainder when we divide by 2t+1. The left-hand side gives 2t, while the
right-hand side gives 0.

We expand the left-side of (1) using the geometric series to get

∞∑
k1=0

z2k1+1 +
∞∑

k2=0

z4k2+2 + · · ·+
∞∑

km=0

z2m+1km+2m

+ · · ·

while the right-hand side is just
∑∞

n=1 zn. The lemma proves the identity, provided
that we have absolute convergence of the double series

∞∑
m=0

∞∑
km=0

z2m+1km+2m

,
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which would mean that we can rearrange the terms in whatever way we would like.
But the lemma shows that the series

∞∑
m=0

∞∑
km=0

|z2m+1km+2m|

is exactly the geometric series
∑
|z|n, |z| < 1, which converges.

For (2) we expand the left-hand side to get

z
∑

0

(−1)nzn + 2z2
∑

0

(−1)nz2n + · · ·+ 2kz2k
∑

0

(−1)nz2kn + · · ·

=
∑

1

(−1)m+1zm + 2
∑

1

(−1)m+1z2m + · · ·+ 2k
∑

1

(−1)m+1z2km + · · · .

Looking at the dyadic expansion of n we pick the first at = 1, such that a0 = a1 =
· · · = at−1 = 0. Then 2i|n for i ≤ t, while 2t+1 does not divide n and the same is
true for higher powers of 2. For i ≤ t− 1, n = 2i ∗ l with l even, so the coefficient it
picks from the i-series in the sum is 2i(−1)l+1 = −2i. On the other hand for i = t,
n = 2t ∗ l with l odd, so that it picks a coefficient 2t(−1)l+1 = 2t. For i > t it picks
nothing. So the coefficient of zn is

−1 + (−2) + (−22) + · · ·+ (−2t−1) + 2t = 1

by the identity 1 + 2 + · · ·+ 2k = 2k+1 − 1.

Example: n = 4+higher powers of 2. We write the first 4 series in the sum:

z − z2 + z3 − z4 + · · ·
2(z2 − z4 + z6 − z8 + · · ·)

4(z4 − z8 + z12 − z16 + · · ·)
8(z8 − z16 + z24 − z32 + · · ·)

The first three give to z4 coefficients −1, −2, 4, while the last and the subsequent
ones give 0.

We need to explain the interchange of summations. We look at the series with absolute
values on the terms. This is

∞∑
k=0

∞∑
m=1

2k|z|2km.

If this converges, then the original double sum converges absolutely and we can sum
in whatever order we like. In this series the coefficient of |z|n is equal to∑

2k|m

2k =
∑
k≤t

2k = 2t+1 − 1 < 2t+1 ≤ 2n, n = 2t + at+12
t+1 + · · · .

So we compare with the series
∑

2n|z|n, which has radius of convergence 1. This
suffices.
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8. Find the holomorphic function of z that vanishes at z = 0 and has real part

u(x, y) =
x(1 + x2 + y2)

1 + 2x2 − 2y2 + (x2 + y2)2
.

We substitute z + z̄ = 2x, x2 − y2 = <(z2) = (z2 + z̄2)/2 and zz̄ = x2 + y2 to get

u(x, y) =
1

2

(z + z̄)(1 + zz̄)

1 + z2 + z̄2 + z2z̄2
=

1

2

z + z̄ + z2z̄ + z̄2z

(1 + z2)(1 + z̄2)
=

1

2

(
z

1 + z2
+

z̄

1 + z̄2

)
.

We set f(z) = z/(1 + z2), which is holomorphic, to get

u(x, y) =
1

2
(f(z) + f̄(z))

i.e., u(x, y) is the real part of f(z), and f(z) = 0, this gives the answer to be f(z).

Second method: (Look at p. 27 in Ahlfors) Since f(z) is holomorphic, the conjugate
function g(x, y) = f(z) depends only on z̄, so we write g(z̄) = f(z) to get

u(x, y) =
1

2
(f(z) + g(z̄)) =

1

2
(f(x + iy) + g(x− iy)).

This is true for x and y real. Formally we can plug x = z and y = z/(2i), so that

u(z/2, z/(2i)) =
1

2
(f(z) + g(0)).

This determines f(z) up to a constant. If u(0, 0) = 0 and we ask for f(0) = 0, then
g(0) = 0.

In our case

f(z) = 2u(z/2, z/(2i)) = 2
(z/2)(1 + (z2/4) + (−z2/4))

1 + 2(z2/4 + z2/4) + (z2/4− z2/4)2
=

z

1 + z2
.

9. (i) Show that the Laplace operator can be calculated as

∆ = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
.

(ii) Show that for any analytic function f(z) we have

∆|f(z)|2 = 4|f ′(z)|2, and ∆ log(1 + |f(z)|2) =
4|f ′(z)|2

(1 + |f(z)|2)2
.

(i) We have for a function f with continuous second partial derivatives

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
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which gives

4
∂2f

∂z∂z̄
=

(
∂

∂x
− i

∂f

∂y

)
(fx + ify) =

(
∂

∂x
− i

∂f

∂y

)
fx + i

(
∂

∂x
− i

∂f

∂y

)
fy

= fxx − ifyx + i(fxy − ifyy) = fxx − ifyx + ifxy + fyy = fxx + fyy = ∆f,

since the mixed partial fxy, fyx are equal for functions with continuous second partial
derivatives. Reversing the order of the calculation gives 4∂z̄∂zf = ∆f.

(ii) For an analytic function ∂zf(z) = f ′(z), while ∂z̄f(z) = f ′(z), since f does not
depend on z̄, so the result from applying ∂z̄ on its conjugate can be calculated from
f ′(z): e.g. f(z) = z2, f(z) = z̄2,∂z̄f(z) = 2z̄ = 2z = ∂zf(z). This gives:

∆|f(z)|2 = 4∂z∂z̄(f(z)f(z)) = 4∂z(f(z)f ′(z)) = 4f ′(z)∂zf(z) = 4f ′(z)f ′(z) = 4|f ′(z)|2,

since f(z) is a constant when we differentiate in z̄, and f ′(z) is a constant when we
differentiate in z, as it does not depend on z.

For the second part we will use the chain rule as expressed in z and z̄ coordinates
(exercise 13 in homework 1). We use g(w) = log(1 + w), which is holomorphic in w
for <w > −1 (there is no difficulty in defining the argument of 1 + w in this domain.
For f we have |f(z)|2 ≥ 0. We have

gw̄ = 0, and gw =
1

1 + w
.

∂z log(1 + |f(z)|2) =
1

1 + |f(z)|2
(1 + |f(z)|2)z =

f(z)f ′(z)

1 + |f(z)|2
.

We now apply the quotient rule

4∂z̄∂z log(1 + |f(z)|2) = 4∂z̄
f(z)f ′(z)

1 + |f(z)|2
= 4∂z̄

f(z)f ′(z)

1 + f(z)f(z)

= 4
∂z̄(f(z)f ′(z))(1 + |f(z)|2)− f(z)f ′(z)∂z̄(1 + f(z)f(z))

(1 + |f(z)|2)2

= 4
f ′(z)f ′(z)(1 + |f(z)|2)− f(z)f ′(z)f ′(z)f(z)

(1 + |f(z)|2)2
=

4f ′(z)f ′(z)

(1 + |f(z)|2)2
.

10. Let f(z) be holomorphic and one-to-one on a set containing the unit disc D. Let
D′ = f(D). Then the area A(D′) of D′ is given by

A(D′) = π

∞∑
n=1

n|an|2,

where f(z) =
∑∞

n=0 anz
n. (Qualifying exam September 2006)
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The Jacobian of the mapping w = f(z) as a mapping from D → C is |f ′(z)|2. So by
the change of variables formula

A(D′) =

∫ ∫
D′

1 du dv =

∫ ∫
D
|f ′(z)|2 dx dy.

If f(z) =
∑∞

n=0 anz
n, then

f ′(z) =
∞∑

n=1

nanz
n−1 =⇒ |f ′(z)|2 =

∞∑
n,m=1

nmanāmzn−1z̄m−1.

We switch to polar coordinates z = reiθ to get (dxdy = rdrdθ)

A(D′) =

∫ 1

0

∫ 2π

0

∞∑
n,m=1

nmanāmrn+m−2eiθ(n−m)r dr dθ

If n−m 6= 0, the integral
∫ 2π

0
eiθ(n−m) dθ = 0, while for n = m we get 2π. This gives

A(D′) =

∫ 1

0

∞∑
n=1

n2|an|2r2n−12π = 2π
∞∑

n=1

n2|an|2
[
r2n

2n

]1

0

= π
∞∑

n=1

|an|2n.

11. (a) Compute the integral ∫
|z|=r

x dz

for the positive sense of the circle, in two ways: first by using a parametrization, and
second, by observing that x = (1/2)(z + z̄) = (1/2)(z + r2/z) on the circle.

First Method: Parametrization of the circle as z = reiθ, x = r cos θ, dz = rieiθ. We
get∫
|z|=r

x dz =

∫ 2π

0

r cos θrieiθ dθ =

∫ 2π

0

r2i cos θ(cos θ+i sin θ)dθ =

∫ 2π

0

r2i(cos2 θ+i cos θ sin θ)dθ

= r2i

∫ 2π

0

1 + cos(2θ)

2
+

i

2
sin(2θ)dθ = r2i

[
θ

2
+

sin 2θ

4
+
−i cos 2θ

4

]2π

0

= r2iπ.

Second method: On the circle |z| = r, we have zz̄ = r2 =⇒ z̄ = r2/z, so that
x = (z + z̄)/2 = (1/2)(z + r2/z). We plug into the integral to get∫

|z|=r

x dz =

∫
|z|=r

z

2
+

r2

2z
dz =

r2

2
2πi = r2iπ,

since we know that
∫
|z|=r

zn dz = 0 for n 6= −1 and for n = −1 we get 2πi.
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(b) Compute the integral ∫
|z|=2

dz

z2 − 1

for the positive sense of the circle. Hint: Find a primitive function of the integrand.

We use partial fractions to find that

1

z2 − 1
=

1

2

(
1

z − 1
− 1

z + 1

)
.

We would like to integrate to get (log(z − 1) − log(z + 1))/2. However, this cannot
make sense in the region we are working: The log(z−1) requires a cut from, say −∞
to 1 and log(z + 1) requires a cut from −∞ to −1. These cuts meet our domain,
since the circle |z| = 2 contains both points −1 and 1. Make sense can be thought of
being single-valued holomorphic functions that give us the primitive of the terms we
consider. However, if we write the expected answer as

F (z) =
1

2
log

(
z − 1

z + 1

)
things are much better: First of all, (z − 1)/(z + 1) is real only for real z. This is
seen as follows:

z − 1

z + 1
∈ R ⇔ z − 1

z + 1
=

z̄ − 1

z̄ + 1
⇔ zz̄+z−z̄−1 = zz̄+z̄−z−1 ⇔ 2(z−z̄) = 0 ⇔ =(z) = 0.

Moreover, it is a negative number exactly between −1 and 1. So on the complement
of [−1, 1] the function takes nonnegative values. If we define the principal branch of
the logarithm to be

log w = log |w|+ i arg w, −π < arg w < π,

then F (z) as the composition of holomorphic maps is holomorphic and is the primitive
of 1/(z2−1) in a region that contains our contour. Consequently dz/(z2−1) is exact
and the integral is 0.

Remark: One can solve this problem with the residue theorem, which will be seen
later in the course.
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