
Math 70300

Homework 1

September 12, 2006

The homework consists mostly of a selection of problems from the suggested books.

1. (a) Find the value of (1 + i)n + (1− i)n for every n ∈ N.

We will use the polar form of 1 + i =
√

2(cos(π/4) + i sin(π/4)) and De Moivre’s
formula. Since 1 + i = 1− i, (1 + i)n = (1 + i)n = (1− i)n we have

(1 + i)n + (1− i)n = 2<(1 + i)n = 2<2n/2(cos(nπ/4) + i sin(nπ/4))

= 2 · 2n/2 cos(nπ/4) = 2n/2+1 cos(nπ/4).

(b) Show that (
−1± i

√
3

2

)3

= 1,

(
±1± i

√
3

2

)6

= 1.

Since x3 − 1 = (x− 1)(x2 + x + 1) it suffices to prove that

ρ1,2 =
−1± i

√
3

2

satisfies ρ2
1,2 + ρ1,2 + 1 = 0. We have(

−1± i
√

3

2

)2

=
1− 3∓ i2

√
3

4
=
−1∓ i

√
3

2
.

From this ρ2
1,2 + ρ1,2 + 1 = 0 follows easily.

For
±1± i

√
3

2
we argue as follows: if the signs are opposite we are considering ±ρ1,2.

Since ρ3
1,2 = 1, ρ6

1,2 = 1. For the other choices

r1 =
1 + i

√
3

2
, r2 =

−1− i
√

3

2
, r2 = −r1

which are called the sixth primitive roots of unity, we argue as follows: x6 − 1 =
(x3 − 1)(x + 1)(x2 − x + 1) implies that we should prove that r2

1 − r1 + 1 = 0. We
calculate

r2
1 =

1− 3 + i2
√

3

4
=
−1 + i

√
3

2

1



from which the result follows. This way we avoid calculating sixth powers.

(c) Find the fourth roots of −1. We write −1 = 1(cos π + i sin π) (polar form) and
apply De Moivre’s formulas. The fourth roots are:

rk =
4
√

1

(
cos

(
π + 2πk

4

)
+ i sin

(
π + 2πk

4

))
, k = 0, 1, 2, 3.

This gives

r0 = cos(π/4)+i sin(π/4) =

√
2

2
+i

√
2

2
, r1 = cos(3π/4)+i sin(3π/4) = −

√
2

2
+i

√
2

2

r2 = cos(5π/4)+i sin(5π/4) = −
√

2

2
−i

√
2

2
, r3 = cos(7π/4)+i sin(7π/4) =

√
2

2
−i

√
2

2
.

2. Find the conditions under which the equation az+bz̄+c = 0 has exactly one solution
and compute the solution.

We write the equation and its conjugate as a system

az + bz̄ + c = 0

b̄z + āz̄ + c̄ = 0.

We think of the variables z and z̄ as independent variables. This system has exactly
one solution when its determinant is nonzero, i.e.,∣∣∣∣ a b

b̄ ā

∣∣∣∣ = |a|2 − |b|2 6= 0.

In this case the solution is given by Cramer’s rule as

z =

∣∣∣∣ −c b
−c̄ ā

∣∣∣∣
|a|2 − |b|2

=
c̄b− cā

|a|2 − |b|2
.

We can also solve for z̄ and we see that indeed it is conjugate of z:

z̄ =

∣∣∣∣ a −c
b̄ −c̄

∣∣∣∣
|a|2 − |b|2

=
b̄c− ac̄

|a|2 − |b|2
.

Alternatively we set the real and imaginary parts of the equation to be 0. We set
a = α1 + iα2, b = β1 + iβ2, c = γ1 + iγ2, z = x + iy to get

α1x− α2y + β1x + β2y + γ1 = 0,

α2x + α1y + β2x− β1y + γ2 = 0,
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which gives the system

(α1 + β1)x + (−α2 + β2)y + γ1 = 0

(α2 + β2)x + (−β1 + α1)y + γ2 = 0.

The determinant is∣∣∣∣ α1 + β1 −α2 + β2

α2 + β2 −β1 + α1

∣∣∣∣ = α2
1 − β2

1 − β2
2 + α2

2 = |a|2 − |b|2.

The advantage of the complex method is obvious.

3. Describe geometrically the sets of points z in the complex plane defined by the fol-
lowing relations.

(a) |z − z1| = |z − z2|, where z1, z2 are fixed points in C.

This is the midpoint-perpendicular to the segment form z1 to z2.

In you do not like this characterization of the points equidistant from z1 and z2, notice
first that the midpoint (z1 + z2)/2 belongs to the locus we are investigating:∣∣∣∣z1 + z2

2
− z1

∣∣∣∣ =

∣∣∣∣z2 − z1

2

∣∣∣∣ =

∣∣∣∣z1 + z2

2
− z2

∣∣∣∣ .
Moreover, setting z1 = α1 + iα2, z2 = β1 + iβ2 we get for z = x + iy

|z − z1|2 = |z − z2|2 ⇔ (x− α1)
2 + (y − α2)

2 = (x− β1)
2 + (y − β2)

2

⇔ α2
1 + α2

2 − 2α1x− 2α2y = β2
1 + β2

2 − 2β1x− 2β2y

⇔ (β1 − α1)x + (β2 − α2)y =
1

2
(β2

1 + β2
2 − α2

1 − α2
2).

This is the equation of a line with slope

λ = −β1 − α1

β2 − α2

,

while the vector z1 − z2 = (α1 − β1, α2 − β2) has slope (α2 − β2)/(α1 − β1). Their
product is −1. So they represent perpendicular lines.

(b) 1/z = z̄.
1/z = z̄ ⇔ zz̄ = 1 ⇔ |z|2 = 1 ⇔ |z| = 1.

This is a circle centered at the origin with radius 1.

(c) |z| = <(z) + 1.

We set z = x + iy to get

|z| = <(z)+1 ⇔ |z|2 = (x+1)2 ⇔ x2 +y2 = x2 +2x+1 ⇔ y2 = 2x+1 = 2(x+1/2).

This is the equation of a parabola with axis the real axis and vertex at (−1/2, 0).
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4. Prove the Lagrange identity∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣
2

=
n∑

i=1

|ai|2
n∑

i=1

|bi|2 −
∑

1≤i<j≤n

|aib̄j − aj b̄i|2.

We need to show the equivalent formula∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣
2

+
∑

1≤i<j≤n

|aib̄j − aj b̄i|2 =
n∑

i=1

|ai|2
n∑

i=1

|bi|2.

We expand out using |z|2 = zz̄ to get(
n∑

i=1

aibi

)(
n∑

j=1

āj b̄j

)
+

∑
1≤i<j≤n

(aib̄j − aj b̄i)(āibj − ājbi)

=
n∑

i,j=1

aibiāj b̄j +
∑
i<j

(|ai|2|bj|2 + |aj|2|bi|2 − aiājbib̄j − aj āibj b̄i)

=
∑
i6=j

aibiāj b̄j +
n∑

i=j=1

|ai|2|bi|2 +
∑
i<j

(|ai|2|bj|2 + |aj|2|bi|2)−
∑
i<j

(aiājbib̄j + aj āibj b̄i).

The first and the last sum are equal and, therefore, cancel. This can be seen as follows:
In the last sum we have the condition i < j while in the first only i 6= j. A pair (i, j)
of unequal integers has either i < j or j < i. In the second case aibiāj b̄j = aj′bj′ āi′ b̄i′

with j = i′ < j′ = i, so we get the term ajbj āib̄i with i < j. The two summands in
the middle give exactly

n∑
i=1

|ai|2
n∑

j=1

|bj|2

by the distributive law and the same thinking about i 6= j vs i < j and j < i.

5. Prove that ∣∣∣∣ a− b

1− āb

∣∣∣∣ < 1

if |a| < 1 and |b| < 1.

We have∣∣∣∣ a− b

1− āb

∣∣∣∣ < 1 ⇔ |a−b| < |1−āb| ⇔ |a−b|2 < |1−āb|2 ⇔ |a|2+|b|2−2<(ab̄) < 1+|āb|2−2<(āb)

(here we notice that <(āb) = <(ab̄) as they are conjugate numbers)

⇔ |a|2 + |b|2 < 1 + |a|2|b|2 ⇔ 0 < 1 + |a|2|b|2 − |a|2 − |b|2 = (1− |a|2)(1− |b|2).

The assumption |a| < 1 and |b| < 1 gives the result.
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6. Prove that it is impossible to define a total ordering on C. In other words, one cannot
find a relation � between complex numbers so that:

(i) For any two complex numbers z and w one and only one of the following is true:
z � w, w � z or z = w.

(ii) For all z1, z2, z3 ∈ C the relation z1 � z2 implies z1 + z3 � z2 + z3.

(iii) Moreover, for all z1, z2, z3 ∈ C with z3 � 0

z1 � z2 =⇒ z1z3 � z2z3.

Hint: Is i � 0?

Since i 6= 0, we have either i � 0 or i � 0.

Step 1: If i � 0, then by (iii) we get

i2 � i · 0 = 0 =⇒ −1 � 0.

Since i � 0 we also get by (iii) that −i � 0. We use (ii) to get

0 = i + (−i) � 0 + (−i) = −i � 0.

The transitive property gives a contradiction to (i).

Step 2: Assume i � 0. Then −i � 0, since otherwise −i � 0 and (ii) implies
0 = i + (−i) � 0 contradicting (i). As in Step 1, −i � 0 implies −1 � 0 and then
i � 0, which is a contradiction.

7. Prove that the points z1, z2, z3 are vertices of an equilateral triangle if z1 +z2 +z3 = 0
and |z1| = |z2| = |z3|.
Rotating the complex numbers z1, z2, z3 by the same angle keeps their lengths equal
and keeps the relation z1 + z2 + z3 = 0 valid. So we can assume that z1 = r is real.
Then r = |z2| = |z3|. Setting z2 = r(cos θ + i sin θ), z3 = r(cos φ + i sin φ) in polar
coordinates we get

z1 + z2 + z3 = 0 =⇒ r(1 + cos θ + cos φ + i(sin θ + sin φ)) = 0.

From the imaginary parts we get

sin θ = − sin φ =⇒ sin2 θ = sin2 φ =⇒ cos2 θ = cos2 φ,

by the basic trigonometric identity. This implies that the cosines are either equal or
opposite. They cannot be opposite, since the real part of the equation gives

1 + cos θ + cos φ = 0.

So
1 + 2 cos θ = 0 =⇒ cos θ = −1/2 =⇒ θ = 2π/3, 4π/3.
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The equation sin θ = − sin φ now gives respectively φ = 4π/3, 2π/3 (notice that z3

should be in the left-hand plane to have the same cos as z2). The points are vertices
of an equilateral triangle. If you want, you can check that

|1− (cos 2π/3 + i sin 2π/3)| = |1− (cos 4π/3 + i sin 4π/3)|

= | cos 2π/3 + i sin 2π/3− (cos 4π/3 + i sin 4π/3)|.

8. Verify the Cauchy-Riemann equations for z2 and z3. We have

z2 = (x2 − y2) + i2xy, z3 = x3 − 3xy2 + i(3x2y − y3)

The first gives for f(z) = z2, u = x2 − y2, v = 2xy and

∂u

∂x
= 2x =

∂v

∂y
,

∂u

∂y
= −2y = −∂v

∂x
.

For the function f(z) = z3 we have u = x3 − 3xy2 and v = 3x2y − y3 and

∂u

∂x
= 3x2 − 3y2 =

∂v

∂y
,

∂u

∂y
= −6xy = −∂v

∂x
.

9. Express cos(3φ) and cos(4φ) in terms of cos(φ). Express sin(3φ) in terms of sin(φ).

By de Moivre’s formula

(cos φ + i sin φ)n = cos(nφ) + i sin(nφ)

for n = 3, 4 we get using the previous exercise:

cos(3φ) = <((cos φ + i sin φ)3) = (cos φ)3− 3 cos φ sin2 φ = cos3 φ− 3 cos φ(1− cos2 φ)

= 4 cos3 φ− 3 cos φ,

sin(3φ) = =((cos φ + i sin φ)3) = 3 cos2 φ sin φ− sin3 φ = 3(1− sin2 φ) sin φ− sin3 φ

= 3 sin φ− 4 sin3 φ.

For cos(4φ) we have

cos(4φ) = <((cos φ+ i sin φ)4) = <(cos2 φ− sin2 φ+ i2 sin φ cos φ)2 = (cos2 φ− sin2 φ)2

−(2 sin φ cos φ)2 = (2 cos2 φ−1)2−4 sin2 φ cos2 φ = 4 cos4 φ−4 cos2 φ+1−4(1−cos2 φ) cos2 φ

= 8 cos4 φ− 8 cos2 φ + 1.
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10. Simplify 1 + cos(φ) + cos(2φ) + · · ·+ cos(nφ) and sin(φ) + sin(2φ) + · · ·+ sin(nφ).

Set z = cos φ + i sin φ, so that zj = cos(jφ) + i sin(jφ). Then

(1 + cos(φ) + cos(2φ) + · · ·+ cos(nφ)) + i(sin(φ) + sin(2φ) + · · ·+ sin(nφ))

=
n∑

j=0

(cos(jφ) + i sin(jφ)) = z0 + z1 + · · ·+ zn =
1− zn+1

1− z

We substitute zn+1 = cos(n + 1)φ + i sin(n + 1)φ is the last and multiply with 1− z̄
to get

=
(1− zn+1)(1− z̄)

|1− z|2
=

(1− cos(n + 1)φ− i sin(n + 1)φ)(1− cos φ + i sin φ)

(1− cos φ)2 + sin2 φ

We take real and imaginary parts to get

1+cos(φ)+cos(2φ)+ · · ·+cos(nφ) =
(1− cos(n + 1)φ)(1− cos φ) + sin(n + 1)φ sin φ

2− 2 cos φ

=
1− cos φ

2− 2 cos φ
+
− cos((n + 1)φ)(1− cos φ) + sin((n + 1)φ sin φ)

2− 2 cos φ

=
1

2
+
− cos((n + 1)φ)2 sin2 φ/2 + sin((n + 1)φ)2 sin(φ/2) cos(φ/2)

4 sin2 φ/2

=
1

2
+
− cos((n + 1)φ) sin φ/2 + sin((n + 1)φ) cos φ/2

2 sin φ/2

=
1

2
+

sin((n + 1φ − φ/2)

sin φ/2
=

1

2
+

sin((n + 1/2)φ)

2 sin φ/2

using the identities sin2(x/2) = (1 − cos x)/2, sin x = 2 sin(x/2) cos(x/2) and the
addition theorem for sin. The calculation can be simplified with the use of eiθ.

sin φ + sin(2φ) + · · ·+ sin(nφ) =
=(1− zn+1)(1− z̄)

|1− z|2

=
(1− cos((n + 1)φ)) sin φ− sin((n + 1)φ)(1− cos φ)

2− 2 cos φ

=
sin φ− cos((n + 1)φ) sin φ− sin((n + 1)φ)(1− cos φ)

4 sin2 φ/2

=
2 sin(φ/2) cos(φ/2)− cos((n + 1)φ)2 sin(φ/2) cos(φ/2)− sin((n + 1)φ)2 sin2 φ/2

4 sin2 φ/2

=
1

2
cot

φ

2
− cos((n + 1)φ) cos φ/2 + sin((n + 1)φ) sin φ/2

2 sin φ/2
=

1

2
cot

φ

2
− cos(n + 1/2)φ

2 sin φ/2
.
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11. Prove that the diagonals of a parallelogram bisect each other and that the diagonals
of a rhombus are orthogonal.

If the two sides of the parallelogram are represented by the geometric image of the
complex numbers z1 and z2, then the diagonal they enclose is represented by z1 + z2 .
The midpoint of it is (z1 + z2)/2. The second diagonal corresponds to the difference
z1− z2. The midpoint of it corresponds to (z1− z2)/2. However, the second diagonal
is not a vector starting at the origin but at z2. So the midpoint of the second diagonal
is given by the geometric image of the complex number (z1−z2)/2+z2 = (z1 +z2)/2.
The two answers are equal, so the two diagonals meet at their midpoint.

We need to show that if |z1| = |z2| then the vectors represented by z1 + z2 and z1− z2

are perpendicular, or, equivalently, that the arguments of these two complex numbers
differ by π/2. The difference of the arguments shows up in the quotient, so we need
to prove that the complex numbers z1 + z2 and z1− z2 representing the two diagonals
have purely imaginary quotient. But this is true iff

z̄1 + z̄2

z̄1 − z̄2

= −z1 + z2

z1 − z2

⇔ (z̄1+z̄2)(z1−z2) = −(z1+z2)(z̄1−z̄2) ⇔ |z1|2−|z2|2−z̄1z2+z̄2z1

= −(|z1|2 − |z2|2 − z1z̄2 + z2z̄1) ⇔ |z1|2 − |z2|2 = −|z1|2 + |z2|2 ⇔ |z1|2 = |z2|2.

12. Prove rigorously that the functions f(z) and f(z̄) are simultaneously holomorphic.

If f(z) = u(x, y)+iv(x, y), then f(z̄) = u(x,−y)−iv(x,−y). We calculate the partial
derivatives with respect to x and y for f(z̄) using the chain rule from multivariable
calculus:

∂u(x,−y)

∂x
=

∂u

∂x
(x,−y)

∂x

∂x
+

∂u

∂y
(x,−y)

∂(−y)

∂x
=

∂u

∂x
(x,−y).

∂u(x,−y)

∂y
=

∂u

∂x
(x,−y)

∂x

∂y
+

∂u

∂y
(x,−y)

∂(−y)

∂y
= −∂u

∂y
(x,−y).

∂(−v(x,−y))

∂x
=

∂(−v)

∂x
(x,−y)

∂x

∂x
+

∂(−v)

∂y
(x,−y)

∂(−y)

∂x
= −∂v

∂x
(x,−y).

∂(−v(x,−y))

∂y
=

∂(−v)

∂x
(x,−y)

∂x

∂y
+

∂(−v)

∂y
(x,−y)

∂(−y)

∂y
= −∂(−v)

∂y
(x,−y) =

∂v

∂y
(x,−y).

This gives:
∂u(x, y)

∂x
=

∂v(x, y)

∂y
⇔ ∂u(x,−y)

∂x
=

∂(−v(x,−y))

∂y

and
∂u(x, y)

∂y
= −∂v(x, y)

∂x
⇔ ∂u(x,−y)

∂y
= −∂(−v(x,−y))

∂x
.

This proves the equivalence of the Cauchy-Riemann equations.
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13. Suppose that U and V are open sets in the complex plane. Prove that if f : U → V
and g : V → C are two functions that are differentiable in the real sense (in x and y)
and h = g ◦ f , then the complex version of the chain rule is

∂h

∂z
=

∂g

∂z

∂f

∂z
+

∂g

∂z̄

∂f̄

∂z
,

∂h

∂z̄
=

∂g

∂z

∂f

∂z̄
+

∂g

∂z̄

∂f̄

∂z̄
.

Set f(x, y) = u(x, y) + iv(x, y), i.e., (x, y) → (u(x, y), v(x, y)) → h(u, v). By the
standard chain rule for functions of two variables we have

∂h

∂x
=

∂g

∂x

∂u

∂x
+

∂g

∂y

∂v

∂x
(1)

∂h

∂y
=

∂g

∂x

∂u

∂y
+

∂g

∂y

∂v

∂y
.

Moreover,

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=

1

2
(ux + ivx − i(uy + ivy)) (2)

∂f̄

∂z
=

1

2

(
∂f̄

∂x
− i

∂f̄

∂y

)
=

1

2
(ux − ivx − i(uy − ivy)).

By the definition of ∂/∂z and ∂/∂z̄ we have

∂g

∂z
=

1

2

(
∂g

∂x
− i

∂g

∂y

)
∂g

∂z̄
=

1

2

(
∂g

∂x
+ i

∂g

∂y

)
.

We add and subtract the last two equations to get

∂g

∂x
=

∂g

∂z
+

∂g

∂z̄
,

∂g

∂y
=

1

i

(
∂g

∂z̄
− ∂g

∂z

)
.

We substitute the last equations to (1), multiply the second equation in (1) by i,
subtract them to get

∂h

∂z
=

∂g

∂x

(
1

2

∂u

∂x
− 1

2
i
∂u

∂y

)
+

∂g

∂y

(
1

2

∂v

∂x
− 1

2
i
∂v

∂y

)
(3)

= (gz + gz̄)
1

2
(ux − iuy) +

1

i
(gz̄ − gz)

1

2
(vx − ivy)

= gz
1

2
(ux − iuy + ivx + vy) + gz̄

1

2
(ux − iuy − ivx − vy)

= gzfz + gz̄f̄z
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using equations (2). Similarly we get

∂h

∂z̄
=

∂g

∂x

(
1

2

∂u

∂x
+

1

2
i
∂u

∂y

)
+

∂g

∂y

(
1

2

∂v

∂x
+

1

2
i
∂v

∂y

)
(4)

= (gz + gz̄)
1

2
(ux + iuy) +

1

i
(gz̄ − gz)

1

2
(vx + ivy)

= gz
1

2
(ux + iuy + ivx − vy) + gz̄

1

2
(ux + iuy − ivx + vy)

= gzfz̄ + gz̄f̄z̄,

since

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2
(ux + ivx + i(uy + ivy))

∂f̄

∂z̄
=

1

2

(
∂f̄

∂x
+ i

∂f̄

∂y

)
=

1

2
(ux − ivx + i(uy − ivy)).

14. Show that in polar coordinates the Cauchy-Riemann equations take the form

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= −∂v

∂r
.

Use these equations to show that the logarithm function defined by

log z = log r + iθ, z = r(cos θ + i sin θ), −π < θ < π

is holomorphic in the region r > 0 and −π < θ < π.

In polar coordinates x = r cos θ and y = r sin θ. By the chain rule for functions in
two variables we have

∂u

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ (5)

∂u

∂θ
=

∂u

∂x
(−r) sin θ +

∂u

∂y
r cos θ

∂v

∂r
=

∂v

∂x
cos θ +

∂v

∂y
sin θ

∂v

∂θ
=

∂v

∂x
(−r) sin θ +

∂v

∂y
r cos θ.

Assume the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (6)
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Then we get

∂u

∂r
=

∂v

∂y
cos θ − ∂v

∂x
sin θ =

1

r

∂v

∂θ
, (7)

∂u

∂θ
=

∂v

∂y
(−r sin θ)− ∂v

∂x
r cos θ = −r

∂v

∂r
.

Conversely assume the Cauchy-Riemann equations in polar form (7). By (5) we get

∂u

∂x
cos θ +

∂u

∂y
sin θ = −∂v

∂x
sin θ +

∂v

∂y
cos θ

∂u

∂x
(−r) sin θ +

∂u

∂y
r cos θ = −∂v

∂x
r cos θ +

∂v

∂y
(−r) sin θ

This is a system of linear equations in the unknown functions ∂u/∂x, ∂u/∂y. Cramer’s
rule for solving the system gives

∂u

∂x
=

∣∣∣∣ −vx sin θ + vy cos θ sin θ
−rvx cos θ − rvy sin θ r cos θ

∣∣∣∣∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ =
rvy

r
=

∂v

∂y

∂u

∂y
=

∣∣∣∣ cos θ −vx sin θ + vy cos θ
−r sin θ −rvx cos θ − rvy sin θ

∣∣∣∣∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ =
−rvx

r
=

∂v

∂x
.

So we get back the Cauchy-Riemann equations.

For the logarithm functions we have u = log r and v = θ. This gives

∂u

∂r
=

1

r
=

1

r

∂v

∂θ
,

∂u

∂θ
= 0 = −∂v

∂r
.

15. Consider the function defined by

f(x + iy) =
√
|x||y|, x, y ∈ R.

Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holo-
morphic at 0.

We have f(x + i0) =
√
|x||0| = 0, f(0 + iy) =

√
|0||y| = 0, f(0 + i0) = 0. Also, if

f = u + iv, u = f and v = 0. These give at the origin

∂u

∂x
= lim

x→0

f(x + i0)− f(0 + i0)

x
= lim

x→0

0− 0

x
= 0,

11



∂u

∂y
= lim

y→0

f(0 + iy)− f(0 + i0)

x
= lim

y→0

0− 0

y
= 0.

Obviously ∂v/∂x = 0 and ∂v/∂y = 0. So the Cauchy-Riemann equations are satisfied.
However, the function is not holomophic at 0. If it were, then f ′(0) = 0. We set
x = y > 0 and let z = x + ix → 0.

lim
z→0

f(x + iy)− f(0 + i0)

z
= lim

z→0

√
|x||y|
z

= lim
x→0

√
|x|2

x + ix
= lim

x→0

|x|
x + ix

=
1

1 + i
.
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