Math 70300
 Homework 1

September 12, 2006
The homework consists mostly of a selection of problems from the suggested books.

1. (a) Find the value of $(1+i)^{n}+(1-i)^{n}$ for every $n \in \mathbb{N}$.

We will use the polar form of $1+i=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ and De Moivre's formula. Since $\overline{1+i}=1-i, \overline{(1+i)^{n}}=(\overline{1+i})^{n}=(1-i)^{n}$ we have

$$
\begin{gathered}
(1+i)^{n}+(1-i)^{n}=2 \Re(1+i)^{n}=2 \Re 2^{n / 2}(\cos (n \pi / 4)+i \sin (n \pi / 4)) \\
=2 \cdot 2^{n / 2} \cos (n \pi / 4)=2^{n / 2+1} \cos (n \pi / 4)
\end{gathered}
$$

(b) Show that

$$
\left(\frac{-1 \pm i \sqrt{3}}{2}\right)^{3}=1, \quad\left(\frac{ \pm 1 \pm i \sqrt{3}}{2}\right)^{6}=1
$$

Since $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ it suffices to prove that

$$
\rho_{1,2}=\frac{-1 \pm i \sqrt{3}}{2}
$$

satisfies $\rho_{1,2}^{2}+\rho_{1,2}+1=0$. We have

$$
\left(\frac{-1 \pm i \sqrt{3}}{2}\right)^{2}=\frac{1-3 \mp i 2 \sqrt{3}}{4}=\frac{-1 \mp i \sqrt{3}}{2}
$$

From this $\rho_{1,2}^{2}+\rho_{1,2}+1=0$ follows easily.
For $\frac{ \pm 1 \pm i \sqrt{3}}{2}$ we argue as follows: if the signs are opposite we are considering $\pm \rho_{1,2}$. Since $\rho_{1,2}^{3}=1, \rho_{1,2}^{6}=1$. For the other choices

$$
r_{1}=\frac{1+i \sqrt{3}}{2}, \quad r_{2}=\frac{-1-i \sqrt{3}}{2}, \quad r_{2}=-r_{1}
$$

which are called the sixth primitive roots of unity, we argue as follows: $x^{6}-1=$ $\left(x^{3}-1\right)(x+1)\left(x^{2}-x+1\right)$ implies that we should prove that $r_{1}^{2}-r_{1}+1=0$. We calculate

$$
r_{1}^{2}=\frac{1-3+i 2 \sqrt{3}}{4}=\frac{-1+i \sqrt{3}}{2}
$$

from which the result follows. This way we avoid calculating sixth powers.
(c) Find the fourth roots of -1 . We write $-1=1(\cos \pi+i \sin \pi)$ (polar form) and apply De Moivre's formulas. The fourth roots are:

$$
r_{k}=\sqrt[4]{1}\left(\cos \left(\frac{\pi+2 \pi k}{4}\right)+i \sin \left(\frac{\pi+2 \pi k}{4}\right)\right), \quad k=0,1,2,3
$$

This gives

$$
\begin{aligned}
& r_{0}=\cos (\pi / 4)+i \sin (\pi / 4)=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}, \quad r_{1}=\cos (3 \pi / 4)+i \sin (3 \pi / 4)=-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2} \\
& r_{2}=\cos (5 \pi / 4)+i \sin (5 \pi / 4)=-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}, \quad r_{3}=\cos (7 \pi / 4)+i \sin (7 \pi / 4)=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2} .
\end{aligned}
$$

2. Find the conditions under which the equation $a z+b \bar{z}+c=0$ has exactly one solution and compute the solution.

We write the equation and its conjugate as a system

$$
\begin{aligned}
& a z+b \bar{z}+c=0 \\
& \bar{b} z+\bar{a} \bar{z}+\bar{c}=0 .
\end{aligned}
$$

We think of the variables z and \bar{z} as independent variables. This system has exactly one solution when its determinant is nonzero, i.e.,

$$
\left|\begin{array}{cc}
a & b \\
\bar{b} & \bar{a}
\end{array}\right|=|a|^{2}-|b|^{2} \neq 0 .
$$

In this case the solution is given by Cramer's rule as

$$
z=\frac{\left|\begin{array}{cc}
-c & b \\
-\bar{c} & \bar{a}
\end{array}\right|}{|a|^{2}-|b|^{2}}=\frac{\bar{c} b-c \bar{a}}{|a|^{2}-|b|^{2}} .
$$

We can also solve for \bar{z} and we see that indeed it is conjugate of z :

$$
\bar{z}=\frac{\left|\begin{array}{cc}
a & -c \\
\bar{b} & -\bar{c}
\end{array}\right|}{|a|^{2}-|b|^{2}}=\frac{\bar{b} c-a \bar{c}}{|a|^{2}-|b|^{2}} .
$$

Alternatively we set the real and imaginary parts of the equation to be 0 . We set $a=\alpha_{1}+i \alpha_{2}, b=\beta_{1}+i \beta_{2}, c=\gamma_{1}+i \gamma_{2}, z=x+i y$ to get

$$
\begin{aligned}
& \alpha_{1} x-\alpha_{2} y+\beta_{1} x+\beta_{2} y+\gamma_{1}=0, \\
& \alpha_{2} x+\alpha_{1} y+\beta_{2} x-\beta_{1} y+\gamma_{2}=0,
\end{aligned}
$$

which gives the system

$$
\begin{aligned}
& \left(\alpha_{1}+\beta_{1}\right) x+\left(-\alpha_{2}+\beta_{2}\right) y+\gamma_{1}=0 \\
& \left(\alpha_{2}+\beta_{2}\right) x+\left(-\beta_{1}+\alpha_{1}\right) y+\gamma_{2}=0
\end{aligned}
$$

The determinant is

$$
\left|\begin{array}{ll}
\alpha_{1}+\beta_{1} & -\alpha_{2}+\beta_{2} \\
\alpha_{2}+\beta_{2} & -\beta_{1}+\alpha_{1}
\end{array}\right|=\alpha_{1}^{2}-\beta_{1}^{2}-\beta_{2}^{2}+\alpha_{2}^{2}=|a|^{2}-|b|^{2} .
$$

The advantage of the complex method is obvious.
3. Describe geometrically the sets of points z in the complex plane defined by the following relations.
(a) $\left|z-z_{1}\right|=\left|z-z_{2}\right|$, where z_{1}, z_{2} are fixed points in \mathbb{C}.

This is the midpoint-perpendicular to the segment form z_{1} to z_{2}.
In you do not like this characterization of the points equidistant from z_{1} and z_{2}, notice first that the midpoint $\left(z_{1}+z_{2}\right) / 2$ belongs to the locus we are investigating:

$$
\left|\frac{z_{1}+z_{2}}{2}-z_{1}\right|=\left|\frac{z_{2}-z_{1}}{2}\right|=\left|\frac{z_{1}+z_{2}}{2}-z_{2}\right| .
$$

Moreover, setting $z_{1}=\alpha_{1}+i \alpha_{2}, z_{2}=\beta_{1}+i \beta_{2}$ we get for $z=x+i y$

$$
\begin{aligned}
\left|z-z_{1}\right|^{2} & =\left|z-z_{2}\right|^{2} \Leftrightarrow\left(x-\alpha_{1}\right)^{2}+\left(y-\alpha_{2}\right)^{2}=\left(x-\beta_{1}\right)^{2}+\left(y-\beta_{2}\right)^{2} \\
& \Leftrightarrow \alpha_{1}^{2}+\alpha_{2}^{2}-2 \alpha_{1} x-2 \alpha_{2} y=\beta_{1}^{2}+\beta_{2}^{2}-2 \beta_{1} x-2 \beta_{2} y \\
& \Leftrightarrow\left(\beta_{1}-\alpha_{1}\right) x+\left(\beta_{2}-\alpha_{2}\right) y=\frac{1}{2}\left(\beta_{1}^{2}+\beta_{2}^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}\right) .
\end{aligned}
$$

This is the equation of a line with slope

$$
\lambda=-\frac{\beta_{1}-\alpha_{1}}{\beta_{2}-\alpha_{2}},
$$

while the vector $z_{1}-z_{2}=\left(\alpha_{1}-\beta_{1}, \alpha_{2}-\beta_{2}\right)$ has slope $\left(\alpha_{2}-\beta_{2}\right) /\left(\alpha_{1}-\beta_{1}\right)$. Their product is -1 . So they represent perpendicular lines.
(b) $1 / z=\bar{z}$.

$$
1 / z=\bar{z} \Leftrightarrow z \bar{z}=1 \Leftrightarrow|z|^{2}=1 \Leftrightarrow|z|=1 .
$$

This is a circle centered at the origin with radius 1 .
(c) $|z|=\Re(z)+1$.

We set $z=x+i y$ to get
$|z|=\Re(z)+1 \Leftrightarrow|z|^{2}=(x+1)^{2} \Leftrightarrow x^{2}+y^{2}=x^{2}+2 x+1 \Leftrightarrow y^{2}=2 x+1=2(x+1 / 2)$.
This is the equation of a parabola with axis the real axis and vertex at $(-1 / 2,0)$.
4. Prove the Lagrange identity

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2} \sum_{i=1}^{n}\left|b_{i}\right|^{2}-\sum_{1 \leq i<j \leq n}\left|a_{i} \bar{b}_{j}-a_{j} \bar{b}_{i}\right|^{2} .
$$

We need to show the equivalent formula

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right|^{2}+\sum_{1 \leq i<j \leq n}\left|a_{i} \bar{b}_{j}-a_{j} \bar{b}_{i}\right|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2} \sum_{i=1}^{n}\left|b_{i}\right|^{2} .
$$

We expand out using $|z|^{2}=z \bar{z}$ to get

$$
\begin{gathered}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)\left(\sum_{j=1}^{n} \bar{a}_{j} \bar{b}_{j}\right)+\sum_{1 \leq i<j \leq n}\left(a_{i} \bar{b}_{j}-a_{j} \bar{b}_{i}\right)\left(\bar{a}_{i} b_{j}-\bar{a}_{j} b_{i}\right) \\
=\sum_{i, j=1}^{n} a_{i} b_{i} \bar{a}_{j} \bar{b}_{j}+\sum_{i<j}\left(\left|a_{i}\right|^{2}\left|b_{j}\right|^{2}+\left|a_{j}\right|^{2}\left|b_{i}\right|^{2}-a_{i} \bar{a}_{j} b_{i} \bar{b}_{j}-a_{j} \bar{a}_{i} b_{j} \bar{b}_{i}\right) \\
=\sum_{i \neq j} a_{i} b_{i} \bar{a}_{j} \bar{b}_{j}+\sum_{i=j=1}^{n}\left|a_{i}\right|^{2}\left|b_{i}\right|^{2}+\sum_{i<j}\left(\left|a_{i}\right|^{2}\left|b_{j}\right|^{2}+\left|a_{j}\right|^{2}\left|b_{i}\right|^{2}\right)-\sum_{i<j}\left(a_{i} \bar{a}_{j} b_{i} \bar{b}_{j}+a_{j} \bar{a}_{i} b_{j} \bar{b}_{i}\right) .
\end{gathered}
$$

The first and the last sum are equal and, therefore, cancel. This can be seen as follows: In the last sum we have the condition $i<j$ while in the first only $i \neq j$. A pair (i, \underline{j}) of unequal integers has either $i<j$ or $j<i$. In the second case $a_{i} b_{i} \bar{a}_{j} \bar{b}_{j}=a_{j^{\prime}} b_{j^{\prime}} \bar{a}_{i^{\prime}} \bar{b}_{i^{\prime}}$ with $j=i^{\prime}<j^{\prime}=i$, so we get the term $a_{j} b_{j} \bar{a}_{i} \bar{b}_{i}$ with $i<j$. The two summands in the middle give exactly

$$
\sum_{i=1}^{n}\left|a_{i}\right|^{2} \sum_{j=1}^{n}\left|b_{j}\right|^{2}
$$

by the distributive law and the same thinking about $i \neq j$ vs $i<j$ and $j<i$.
5. Prove that

$$
\left|\frac{a-b}{1-\bar{a} b}\right|<1
$$

if $|a|<1$ and $|b|<1$.
We have
$\left|\frac{a-b}{1-\bar{a} b}\right|<1 \Leftrightarrow|a-b|<|1-\bar{a} b| \Leftrightarrow|a-b|^{2}<|1-\bar{a} b|^{2} \Leftrightarrow|a|^{2}+|b|^{2}-2 \Re(a \bar{b})<1+|\bar{a} b|^{2}-2 \Re(\bar{a} b)$ (here we notice that $\Re(\bar{a} b)=\Re(a \bar{b})$ as they are conjugate numbers)

$$
\Leftrightarrow|a|^{2}+|b|^{2}<1+|a|^{2}|b|^{2} \Leftrightarrow 0<1+|a|^{2}|b|^{2}-|a|^{2}-|b|^{2}=\left(1-|a|^{2}\right)\left(1-|b|^{2}\right) .
$$

The assumption $|a|<1$ and $|b|<1$ gives the result.
6. Prove that it is impossible to define a total ordering on \mathbb{C}. In other words, one cannot find a relation \gg between complex numbers so that:
(i) For any two complex numbers z and w one and only one of the following is true: $z \gg w, w \gg z$ or $z=w$.
(ii) For all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ the relation $z_{1} \gg z_{2}$ implies $z_{1}+z_{3} \gg z_{2}+z_{3}$.
(iii) Moreover, for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ with $z_{3} \gg 0$

$$
z_{1} \gg z_{2} \Longrightarrow z_{1} z_{3} \gg z_{2} z_{3}
$$

Hint: Is $i \gg 0$?
Since $i \neq 0$, we have either $i \gg 0$ or $i \ll 0$.
Step 1: If $i \gg 0$, then by (iii) we get

$$
i^{2} \gg i \cdot 0=0 \Longrightarrow-1 \gg 0
$$

Since $i \gg 0$ we also get by (iii) that $-i \gg 0$. We use (ii) to get

$$
0=i+(-i) \gg 0+(-i)=-i \gg 0
$$

The transitive property gives a contradiction to (i).
Step 2: Assume $i \ll 0$. Then $-i \gg 0$, since otherwise $-i \ll 0$ and (ii) implies $0=i+(-i) \ll 0$ contradicting (i). As in Step $1,-i \gg 0$ implies $-1 \gg 0$ and then $i \gg 0$, which is a contradiction.
7. Prove that the points z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle if $z_{1}+z_{2}+z_{3}=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$.
Rotating the complex numbers z_{1}, z_{2}, z_{3} by the same angle keeps their lengths equal and keeps the relation $z_{1}+z_{2}+z_{3}=0$ valid. So we can assume that $z_{1}=r$ is real. Then $r=\left|z_{2}\right|=\left|z_{3}\right|$. Setting $z_{2}=r(\cos \theta+i \sin \theta), z_{3}=r(\cos \phi+i \sin \phi)$ in polar coordinates we get

$$
z_{1}+z_{2}+z_{3}=0 \Longrightarrow r(1+\cos \theta+\cos \phi+i(\sin \theta+\sin \phi))=0
$$

From the imaginary parts we get

$$
\sin \theta=-\sin \phi \Longrightarrow \sin ^{2} \theta=\sin ^{2} \phi \Longrightarrow \cos ^{2} \theta=\cos ^{2} \phi,
$$

by the basic trigonometric identity. This implies that the cosines are either equal or opposite. They cannot be opposite, since the real part of the equation gives

$$
1+\cos \theta+\cos \phi=0
$$

So

$$
1+2 \cos \theta=0 \Longrightarrow \cos \theta=-1 / 2 \Longrightarrow \theta=2 \pi / 3,4 \pi / 3
$$

The equation $\sin \theta=-\sin \phi$ now gives respectively $\phi=4 \pi / 3,2 \pi / 3$ (notice that z_{3} should be in the left-hand plane to have the same \cos as z_{2}). The points are vertices of an equilateral triangle. If you want, you can check that

$$
\begin{aligned}
\mid 1- & (\cos 2 \pi / 3+i \sin 2 \pi / 3)|=|1-(\cos 4 \pi / 3+i \sin 4 \pi / 3)| \\
& =|\cos 2 \pi / 3+i \sin 2 \pi / 3-(\cos 4 \pi / 3+i \sin 4 \pi / 3)|
\end{aligned}
$$

8. Verify the Cauchy-Riemann equations for z^{2} and z^{3}. We have

$$
z^{2}=\left(x^{2}-y^{2}\right)+i 2 x y, \quad z^{3}=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)
$$

The first gives for $f(z)=z^{2}, u=x^{2}-y^{2}, v=2 x y$ and

$$
\frac{\partial u}{\partial x}=2 x=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x} .
$$

For the function $f(z)=z^{3}$ we have $u=x^{3}-3 x y^{2}$ and $v=3 x^{2} y-y^{3}$ and

$$
\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-6 x y=-\frac{\partial v}{\partial x}
$$

9. Express $\cos (3 \phi)$ and $\cos (4 \phi)$ in terms of $\cos (\phi)$. Express $\sin (3 \phi)$ in terms of $\sin (\phi)$. By de Moivre's formula

$$
(\cos \phi+i \sin \phi)^{n}=\cos (n \phi)+i \sin (n \phi)
$$

for $n=3,4$ we get using the previous exercise:

$$
\begin{aligned}
\cos (3 \phi)=\Re\left((\cos \phi+i \sin \phi)^{3}\right)= & (\cos \phi)^{3}-3 \cos \phi \sin ^{2} \phi=\cos ^{3} \phi-3 \cos \phi\left(1-\cos ^{2} \phi\right) \\
& =4 \cos ^{3} \phi-3 \cos \phi \\
\sin (3 \phi)=\Im\left((\cos \phi+i \sin \phi)^{3}\right)= & 3 \cos ^{2} \phi \sin \phi-\sin ^{3} \phi=3\left(1-\sin ^{2} \phi\right) \sin \phi-\sin ^{3} \phi \\
& =3 \sin \phi-4 \sin ^{3} \phi .
\end{aligned}
$$

For $\cos (4 \phi)$ we have

$$
\begin{gathered}
\cos (4 \phi)=\Re\left((\cos \phi+i \sin \phi)^{4}\right)=\Re\left(\cos ^{2} \phi-\sin ^{2} \phi+i 2 \sin \phi \cos \phi\right)^{2}=\left(\cos ^{2} \phi-\sin ^{2} \phi\right)^{2} \\
\begin{aligned}
&-(2 \sin \phi \cos \phi)^{2}=\left(2 \cos ^{2} \phi-1\right)^{2}-4 \sin ^{2} \phi \cos ^{2} \phi=4 \cos ^{4} \phi-4 \cos ^{2} \phi+1-4\left(1-\cos ^{2} \phi\right) \cos ^{2} \phi \\
&=8 \cos ^{4} \phi-8 \cos ^{2} \phi+1
\end{aligned}
\end{gathered}
$$

10. Simplify $1+\cos (\phi)+\cos (2 \phi)+\cdots+\cos (n \phi)$ and $\sin (\phi)+\sin (2 \phi)+\cdots+\sin (n \phi)$.

Set $z=\cos \phi+i \sin \phi$, so that $z^{j}=\cos (j \phi)+i \sin (j \phi)$. Then

$$
\begin{gathered}
(1+\cos (\phi)+\cos (2 \phi)+\cdots+\cos (n \phi))+i(\sin (\phi)+\sin (2 \phi)+\cdots+\sin (n \phi)) \\
\quad=\sum_{j=0}^{n}(\cos (j \phi)+i \sin (j \phi))=z^{0}+z^{1}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
\end{gathered}
$$

We substitute $z^{n+1}=\cos (n+1) \phi+i \sin (n+1) \phi$ is the last and multiply with $1-\bar{z}$ to get

$$
=\frac{\left(1-z^{n+1}\right)(1-\bar{z})}{|1-z|^{2}}=\frac{(1-\cos (n+1) \phi-i \sin (n+1) \phi)(1-\cos \phi+i \sin \phi)}{(1-\cos \phi)^{2}+\sin ^{2} \phi}
$$

We take real and imaginary parts to get

$$
\begin{gathered}
1+\cos (\phi)+\cos (2 \phi)+\cdots+\cos (n \phi)=\frac{(1-\cos (n+1) \phi)(1-\cos \phi)+\sin (n+1) \phi \sin \phi}{2-2 \cos \phi} \\
=\frac{1-\cos \phi}{2-2 \cos \phi}+\frac{-\cos ((n+1) \phi)(1-\cos \phi)+\sin ((n+1) \phi \sin \phi)}{2-2 \cos \phi} \\
=\frac{1}{2}+\frac{-\cos ((n+1) \phi) 2 \sin ^{2} \phi / 2+\sin ((n+1) \phi) 2 \sin (\phi / 2) \cos (\phi / 2)}{4 \sin ^{2} \phi / 2} \\
=\frac{1}{2}+\frac{-\cos ((n+1) \phi) \sin \phi / 2+\sin ((n+1) \phi) \cos \phi / 2}{2 \sin \phi / 2} \\
=\frac{1}{2}+\frac{\sin \left(\left(n+1_{\phi}-\phi / 2\right)\right.}{\sin \phi / 2}=\frac{1}{2}+\frac{\sin ((n+1 / 2) \phi)}{2 \sin \phi / 2}
\end{gathered}
$$

using the identities $\sin ^{2}(x / 2)=(1-\cos x) / 2, \sin x=2 \sin (x / 2) \cos (x / 2)$ and the addition theorem for sin. The calculation can be simplified with the use of $e^{i \theta}$.

$$
\begin{gathered}
\sin \phi+\sin (2 \phi)+\cdots+\sin (n \phi)=\frac{\Im\left(1-z^{n+1}\right)(1-\bar{z})}{|1-z|^{2}} \\
=\frac{(1-\cos ((n+1) \phi)) \sin \phi-\sin ((n+1) \phi)(1-\cos \phi)}{2-2 \cos \phi} \\
=\frac{\sin \phi-\cos ((n+1) \phi) \sin \phi-\sin ((n+1) \phi)(1-\cos \phi)}{4 \sin ^{2} \phi / 2} \\
=\frac{2 \sin (\phi / 2) \cos (\phi / 2)-\cos ((n+1) \phi) 2 \sin (\phi / 2) \cos (\phi / 2)-\sin ((n+1) \phi) 2 \sin ^{2} \phi / 2}{4 \sin ^{2} \phi / 2} \\
=\frac{1}{2} \cot \frac{\phi}{2}-\frac{\cos ((n+1) \phi) \cos \phi / 2+\sin ((n+1) \phi) \sin \phi / 2}{2 \sin \phi / 2}=\frac{1}{2} \cot \frac{\phi}{2}-\frac{\cos (n+1 / 2) \phi}{2 \sin \phi / 2} .
\end{gathered}
$$

11. Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are orthogonal.
If the two sides of the parallelogram are represented by the geometric image of the complex numbers z_{1} and z_{2}, then the diagonal they enclose is represented by $z_{1}+z_{2}$. The midpoint of it is $\left(z_{1}+z_{2}\right) / 2$. The second diagonal corresponds to the difference $z_{1}-z_{2}$. The midpoint of it corresponds to $\left(z_{1}-z_{2}\right) / 2$. However, the second diagonal is not a vector starting at the origin but at z_{2}. So the midpoint of the second diagonal is given by the geometric image of the complex number $\left(z_{1}-z_{2}\right) / 2+z_{2}=\left(z_{1}+z_{2}\right) / 2$. The two answers are equal, so the two diagonals meet at their midpoint.

We need to show that if $\left|z_{1}\right|=\left|z_{2}\right|$ then the vectors represented by $z_{1}+z_{2}$ and $z_{1}-z_{2}$ are perpendicular, or, equivalently, that the arguments of these two complex numbers differ by $\pi / 2$. The difference of the arguments shows up in the quotient, so we need to prove that the complex numbers $z_{1}+z_{2}$ and $z_{1}-z_{2}$ representing the two diagonals have purely imaginary quotient. But this is true iff

$$
\begin{aligned}
& \frac{\bar{z}_{1}+\bar{z}_{2}}{\bar{z}_{1}-\bar{z}_{2}}=-\frac{z_{1}+z_{2}}{z_{1}-z_{2}} \Leftrightarrow\left(\bar{z}_{1}+\bar{z}_{2}\right)\left(z_{1}-z_{2}\right)=-\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right) \Leftrightarrow\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}-\bar{z}_{1} z_{2}+\bar{z}_{2} z_{1} \\
& \quad=-\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}-z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}\right) \Leftrightarrow\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}=-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \Leftrightarrow\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2} .
\end{aligned}
$$

12. Prove rigorously that the functions $f(z)$ and $\overline{f(\bar{z})}$ are simultaneously holomorphic.

If $f(z)=u(x, y)+i v(x, y)$, then $\overline{f(\bar{z})}=u(x,-y)-i v(x,-y)$. We calculate the partial derivatives with respect to x and y for $\overline{f(\bar{z})}$ using the chain rule from multivariable calculus:

$$
\begin{gathered}
\frac{\partial u(x,-y)}{\partial x}=\frac{\partial u}{\partial x}(x,-y) \frac{\partial x}{\partial x}+\frac{\partial u}{\partial y}(x,-y) \frac{\partial(-y)}{\partial x}=\frac{\partial u}{\partial x}(x,-y) . \\
\frac{\partial u(x,-y)}{\partial y}=\frac{\partial u}{\partial x}(x,-y) \frac{\partial x}{\partial y}+\frac{\partial u}{\partial y}(x,-y) \frac{\partial(-y)}{\partial y}=-\frac{\partial u}{\partial y}(x,-y) . \\
\frac{\partial(-v(x,-y))}{\partial x}=\frac{\partial(-v)}{\partial x}(x,-y) \frac{\partial x}{\partial x}+\frac{\partial(-v)}{\partial y}(x,-y) \frac{\partial(-y)}{\partial x}=-\frac{\partial v}{\partial x}(x,-y) . \\
\frac{\partial(-v(x,-y))}{\partial y}=\frac{\partial(-v)}{\partial x}(x,-y) \frac{\partial x}{\partial y}+\frac{\partial(-v)}{\partial y}(x,-y) \frac{\partial(-y)}{\partial y}=-\frac{\partial(-v)}{\partial y}(x,-y)=\frac{\partial v}{\partial y}(x,-y) .
\end{gathered}
$$

This gives:

$$
\frac{\partial u(x, y)}{\partial x}=\frac{\partial v(x, y)}{\partial y} \Leftrightarrow \frac{\partial u(x,-y)}{\partial x}=\frac{\partial(-v(x,-y))}{\partial y}
$$

and

$$
\frac{\partial u(x, y)}{\partial y}=-\frac{\partial v(x, y)}{\partial x} \Leftrightarrow \frac{\partial u(x,-y)}{\partial y}=-\frac{\partial(-v(x,-y))}{\partial x} .
$$

This proves the equivalence of the Cauchy-Riemann equations.
13. Suppose that U and V are open sets in the complex plane. Prove that if $f: U \rightarrow V$ and $g: V \rightarrow \mathbb{C}$ are two functions that are differentiable in the real sense (in x and y) and $h=g \circ f$, then the complex version of the chain rule is

$$
\frac{\partial h}{\partial z}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial z}, \quad \frac{\partial h}{\partial \bar{z}}=\frac{\partial g}{\partial z} \frac{\partial f}{\partial \bar{z}}+\frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial \bar{z}} .
$$

Set $f(x, y)=u(x, y)+i v(x, y)$, i.e., $(x, y) \rightarrow(u(x, y), v(x, y)) \rightarrow h(u, v)$. By the standard chain rule for functions of two variables we have

$$
\begin{align*}
\frac{\partial h}{\partial x} & =\frac{\partial g}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial y} \frac{\partial v}{\partial x} \tag{1}\\
\frac{\partial h}{\partial y} & =\frac{\partial g}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial g}{\partial y} \frac{\partial v}{\partial y}
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)=\frac{1}{2}\left(u_{x}+i v_{x}-i\left(u_{y}+i v_{y}\right)\right) \tag{2}\\
& \frac{\partial \bar{f}}{\partial z}=\frac{1}{2}\left(\frac{\partial \bar{f}}{\partial x}-i \frac{\partial \bar{f}}{\partial y}\right)=\frac{1}{2}\left(u_{x}-i v_{x}-i\left(u_{y}-i v_{y}\right)\right)
\end{align*}
$$

By the definition of $\partial / \partial z$ and $\partial / \partial \bar{z}$ we have

$$
\begin{aligned}
\frac{\partial g}{\partial z} & =\frac{1}{2}\left(\frac{\partial g}{\partial x}-i \frac{\partial g}{\partial y}\right) \\
\frac{\partial g}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial g}{\partial x}+i \frac{\partial g}{\partial y}\right)
\end{aligned}
$$

We add and subtract the last two equations to get

$$
\frac{\partial g}{\partial x}=\frac{\partial g}{\partial z}+\frac{\partial g}{\partial \bar{z}}, \quad \frac{\partial g}{\partial y}=\frac{1}{i}\left(\frac{\partial g}{\partial \bar{z}}-\frac{\partial g}{\partial z}\right) .
$$

We substitute the last equations to (1), multiply the second equation in (1) by i, subtract them to get

$$
\begin{align*}
\frac{\partial h}{\partial z} & =\frac{\partial g}{\partial x}\left(\frac{1}{2} \frac{\partial u}{\partial x}-\frac{1}{2} i \frac{\partial u}{\partial y}\right)+\frac{\partial g}{\partial y}\left(\frac{1}{2} \frac{\partial v}{\partial x}-\frac{1}{2} i \frac{\partial v}{\partial y}\right) \tag{3}\\
& =\left(g_{z}+g_{\bar{z}}\right) \frac{1}{2}\left(u_{x}-i u_{y}\right)+\frac{1}{i}\left(g_{\bar{z}}-g_{z}\right) \frac{1}{2}\left(v_{x}-i v_{y}\right) \\
& =g_{z} \frac{1}{2}\left(u_{x}-i u_{y}+i v_{x}+v_{y}\right)+g_{\bar{z}} \frac{1}{2}\left(u_{x}-i u_{y}-i v_{x}-v_{y}\right) \\
& =g_{z} f_{z}+g_{\bar{z}} \bar{f}_{z}
\end{align*}
$$

using equations (2). Similarly we get

$$
\begin{aligned}
\frac{\partial h}{\partial \bar{z}} & =\frac{\partial g}{\partial x}\left(\frac{1}{2} \frac{\partial u}{\partial x}+\frac{1}{2} i \frac{\partial u}{\partial y}\right)+\frac{\partial g}{\partial y}\left(\frac{1}{2} \frac{\partial v}{\partial x}+\frac{1}{2} i \frac{\partial v}{\partial y}\right) \\
& =\left(g_{z}+g_{\bar{z}}\right) \frac{1}{2}\left(u_{x}+i u_{y}\right)+\frac{1}{i}\left(g_{\bar{z}}-g_{z}\right) \frac{1}{2}\left(v_{x}+i v_{y}\right) \\
& =g_{z} \frac{1}{2}\left(u_{x}+i u_{y}+i v_{x}-v_{y}\right)+g_{\bar{z}} \frac{1}{2}\left(u_{x}+i u_{y}-i v_{x}+v_{y}\right) \\
& =g_{z} f_{\bar{z}}+g_{\bar{z}} \bar{f}_{\bar{z}}
\end{aligned}
$$

since

$$
\begin{aligned}
& \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=\frac{1}{2}\left(u_{x}+i v_{x}+i\left(u_{y}+i v_{y}\right)\right) \\
& \frac{\partial \bar{f}}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial \bar{f}}{\partial x}+i \frac{\partial \bar{f}}{\partial y}\right)=\frac{1}{2}\left(u_{x}-i v_{x}+i\left(u_{y}-i v_{y}\right)\right)
\end{aligned}
$$

14. Show that in polar coordinates the Cauchy-Riemann equations take the form

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r}
$$

Use these equations to show that the logarithm function defined by

$$
\log z=\log r+i \theta, \quad z=r(\cos \theta+i \sin \theta), \quad-\pi<\theta<\pi
$$

is holomorphic in the region $r>0$ and $-\pi<\theta<\pi$.
In polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$. By the chain rule for functions in two variables we have

$$
\begin{align*}
\frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta \tag{5}\\
\frac{\partial u}{\partial \theta} & =\frac{\partial u}{\partial x}(-r) \sin \theta+\frac{\partial u}{\partial y} r \cos \theta \\
\frac{\partial v}{\partial r} & =\frac{\partial v}{\partial x} \cos \theta+\frac{\partial v}{\partial y} \sin \theta \\
\frac{\partial v}{\partial \theta} & =\frac{\partial v}{\partial x}(-r) \sin \theta+\frac{\partial v}{\partial y} r \cos \theta
\end{align*}
$$

Assume the Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{6}
\end{equation*}
$$

Then we get

$$
\begin{array}{r}
\frac{\partial u}{\partial r}=\frac{\partial v}{\partial y} \cos \theta-\frac{\partial v}{\partial x} \sin \theta=\frac{1}{r} \frac{\partial v}{\partial \theta} \tag{7}\\
\frac{\partial u}{\partial \theta}=\frac{\partial v}{\partial y}(-r \sin \theta)-\frac{\partial v}{\partial x} r \cos \theta=-r \frac{\partial v}{\partial r}
\end{array}
$$

Conversely assume the Cauchy-Riemann equations in polar form (7). By (5) we get

$$
\begin{array}{r}
\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta=-\frac{\partial v}{\partial x} \sin \theta+\frac{\partial v}{\partial y} \cos \theta \\
\frac{\partial u}{\partial x}(-r) \sin \theta+\frac{\partial u}{\partial y} r \cos \theta=-\frac{\partial v}{\partial x} r \cos \theta+\frac{\partial v}{\partial y}(-r) \sin \theta
\end{array}
$$

This is a system of linear equations in the unknown functions $\partial u / \partial x, \partial u / \partial y$. Cramer's rule for solving the system gives

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\frac{\left|\begin{array}{cc}
-v_{x} \sin \theta+v_{y} \cos \theta & \sin \theta \\
-r v_{x} \cos \theta-r v_{y} \sin \theta & r \cos \theta
\end{array}\right|}{\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|}=\frac{r v_{y}}{r}=\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=\frac{\left|\begin{array}{cc}
\cos \theta & -v_{x} \sin \theta+v_{y} \cos \theta \\
-r \sin \theta & -r v_{x} \cos \theta-r v_{y} \sin \theta
\end{array}\right|}{\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|}=\frac{-r v_{x}}{r}=\frac{\partial v}{\partial x} .
\end{gathered}
$$

So we get back the Cauchy-Riemann equations.
For the logarithm functions we have $u=\log r$ and $v=\theta$. This gives

$$
\frac{\partial u}{\partial r}=\frac{1}{r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta}=0=-\frac{\partial v}{\partial r} .
$$

15. Consider the function defined by

$$
f(x+i y)=\sqrt{|x||y|}, \quad x, y \in \mathbb{R}
$$

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holomorphic at 0 .
We have $f(x+i 0)=\sqrt{|x||0|}=0, f(0+i y)=\sqrt{|0||y|}=0, f(0+i 0)=0$. Also, if $f=u+i v, u=f$ and $v=0$. These give at the origin

$$
\frac{\partial u}{\partial x}=\lim _{x \rightarrow 0} \frac{f(x+i 0)-f(0+i 0)}{x}=\lim _{x \rightarrow 0} \frac{0-0}{x}=0
$$

$$
\frac{\partial u}{\partial y}=\lim _{y \rightarrow 0} \frac{f(0+i y)-f(0+i 0)}{x}=\lim _{y \rightarrow 0} \frac{0-0}{y}=0 .
$$

Obviously $\partial v / \partial x=0$ and $\partial v / \partial y=0$. So the Cauchy-Riemann equations are satisfied. However, the function is not holomophic at 0 . If it were, then $f^{\prime}(0)=0$. We set $x=y>0$ and let $z=x+i x \rightarrow 0$.

$$
\lim _{z \rightarrow 0} \frac{f(x+i y)-f(0+i 0)}{z}=\lim _{z \rightarrow 0} \frac{\sqrt{|x||y|}}{z}=\lim _{x \rightarrow 0} \frac{\sqrt{|x|^{2}}}{x+i x}=\lim _{x \rightarrow 0} \frac{|x|}{x+i x}=\frac{1}{1+i}
$$

