Math 70300

Homework 1

September 12, 2006

The homework consists mostly of a selection of problems from the suggested books.

1. (a) Find the value of (1 +4)" 4+ (1 —¢)" for every n € N.

We will use the polar form of 1+ i = v/2(cos(n/4) + isin(r/4)) and De Moivre’s
formula. Since 1 +i=1—14, (144" =(144)" = (1 — )" we have

(1+3)" 4 (1 — )" = 2R(1 + i)™ = 2R2"?(cos(nm/4) + i sin(nw/4))

= 2. 22 cos(nm/4) = 2V*H cos(nm /4).

—1+4V3 3_1 +1+iv3 6_1
2 - 2 -

(b) Show that

Since z* — 1 = (z — 1)(2* + z + 1) it suffices to prove that

—1+iV3
P12 = T

satisfies pf , + p1,2 + 1 = 0. We have

2
(—1iz’\/§) 1-3F2v3  -1FiV3

2 4 2

From this pig + p12+ 1 = 0 follows easily.

+1+iV3
FOI“ _—

Since p}, =1, pf , = 1. For the other choices

1+iV/3  —1-4V3

2 2 2

we argue as follows: if the signs are opposite we are considering £p; o.

T = 9 = —T1

which are called the sixth primitive roots of unity, we argue as follows: 2% — 1 =
(23 — 1)(x + 1)(2? — x + 1) implies that we should prove that 72 — 7, + 1 = 0. We
calculate

s 1-3+i2V3 —1+iV3

n= 4 T
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from which the result follows. This way we avoid calculating sixth powers.

(c) Find the fourth roots of —1. We write —1 = 1(cos7 + isinm) (polar form) and
apply De Moivre’s formulas. The fourth roots are:

2 2
e — \4/I<COS (%ﬂ’f) 4isin (%ﬁk)) C k=0,1,23.

This gives

ro = cos(m/4)+isin(mw/4) = §+i§, r1 = cos(3m/4)+isin(3w/4) = —?+i\/7§

2 2 2 2
ro = cos(5m/4)+isin(br/4) = —%—ig, r3 = cos(Tm/4)+isin(7r/4) = g—z\/?_
. Find the conditions under which the equation az+bz+c = 0 has exactly one solution
and compute the solution.

We write the equation and its conjugate as a system

az+bz+c = 0
bz+az+¢ = 0.

We think of the variables z and z as independent variables. This system has exactly
one solution when its determinant is nonzero, i.e.,

Qo

— Jaf? — |b #0.

S Q

In this case the solution is given by Cramer’s rule as

—c b
—C a cb — ca
z = = )
lal> —[b]?  [af* — [b]?

We can also solve for z and we see that indeed it is conjugate of z:

a —cC

b —c

B be — ac
zZ= = .
lal> —[b]*  af* — [b]?

Alternatively we set the real and imaginary parts of the equation to be 0. We set
a =) +iag, b= 01+ iy, c =7 + 172, 2 =T + 1y to get

a1z — agy + fra + Poy + 1 =0,
o + Y + fox — By + 2 = 0,
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which gives the system

(a1 +p)z+(—az+B)y+mn = 0
(e + Bz + (=B +a)y+y = 0.

The determinant is

ap+ 51 —ag+ B 2 2 2 2 2 2
=o] — 0] — G5 +a; = |a]” = |b]".
O et R g %= o~ o

The advantage of the complex method is obvious.

. Describe geometrically the sets of points z in the complex plane defined by the fol-
lowing relations.

(a) |z — 21| = |z — 22|, where 2, 29 are fixed points in C.

This is the midpoint-perpendicular to the segment form z; to zs.

In you do not like this characterization of the points equidistant from z; and z,, notice

first that the midpoint (z; + 22)/2 belongs to the locus we are investigating:

21 + 22
2

22— 21
2

21+ 22
2

— 21 — 29| .

Moreover, setting z; = ay + iqa, 29 = [B1 + 132 we get for z =z + 1y
p—alf =z nf e (@-a)+(y-a) = (- 5)+ (Y- 5)
&t + a5 — 2017 — 200y = B7 + B3 — 2617 — 20qy
< (b1 — o)z + (B2 — az)y = %(ﬁ% + 05 —af —a3).
This is the equation of a line with slope

_51 —
B2 — oy’
while the vector z; — z9 = (ay — 1, 0 — (2) has slope (e — (2)/(aq — (1). Their
product is —1. So they represent perpendicular lines.
(b) 1/z = Zz.

A\ =

l)z=z2e2zz2=12P=1&|z|=1
This is a circle centered at the origin with radius 1.
(¢) 2] = R(2) + 1.
We set z = x + 1y to get

Z| =R +1e 2P =@+ e?+y=2"+2r+1 ey =22+1 =2(x+1/2).

This is the equation of a parabola with axis the real axis and vertex at (—1/2,0).
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4. Prove the Lagrange identity
n 2 n n
Zaibi = Z|a1]22]bz\2 — Z ]aibj —ajbi|2.
i=1 i=1 i=1 1<i<j<n
We need to show the equivalent formula

n 2 n n
Zaibi + Z ’&il;j —ajlgilg = Z\afZ]bz\z
i=1 =1 i=1

1<i<j<n
We expand out using |z|? = 2% to get

(i aibi> (i ajbj> + ) (aiby — azb)(@ib; — ajby)

1<i<j<n

= Z aibidjl;j -+ Z(!ai\2|bj]2 + \aj|2]bi\2 — CLiC_ijZ'Z_)j — ajdibjgi)

4,j=1 1<j

=Y aibiagh; + Y |aP bl + Y (ailP b + lagP0il*) = D (@iabib, + a;aib,by).
i#j i=j=1 i<j i<j

The first and the last sum are equal and, therefore, cancel. This can be seen as follows:

In the last sum we have the condition ¢ < j while in the first only i # j. A pair (4, j)

of unequal integers has either ¢ < j or j < i. In the second case aibidjl_)j = aj/bj/di/l_ai/

with j = i’ < j/ =4, so we get the term a;b;a;b; with i < j. The two summands in

the middle give exactly
D lal* Y 1bl
i=1 j=1

by the distributive law and the same thinking about i # j vs i < j and j < 1.

5. Prove that
a—>b

<
1—ab

if la| <1 and |b] < 1.
We have

a—2b
1—ab

<1& |a—b| < |[1-ab| & |a—b* < |1—ab|* & |al*+|b]*—2R(ab) < 1+]|ab|*—2R(ab)

(here we notice that R(ab) = R(ab) as they are conjugate numbers)
& lal” +[b* <1+ al*b]* < 0 < 1+ |a*b]* —Jaf* — [b* = (1 — |a*)(1 — [b]).

The assumption |a| < 1 and [b| < 1 gives the result.
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6. Prove that it is impossible to define a total ordering on C. In other words, one cannot
find a relation > between complex numbers so that:

(i) For any two complex numbers z and w one and only one of the following is true:
Z>W,w>2Z0rz=uw.

(ii) For all z1, 25, 23 € C the relation z; > z5 implies 21 + 23 > 25 + 23.

(iii) Moreover, for all zy, 25, 23 € C with z3 > 0
21 > 2o = 2123 > 2923.

Hint: Is i > 07
Since i # 0, we have either i > 0 or ¢ < 0.
Step 1: If i > 0, then by (iii) we get

?>i-0=0= —1>0.
Since i > 0 we also get by (iii) that —i > 0. We use (ii) to get

0=i+(—i)> 0+ (—i)=—i>0.

The transitive property gives a contradiction to (i).

Step 2: Assume i < 0. Then —i > 0, since otherwise —i < 0 and (ii) implies
0 =i+ (—i) < 0 contradicting (i). As in Step 1, —i > 0 implies —1 > 0 and then
1> 0, which is a contradiction.

7. Prove that the points 21, 2o, 23 are vertices of an equilateral triangle if z; +2z04+23 =0
and |z1] = |z2| = |23].

Rotating the complex numbers z1, 29, 23 by the same angle keeps their lengths equal
and keeps the relation z; + 29 + 23 = 0 valid. So we can assume that z; = r is real.
Then r = |23] = |23]. Setting zo = r(cos@ + isinf), z3 = r(cos ¢ + isin¢) in polar
coordinates we get

21+ 22+ 23 =0 = r(1 + cosf + cos ¢ + i(sin 6 4 sin ¢)) = 0.
From the imaginary parts we get
sinf = —sin ¢ = sin® § = sin? p = cos? § = cos’ ¢,

by the basic trigonometric identity. This implies that the cosines are either equal or
opposite. They cannot be opposite, since the real part of the equation gives

14 cosf + cos¢ = 0.

So
1+2cos) =0= cos =—1/2 =0 =2n/3,4n/3.
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The equation sin = — sin ¢ now gives respectively ¢ = 47/3,27/3 (notice that z3
should be in the left-hand plane to have the same cos as z3). The points are vertices
of an equilateral triangle. If you want, you can check that

|1 — (cos2m/3 4+ isin27/3)| = |1 — (cosdn/3 + isindn/3)|
= |cos2m/3 +isin 27w /3 — (cosdm /3 + isindn/3)|.
. Verify the Cauchy-Riemann equations for z? and z3. We have
22 = (2% —y®) +i2ey, 2° =2 —3xy? +i(32y — °)
The first gives for f(z2) = 22, u = 2% — y*, v = 22y and

u_ 5 v Ou_ . _Ov
or :B_@y’ dy Y= o

For the function f(z) = 2% we have u = 23 — 3zy? and v = 322y — > and

du o,  Ov  Ou v
%—3:r —3y—ay, 3y Ty = E

. Express cos(3¢) and cos(4¢) in terms of cos(¢). Express sin(3¢) in terms of sin(¢).

By de Moivre’s formula
(cos ¢ + isin )" = cos(neg) + isin(ne)
for n = 3,4 we get using the previous exercise:
cos(3¢) = R((cos ¢ +isin ¢)*) = (cos ¢)* — 3 cos @sin® ¢ = cos® ¢ — 3 cos ¢(1 — cos® @)

= 4cos® ¢ — 3cos ¢,
sin(3¢) = ¥((cos ¢ + isin ¢)*) = 3 cos® ¢sin ¢ — sin® ¢ = 3(1 — sin? ¢) sin ¢ — sin® ¢
= 3sin ¢ — 4sin® ¢.
For cos(4¢) we have

cos(4¢) = R((cos p+isin ¢)*) = N(cos? ¢ —sin’ ¢ 4142 sin ¢ cos ¢)? = (cos? ¢ —sin? ¢)*

—(2sin ¢ cos ¢)* = (2 cos® p—1)*—4sin® ¢ cos? ¢ = 4 cos® p—4 cos? p+1—4(1—cos? ¢) cos® ¢
= 8cos* ¢ — 8cos® ¢+ 1.



10. Simplify 1 4 cos(¢) + cos(2¢) + - - - + cos(n¢) and sin(¢) + sin(2¢) + - - - + sin(ne).
Set z = cos ¢ + isin ¢, so that 2/ = cos(j¢) + isin(j¢). Then
(1 + cos(¢) + cos(2¢) + - - - + cos(ng)) + i(sin(¢) + sin(2¢) + - - - + sin(ng))

1_zn+1
11—z

= (cos(jo) +isin(jp)) =20+ 2" - 42" =
=0
We substitute 2" = cos(n + 1)¢ + isin(n + 1)¢ is the last and multiply with 1 — z
to get
(=21 -2  (1—cos(n+1)¢ —isin(n+1)¢)(1 — cos ¢ + isin p)

|1 — 2|2 (1 — cos ¢)? +sin? ¢

We take real and imaginary parts to get

1+cos(¢) +cos(2¢) + - - - +cos(ng) = (1 —cos(n+1)p)(1 — cos¢p) +sin(n + 1)psin ¢

2 —2cos ¢
_ l—cos¢ Lz cos((n + 1)¢)(1 — cos @) + sin((n + 1)¢psin ¢)
2 —2cos ¢ 2 —2cos ¢
1 LT cos((n + 1)p)2sin? ¢/2 + sin((n + 1)¢)2sin(¢/2) cos(¢/2)
4sin? ¢/2
1 Lz cos((n+1)¢)sin¢/2 + sin((n + 1)¢) cos ¢/2

2 2sin¢/2

1 sin((n+1,—¢/2) 1 sin((n+1/2)9)

2 sin ¢/2 2 2sin ¢/2

using the identities sin®(x/2) = (1 — cosz)/2, sinz = 2sin(x/2) cos(x/2) and the
addition theorem for sin. The calculation can be simplified with the use of e%.

J(1 — 2+ (1 — %)

sin ¢ + sin(2¢) + - - - + sin(ng) =

1 —z?
_ (1 —cos((n+1)¢))sin¢ —sin((n + 1)¢)(1 — cos @)
2 —2cos¢
_ sing — cos((n + 1)¢)sin g — sin((n + 1)¢)(1 — cos ¢)
4sin® ¢/2
_ 2sin(¢/2) cos(¢p/2) — cos((n + 1)¢)2sin(¢/2) cos(¢/2) — sin((n + 1)¢)2sin? ¢/2
4sin? ¢/2
_ lcot ¢ cos((n+1)p)cosd/2+sin((n+1)¢)sing/2 _ lcot ¢ cos(n+1/2)¢
2“9 2 5in 6/2 22T T 2sing/2
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11.

12.

Prove that the diagonals of a parallelogram bisect each other and that the diagonals
of a rhombus are orthogonal.

If the two sides of the parallelogram are represented by the geometric image of the
complex numbers z; and 25, then the diagonal they enclose is represented by z; + 25 .
The midpoint of it is (21 + 22)/2. The second diagonal corresponds to the difference
21 — z2. The midpoint of it corresponds to (z; — 29)/2. However, the second diagonal
is not a vector starting at the origin but at z5. So the midpoint of the second diagonal
is given by the geometric image of the complex number (21 — 23)/2+ 25 = (21 + 22) /2.
The two answers are equal, so the two diagonals meet at their midpoint.

We need to show that if |21| = |25| then the vectors represented by z; + 22 and z; — 29
are perpendicular, or, equivalently, that the arguments of these two complex numbers
differ by 7/2. The difference of the arguments shows up in the quotient, so we need
to prove that the complex numbers z; + 25 and z; — 25 representing the two diagonals
have purely imaginary quotient. But this is true iff

zZ1+ z 21+ 2 o _ _ _
1 A2 (Z1+ %) (21—2) = —(214+2)(21—8) & |2 —| w21+ 8n
Z1 — 29 Z1 — 29

= —(lz1f* = 2]’ = 2122 + 2221) & |21]* = |22 = —[21]* + |22 & |21]* = |22,

Prove rigorously that the functions f(z) and f(2) are simultaneously holomorphic.

If f(z) = u(z,y)+iv(z,y), then f(2) = u(x, —y)—iv(xz, —y). We calculate the partial
derivatives with respect to x and y for f(Z) using the chain rule from multivariable
calculus:

ou(z,—y) Ou Or  Ou J(—y) Ou

o7 = %(% —y)% + a—y(% ) or %(% —y).
ou(x, —y)  Ou or OJu d(—y)  Ou
oy g(% —y)a—y + a—y(% ~y) oy —a—y(flf» —y).
A 2 e, g+ E - B - L)
(—v(z,—y)) _ I(=v) dr  (—v) (—y)  9(~v) v
8y - ox (J}, _y)a_y+ ay (:E7 _y) ay - ay (‘Ta _y) - O_y@’ _y)'
This gives:
8u(x,y) _ c%(x,y) PN aUJ(I? _y) _ a(_v<x7 _y>>
Ox oy Oz dy
and

au(x7y> _av($7y) AN au(x7 _y) . 8(—1}(3:, _Z/>>

oy ox oy ox

This proves the equivalence of the Cauchy-Riemann equations.



13. Suppose that U and V' are open sets in the complex plane. Prove that if f : U — V
and g : V' — C are two functions that are differentiable in the real sense (in x and y)
and h = g o f, then the complex version of the chain rule is

oh _og0f 090 oh_ogor | 0g0f
0z 020z 020z 0z 020z 020z

Set f(z,y) = u(z,y) +w(r,y), ie, (v,y) — (u(z,y),v(x,y)) — h(u,v). By the
standard chain rule for functions of two variables we have
oh dgOu  dg v
- R R 1
ox Ox Ox * Oy Oz (1)
oh _ dgou_ dgou
oy Oxdy Oydy

Moreover,
of 1 af_,af 1 o ,
8z 5(% Za_y)_ﬂ%““w i(uy +1vy)) @)
of _ 1(of _of = L, — v, — iy — iv,)
5 — 3\ 32 Zay —2um Wy — 1(Uy — 10y)).

By the definition of 9/0z and 0/0z we have
99 _ 1 (99 .09
0z  2\0x Oy

dg 1 /09 .0Og
= = sla- Tt )-
0z 2\0x 0Oy
We add and subtract the last two equations to get
2 2,3 %_1(%_ %)

or 92 9z oy i

0z 0z

We substitute the last equations to (1), multiply the second equation in (1) by i,
subtract them to get

oh 89(18u 1,8u) 89(181} 101})

0:  or\20x 2'0y) Toy\20x 2'0y 3)

2 0x 2Z8y

1 .
= (gz + gi>§<uz - Zuy) +
1 _ . 1 . .
= gz§(ux — Uy + 10, + vy) + gz§(uz — WUy — 10y — Vy)

= ngz +92fz

1 1 .
(95 = 9:)5(ve — i)

?



14.

using equations (2). Similarly we get
Oh _ 0y (10w 10w\ 0y (10w 100
BB dr \20z ' 2'0y) oy \20z ' 2'dy

1 .
= (92 +9z) 5 (U +iuy) +

1 1 .
: (95 = 9:)5(va + ;)

7
1 . ‘ 1 . .

= gzﬁ(ux + duy + v, — vy) + g;i(ux + duy, — 1, + vy)

= g.f:+ 92]2,

since

of 1 (af .8f> = Ly 4 v, + iy + i)

oz 2\ar Yay) " 2
of  1(of of\ 1,
0z 2<8x+28y)_2(ux g + iy = ivy)).

Show that in polar coordinates the Cauchy-Riemann equations take the form
du 10v  10u  0Ov
or  rod rod  Or

Use these equations to show that the logarithm function defined by

logz =logr+i0, z=r(cosf+isinf), —rmT<O<m

is holomorphic in the region » > 0 and —7 < 6 < 7.

In polar coordinates x = rcosf and y = rsinf. By the chain rule for functions in
two variables we have

ou ou ou .

E = a—xCOSG+8—ySIHQ (5)
ou ou _ ou

% - 8_x<_r) sinf + a—yrcos@

@ = @ cosf + @ sin 0

or Oz dy

ov ov ) ov

% = £(—7’) Slne‘l‘a_yTCOSQ.

Assume the Cauchy-Riemann equations

ou Ov ou ov

or oy oy or R
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15.

Then we get

ou Ov ov 10v

— = — ) — —sinf = ——

or Oy R rdf’ 0
ou Ov . ov ov
5 —ay(—r sinf) — —(%r cosf = —’I“—ar.

Conversely assume the Cauchy-Riemann equations in polar form (7). By (5) we get

ou

gz 0t g—ZSine = —%sin@ + Z—ZCOSG
au . 8u 81} 81} ‘
%(—T) sin 6 + a—yrcose = —%r cosf + a—y(—r) sin @

This is a system of linear equations in the unknown functions du/dz, du/0y. Cramer’s
rule for solving the system gives

— g sin 0 + v, cos sin @
ou —1rvg cost) —rv,sinf rcosf rv,  Ov

or cos sin 6 ro 8_y
—rsinf rcosf
cos 0 — Uy sin 6 + v, cos 0
Ou | —rsinf —ruvycost —ru,sinb —rv,  Ov
oy cosf  sind ro o Ox

—rsinf rcosé
So we get back the Cauchy-Riemann equations.

For the logarithm functions we have v = logr and v = 6. This gives

w1 100 o
rod’ 00 or’

o r
Consider the function defined by

flx+iy) =+/|z|ly|, =yeR

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holo-
morphic at 0.

We have f(z +1i0) = /|z][0] =0, f(0+dy) = \/|0|]y] =0, f(0+i0) = 0. Also, if
f=u+iv, u= f and v = 0. These give at the origin

%: imf(a:+20)—f(0+10) :hmO—O o,

or =—0 T =0
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du  lim f(0+iy) — f(0+10) :hmO—O _o
ay y—0 xX y—0 Yy

Obviously 0v/0x = 0 and dv/dy = 0. So the Cauchy-Riemann equations are satisfied.
However, the function is not holomophic at 0. If it were, then f’(0) = 0. We set
r=y>0andlet z=x+ix — 0.

I :
ey = fO+0) VRl VEP e
z

=01 +ix =0 +ix 1+

z—0 z z—0
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