Math 70300
 Homework 2

Due: September 28, 2006

1. Suppose that f is holomorphic in a region Ω, i.e. an open connected set. Prove that in any of the following cases
(a) $\Re(f)$ is constant; (b) $\Im(f)$ is constant; (c) $|f|$ is constant; (d) $\arg (f)$ is constant; we can conclude that f is a constant.
2. Show that if $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

then

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L
$$

This is the ratio test and it can be used for the calculation of the radius of convergence of a power series.
Hint: Show that

$$
\lim \inf \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \leq \liminf \left|a_{n}\right|^{1 / n} \leq \lim \sup \left|a_{n}\right|^{1 / n} \leq \lim \sup \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

3. (a) Find the radius of convergence of the hypergeometric series

$$
F(\alpha, \beta, \gamma ; z)=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \cdots(\alpha+n-1) \beta(\beta+1) \cdots(\beta+n-1)}{n!\gamma(\gamma+1) \cdots(\gamma+n-1)} z^{n}
$$

Here $\alpha, \beta \in \mathbb{C}$ and $\gamma \neq 0,-1,-2, \ldots$
(b) Find the radius of convergence of the Bessel function of order r :

$$
J_{r}(z)=\left(\frac{z}{2}\right)^{r} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+r)!}\left(\frac{z}{2}\right)^{2 n}, \quad r \in \mathbb{N}
$$

4. Prove that, although all the following power series have $R=1$,
(a) $\sum n z^{n}$ does not converge on any point of the unit circle,
(b) $\sum z^{n} / n^{2}$ converges at every point of the unit circle,
(c) $\sum z^{n} / n$ converges at every point of the unit circle except $z=1$. (Hint: Use summation by parts.)
5. The Fibonacci numbers are defined by $c_{0}=1, c_{1}=1$,

$$
c_{n}=c_{n-1}+c_{n-2}, \quad n=2,3, \ldots
$$

Define their generating function as

$$
F(z)=\sum_{n=0}^{\infty} c_{n} z^{n} .
$$

(a) Find a quadratic polynomial $A z^{2}+B z+C$ such that

$$
\left(A z^{2}+B z+C\right) F(z)=1
$$

(b) Use partial fractions to determine the following closed expression for c_{n}.

$$
c_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}
$$

(Qualifying exam Sept. 2006)
6. Expand $(1-z)^{-m}$ in powers of z, for $m \in \mathbb{N}$. Let

$$
(1-z)^{-m}=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

then

$$
a_{n} \sim \frac{1}{(m-1)!} n^{m-1}, \quad n \rightarrow \infty
$$

where \sim means that the quotient of the expressions to the left and the right of it tends to 1 .
7. Show that for $|z|<1$ we have

$$
\frac{z}{1-z^{2}}+\frac{z^{2}}{1-z^{4}}+\cdots+\frac{z^{2^{n}}}{1-z^{2^{n+1}}}+\cdots=\frac{z}{1-z}
$$

and

$$
\frac{z}{1+z}+\frac{2 z^{2}}{1+z^{2}}+\cdots+\frac{2^{k} z^{2^{k}}}{1+z^{2^{k}}}+\cdots=\frac{z}{1-z} .
$$

Justify any change in the order of summation.
Hint: Use the dyadic expansion of an integer and the sum $1+2+2^{2}+\cdots+2^{k}=2^{k+1}-1$.
8. Find the holomorphic function of z that vanishes at $z=0$ and has real part

$$
u(x, y)=\frac{x\left(1+x^{2}+y^{2}\right)}{1+2 x^{2}-2 y^{2}+\left(x^{2}+y^{2}\right)^{2}}
$$

9. (i) Show that the Laplace operator can be calculated as

$$
\Delta=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} .
$$

(ii) Show that for any analytic function $f(z)$ we have

$$
\Delta|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}, \quad \text { and } \quad \Delta \log \left(1+|f(z)|^{2}\right)=\frac{4\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}
$$

10. Let $f(z)$ be holomorphic and one-to-one on a set containing the unit disc \mathbb{D}. Let $D^{\prime}=f(\mathbb{D})$. Then the area $A\left(D^{\prime}\right)$ of D^{\prime} is given by

$$
A\left(D^{\prime}\right)=\pi \sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}
$$

where $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.
(Qualifying exam September 2006)
11. (a) Compute the integral

$$
\int_{|z|=r} x d z
$$

for the positive sense of the circle, in two ways: first by using a parametrization, and second, by observing that $x=(1 / 2)(z+\bar{z})=(1 / 2)\left(z+r^{2} / z\right)$ on the circle.
(b) Compute the integral

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

for the positive sense of the circle. Hint: Find a primitive function of the integrand.

