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Abstract. A plane domain Ω with more than one boundary point admits
a hyperbolic metric and with respect to this metric, every holomorphic
map of Ω into a subdomain X ⊆ Ω is a contraction. In this paper we
define a new metric for the image domain X that is greater than or equal
to the hyperbolic metric. Like the hyperbolic metric it has the property
that any holomorphic map from Ω into X is a contraction. This metric has
applications to random holomorphic iteration.

1. Introduction

The hyperbolic density ρ(ζ) on the unit disk ∆ is defined for all ζ ∈ ∆ by the
formula ρ(ζ) = 1/(1− ζ2). The hyperbolic metric is defined from this density by
integration. That is,

ρ(ζ1, ζ2) = inf
∫

γ

ρ(τ)|dτ |

where the infimum is taken over all paths in ∆ joining ζ1 and ζ2. We use the
same notation for the density and the metric; the distinction is determined by
the number of parameters. The length of γ is denoted by ρ(γ). In this paper we
will assume known standard properties of this metric such as its completeness
and that the infinitesimal form of the distance is the density. Proofs of these
properties and others may be found in the literature, for example [4], chap. 7.

Let Ω be an arbitrary fixed plane domain. In general we will assume that the
complement of Ω in C contains at least two points so that any universal covering
space is holomorphically equivalent to the unit disk. Such a domain is called a
hyperbolic domain.

If X is a hyperbolic domain and πX is a holomorphic universal covering map
from the disk onto X, the hyperbolic density on X is defined by requiring the
projection map to be a local isometry:

(1) ρX(z) =
ρ(ζ)
|π′X(ζ)| for z = πX(ζ) ∈ X.

It is not difficult to prove (see for example [4] chap.7) that ρX is a positive
continuous function.

The hyperbolic metric ρX(z1, z2) is also defined by integrating the density
over paths joining the endpoints and taking the infimum over all such paths.
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In this paper, we will concern ourselves with given hyperbolic domains Ω and
X and the family of holomorphic functions from Ω into X which we denote by
Hol(Ω, X).

It follows from the Schwarz-Pick lemma that any function f ∈ Hol(Ω, X) is
a contraction with respect to both ρΩ and ρX considered either as a density or
a metric (see theorem 1).

In this paper we generalize this situation: we define a new metric for the
image domain X in terms of a density that generalizes the hyperbolic density
ρX . Distances in this new metric are greater than or equal to distances in the
hyperbolic metric and it also has the property that any holomorphic map of Ω
into X is a contraction either in terms of the density or the metric.

When X ⊆ Ω, this new metric can be used to study how the geometry of the
domains Ω and X affects the iterated function systems defined by functions in
Hol(Ω, X). This is carried out in [4], chapters 12 and 13.

In section 2 we present a proof of theorem 1. In section 3 we define the metric
κ(= κΩ

X) for X and describe its properties. In section 4 we give examples.

2. The Schwarz-Pick lemma

The classical Schwarz-Pick lemma says that any holomorphic map from the
unit disk to itself is a contraction with respect to the hyperbolic metric. It
generalizes to arbitrary domains using the universal holomorphic covering maps
as follows.

Theorem 1 (Schwarz lemma for arbitrary domains). If f is a holomorphic
map from a domain Ω into a domain X, then f is an infinitesimal and global
contraction with respect to the corresponding hyperbolic metrics on Ω and X.
That is,

(2) ρX(f(t))|f ′(t)| ≤ ρΩ(t) for all t ∈ Ω

and

(3) ρX(f(t), f(t′)) ≤ ρΩ(t, t′) for all t, t′ ∈ Ω.

Moreover, if f is a regular covering map, it is a local isometry, that is

(4) ρX(f(t))|f ′(t)| = ρΩ(t) for all t ∈ Ω

Proof. Let πΩ and πX be the universal covering maps from the unit disk to Ω
and X respectively. Pick pre-images ζ and ζf in ∆ of t in Ω and f(t) in X under
πΩ and πX respectively. Now lift the map f to a map f̃ from ∆ into ∆ as follows.
Pick an arbitrary point ζ ′ in ∆. Join the point ζ ′ to the point ζ by any curve γ.
Project γ down to the curve π(γ) in Ω and find its image f(π(γ)) in X. Finally
lift the curve f(π(γ)) to a curve γ̃ in ∆ that starts at the point ζf . The endpoint
of γ̃ is by definition f̃(ζ ′). By the monodromy theorem, f̃ is well defined because
the unit disk ∆ is simply connected. Since the covering maps are holomorphic
and locally one-to-one, the map f̃ is holomorphic. Furthermore,

f ◦ πΩ(ζ) = πX ◦ f̃(ζ)

for all ζ in ∆. Therefore, taking derivatives on both sides we obtain

(5) f ′(πΩ(ζ))π′Ω(ζ) = π′X(f̃(ζ))f̃ ′(ζ).
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Applying the standard Schwarz-Pick lemma for the unit disk (see for example
[1]) we have

(6) ρ(f̃(ζ))|f̃ ′(ζ)| ≤ ρ(ζ).

Combining (5), (6) and (1) we obtain,

ρ(f̃(ζ))|f ′(πΩ(ζ))π′Ω(ζ)| ≤ ρ(ζ)|π′X(f̃(ζ))|,
ρX(πX(f̃(ζ)))|f ′(πΩ(ζ))| ≤ ρΩ(πΩ(ζ)),

ρX(f(πΩ(ζ)))|f ′(πΩ(ζ))| ≤ ρΩ(πΩ(ζ)).

Since πΩ is surjective, (2) holds.
To show (3), let t and t′ be any two points in Ω. By standard hyperbolic

geometry for the unit disk, there exists a shortest path γ in Ω joining t and t′.
Using formula (2), we obtain,

ρX(f(t), f(t′)) ≤ ρX(f(γ)) =
∫

f(γ)

ρX(τ)|dτ | =
∫

γ

ρX(f(σ))|f ′(σ)||dσ| ≤
∫

γ

ρΩ(σ)|dσ| = ρΩ(γ) = ρΩ(t, t′).

Now suppose f is a regular covering map. The composition f◦πΩ is a universal
covering map from ∆ onto X. Indeed, if γ is any curve in X it can be lifted to ∆
first by lifting it to Ω using any inverse branch of f and then by lifting the image
in Ω to ∆ by any inverse branch of πΩ. Now for any pre-images t = f−1(z) and
ζ = π−1

Ω (z) the relation (1) implies

ρΩ(t)|π′Ω(ζ)| = ρ(ζ) = ρX(f(t))|(f ◦ πΩ)′(ζ)|
Therefore, by the chain rule,

ρΩ(t)|π′Ω(ζ)| = ρX(f(t))|f ′(t)||π′Ω(ζ)|,
so that

ρΩ(t) = ρX(f(t))|f ′(t)|.
¤

3. Kobayashi metrics

3.1. The classical Kobayashi density. The contraction property (2) implies
that any f ∈ Hol(∆, X), whether or not it is a covering map, satisfies

(7) ρX(f(ζ)) ≤ ρ(ζ)
|f ′(ζ)|

for all points ζ in ∆. Combining (1) and (7) we obtain the following formula

(8) ρX(z) = inf
ρ(ζ)
|f ′(ζ)|

where the infimum is over all f ∈ Hol(∆, X) and all ζ in ∆, such that f(ζ) = z.
This leads to the Kobayashi definition of a density for an arbitrary domain

X.
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Definition 1. The Kobayashi density κX for the domain X is defined by the
formula

(9) κX(z) = inf
ρ(ζ)
|f ′(ζ)|

where the infimum is over all f ∈ Hol(∆, X) and all ζ in ∆, such that f(ζ) = z.

If X is a hyperbolic domain, the universal covering map πX belongs to
Hol(∆, X) and by the equation (1) realizes the infimum so that the Kobayashi
density coincides with the hyperbolic density on X. Because any covering map
πX from ∆ to X can be pre-composed with a conformal self map of the unit disk
that maps zero to any given pre-image of the point z in X, we may assume that
ζ = 0 in formulas (1) and (8). Another useful formula for all hyperbolic domains
X is therefore

(10) κX(z) = ρX(z) =
1

|π′(0)| = inf
1

|f ′(0)|
where π(0) = z and the infimum is over all f ∈ Hol(∆, X) such that f(0) = z.

Definition 1, does not require that X be a hyperbolic domain. In fact, if X
is either the whole plane C, or the plane punctured at a point p, C \ {p}, the
Kobayashi density makes sense.

Theorem 2. If X is either the whole plane or the whole plane punctured at a
single point, then κX(z) = 0 for any point z in X.

Proof. Suppose that X is either C or C \ {p}. Take any point z in X, let N
be a positive integer and set f(ζ) = p + (z − p)eNζ . Then f ∈ Hol(∆, X) and
f(0) = z. Formula (10) implies,

κX(z) ≤ 1
|f ′(0)| =

1
|z − p|N .

Letting N converge to infinity, we see that κX(z) = 0. ¤

Therefore, whenever the hyperbolic density is not defined, the Kobayashi
density is identically equal to zero.

3.2. The generalized Kobayashi density. The definition of the Kobayashi
density for a hyperbolic domain X depends on the hyperbolic density of the unit
disk ∆. Any holomorphic map pushes the density on ∆ forward onto X and
the Kobayashi density is the smallest possible push-forward. To generalize the
density we change the fixed domain ∆ to an arbitrary hyperbolic fixed domain
Ω.

Definition 2. Let X be a domain in the plane. For every z in X let

κΩ
X(z) = inf

ρΩ(t)
|f ′(t)| ,

where ρΩ is the hyperbolic density on Ω and the infimum is over all f ∈ Hol(Ω, X)
and all points t in Ω such that f(t) = z.
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If a holomorphic map f from Ω to X has a critical point at t, as for example
in the case where f is a constant map, then by the continuity of ρΩ the quotient
inside the infimum is a positive number divided by zero and, as is usually done
in the arithmetic of the extended real line, we take it be positive infinity. There-
fore, the range of κΩ

X is always contained in the interval [0,∞]. We call κΩ
X the

Kobayashi density on X with respect to the domain Ω, or simply the generalized
Kobayashi density.

3.3. Properties of the generalized Kobayashi density: The first property
of the generalized Kobayashi density is the following simple comparison between
it and the hyperbolic density.

Proposition 1. For every hyperbolic domain X and every point z in X

(11) ρX(z) ≤ κΩ
X(z).

Proof. Let f be any holomorphic map from Ω to X with f(t) = z. Then f is
a weak contraction with respect to the corresponding Poincaré metrics and it
follows that

ρX(z)|f ′(t)| ≤ ρΩ(t) and

ρX(z) ≤ ρΩ(t)
|f ′(t)| .

Taking the infimum we get ρX(z) ≤ κΩ
X(z). ¤

Corollary 1. For all hyperbolic domains X and all z in X, κΩ
X(z) > 0.

We saw above that when Ω is the unit disk ∆, the uniformization theorem
implies that the holomorphic universal covering map onto the hyperbolic domain
X realizes the infimum in the definition of the classical Kobayashi density.

The second property of the generalized Kobayashi density is that whenever
there is a regular holomorphic covering from Ω to the hyperbolic domain X, the
generalized Kobayashi density reduces to the classical Kobayashi density.

Proposition 2. If there exists a regular holomorphic covering map from Ω onto
X then

κΩ
X ≡ ρX .

In particular,
κΩ

Ω ≡ ρΩ.

Proof. Let g be a regular holomorphic covering map from the basepoint domain
Ω to the hyperbolic domain X. By theorem 1,

ρΩ(t) = ρX(g(t))|g′(t)|
for all t in Ω. For any point z in X, since g is surjective, there exists a point t in
X such that g(t) = z. Now, on the one hand, by the definition of the generalized
Kobayashi density, it follows that

κΩ
X(z) ≤ ρΩ(t)

|g′(t)| = ρX(z),

and on the other, from the first property, it follows that

κΩ
X(z) ≥ ρX(z).

¤
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An immediate corollary is

Corollary 2. If Ω is a simply connected hyperbolic domain then

κX(z) = ρX(z) = κΩ
X(z)

for all hyperbolic domains X and all z in X.

The third property is that, just as for the hyperbolic density, every holomor-
phic map from one domain X to another domain Y is an infinitesimal weak
contraction with respect to the corresponding generalized Kobayashi densities.

Proposition 3. If g ∈ Hol(X, Y ) then

κΩ
Y (g(z))|g′(z)| ≤ κΩ

X(z)

for all z in X.

Proof. Take ε > 0. By the definition of κΩ
X(z), there exists a point t in Ω and a

holomorphic map f from Ω to X such that f(t) = z and

κΩ
X(z) ≥ ρΩ(t)

|f ′(t)| − ε.

Therefore, using the map g ◦ f in the definition of κΩ
Y (g(z)), and applying the

chain rule, it follows that

κΩ
Y (g(z))|g′(z)| ≤ ρΩ(t)

|f ′(t)| ≤ ε + κΩ
X(z).

Letting ε tend to zero, gives the required inequality. ¤

To define the generalized Kobayashi distance between any two points in X we
integrate the density κΩ

X .

Definition 3.

κΩ
X(z1, z2) = inf

∫

γ

κΩ
X(s)|ds|,

where the infimum is over all paths γ in X joining z1 to z2.

Notice that we are again using the same notation for both the density and
the distance between points where the distinction again is determined by the
number of parameters.

Remark. It may happen that the only holomorphic functions in Hol(Ω, X) are
constants so that κΩ

X ≡ ∞ and κΩ
X(z1, z2) = ∞ for any pair z1, z2 ∈ X. We can

interpret this as saying that z1 and z2 are in different components of X. Thus,
at such points, the topology induced by the generalized Kobayashi density is not
equivalent to the hyperbolic (or standard Euclidean) topology of X. Example 1
in section 4 shows that this can happen.

It may also happen that there are non-constant holomorphic functions from Ω
to X, but they all have a critical value at some z0 ∈ X. At these points κΩ

X(z0) is
infinite. In Markowsky’s example in section 4, there is exactly one non-constant
holomorphic function from Ω to X and it has a single critical value at the origin.
For this example κΩ

X(z) < ∞ and κΩ
X(0, z) < ∞ for any non-zero z ∈ X.
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To justify our terminology we next prove that κΩ
X(z, w) is actually a complete

metric on X with the caveat that κΩ
X(z, w) can be infinite.

Proposition 4. (X, κΩ
X) is a complete metric space.

Proof. First we show κΩ
X is a metric. The symmetry and the triangle inequality

follow directly from the definition of the distance between any two points. To
show that the distance between different points is nonzero, suppose that z1 and
z2 are any two distinct points in X. Choose ε > 0 and a curve γ in X that is
ε-close to realizing the infimum so that κΩ

X(z1, z2) ≥
∫

γ
κΩ

X(s)|ds| − ε. Then by
proposition 1,

κΩ
X(z1, z2) ≥

∫

γ

ρX(s)|ds| − ε ≥ ρX(z1, z2)− ε,

and letting ε tend to zero,

(12) κΩ
X(z1, z2) ≥ ρX(z1, z2) > 0.

Now we show κΩ
X is complete. Suppose that an is a Cauchy sequence with

respect to κΩ
X . Inequality (12) implies that an is a Cauchy sequence with respect

to ρX . By the completeness of (X, ρX) there exists a point a in X such that
ρX(a, an) → 0 as n → ∞. We would like to show that an converges to a in the
κΩ

X metric as well.
For each ε > 0, there exists a smallest positive integer N(ε) such that

(13) κΩ
X(an, am) ≤ ε, for all n,m ≥ N(ε).

Hence, taking εn = 1/2n, n = 1, 2, 3, . . ., there exists a subsequence cn =
aN(1/2n) of an such that κΩ

X(cn, cn+1) ≤ 1/2n. Thus there exists a path γn

that joins cn to cn+1, whose length is close to realizing the distance between its
endpoints, so that

κΩ
X(γn) =

∫

γn

κΩ
X(t)|dt| ≤ 1/2n−1.

By inequality (11), the hyperbolic lengths of the curves γn converge to zero.
Since the hyperbolic density is the infinitesimal form of the hyperbolic metric,
it follows that the hyperbolic metric in a neighborhood of a is equivalent to the
Euclidean metric, and therefore that the chain γN , made of composing all paths
γn starting with n = N , is a path that joins cN to a and satisfies

κΩ
X(γN ) =

∑

n≥N

κΩ
X(γn) ≤ 1/2N−2.

It follows that γN is a path whose length goes to zero as N goes to infinity. Thus
κΩ

X(cn, a) goes to zero and cn is a κΩ
X -convergent subsequence with limit a. This,

combined with inequality (13), implies that an κΩ
X -converges to a as claimed. ¤

Holomorphic functions are contractions for this new metric.

Proposition 5. Every holomorphic map is a weak contraction with respect to the
generalized Kobayashi metric. That is, if f ∈ Hol(X, Y ) then κΩ

Y (f(z1), f(z2)) ≤
κΩ

X(z1, z2).

Proof. This is a straightforward consequence of Proposition 3. ¤
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All of the above properties of the κΩ
X density refer to the fixed domain Ω. The

next property tells us what happens when we fix the target domain X and vary
the source domain Ω.

Proposition 6. (a) If there exists a regular holomorphic covering map g from
Ω onto Y, then for all domains X and all points z in X

κΩ
X(z) ≤ κY

X(z).

In particular,
(b) if Ω is a simply connected hyperbolic domain, then for all hyperbolic

domains X and Y , and all points z in X,

ρX(z) = κX(z) = κΩ
X(z) ≤ κY

X(z)

and
(c) if Ω and Y are conformally equivalent domains, then for all domains X

and all points z in X,

κΩ
X(z) = κY

X(z).

Proof. Let z be a point in X. Take a small positive constant ε. By the definition
of κY

X(z), there exists f ∈ Hol(Y, X) and a point t in Y, such that f(t) = z and

(14) κY
X(z) ≥ ρY (t)

|f ′(t)| − ε.

Since g is a surjective map, there exists a point w in Ω, such that g(w) = t.
Furthermore, since g is a regular holomorphic covering map, by theorem 1, g is
an infinitesimal isometry from Ω to Y. Therefore,

(15) ρΩ(w) = ρY (t)|g′(w)|.
The definition of κΩ

X(z) and the chain rule yield

(16) κΩ
X(z) ≤ ρΩ(w)

|(f ◦ g)′(w)| =
ρΩ(w)

|f ′(t)g′(w)| .

Combining (14), (15) and (16), we obtain

κY
X(z) + ε ≥ ρY (t)

|f ′(t)| =
ρΩ(w)

|g′(w)||f ′(t)| ≥ κΩ
X(z).

Letting ε tend to zero, we obtain (a). To show part (c), observe that the confor-
mal map from Ω to Y and its inverse are both regular holomorphic covering maps.
Since there exists a universal covering map from the unit disk to any hyperbolic
domain, part (b) follows from corollary 2, the Riemann mapping theorem and
part (a). ¤

While the hyperbolic density is continuous, for κΩ
X(z) we have the weaker

statement

Proposition 7. The density κΩ
X(z) is upper semi-continuous for every domain

X.



A GENERALIZED HYPERBOLIC METRIC FOR PLANE DOMAINS 9

Proof. Fix z0 ∈ X. If κΩ
X(z0) 6= ∞, then given ε > 0 we can find f0 ∈ H(Ω, X)

and a point w0 ∈ Ω with f0(w0) = z0 and f ′0(w0) 6= 0 such that

κΩ
X(z0) ≥ ρΩ(w0)

|f ′0(w0)| − ε

Let zn ∈ X be a sequence with limit z0. Since f ′0(w0) 6= 0 we can find a local
inverse g0 = f−1

0 and a sequence wn = g0(zn) in Ω such that wn → w0. Because
f ′0 and ρΩ are continuous functions, given δ > 0 we can find an N such that for
all n > N ,

κΩ
X(zn) ≤ ρΩ(wn)

|f ′0(wn)| ≤
ρΩ(w0)
|f ′0(w0)| + δ.

It follows that

lim sup
n→∞

κΩ
X(zn) ≤ ρΩ(w0)

|f ′0(w0)| + δ ≤ κΩ
X(z0) + ε + δ

Since ε and δ are arbitrarily small, κΩ
X is upper semi-continuous as claimed. ¤

As an immediate corollary we have

Corollary 3. The subset of X where κΩ
X = ∞ is closed.

4. Examples

EXAMPLE 1 Ω is the complex plane punctured at n ≥ 2 points and X is
an arbitrary plane domain whose complement contains at least n + 1 points.

Suppose that Ω = C \ {p1, p2, p3, . . . , pn} where p1, p2, p3, . . . , pn are n ≥ 2
disjoint points and let f : Ω → X be any holomorphic function. Then f is
holomorphic in a punctured neighborhood Ni of pi and has a Laurent series
expansion about pi. If pi is an essential singularity of f then f(Ni) covers every
point in Ĉ, with the exception of at most two points, infinitely often. Since the
complement of X contains at least 2 points, f(Ni) must cover X and at least
one of its boundary points, contradicting the assumption that f(Ω) ⊂ X.

Therefore, for each i, pi must be either a pole or a removable singularity and
f |Ni can be extended to pi so that f̃(pi) ∈ Ĉ is meromorphic. Extending at each
point we obtain f̃ , whose image is compact. Since a holomorphic map is either
constant or open the image is either a single point or the whole sphere with the
property f = f̃ |Ω. Now if f is not a constant function,

X ⊃ f(Ω) = f̃(Ω) ⊃ f̃(C) \ ∪n
i=1f̃(pi)

But this cannot be since the complement of X contains at least n + 1 points.
We conclude that the only holomorphic functions f : Ω → X are constants and
that κΩ

X ≡ ∞.

EXAMPLE 2 Ω is an arbitrary hyperbolic domain and X is a simply
connected hyperbolic domain.

Since X is a simply connected hyperbolic domain there is a biholomorphic
map h : ∆ → X. Applying Proposition 3 to both h and h−1 we deduce
κΩ

X(h(z))|h′(z)| = κΩ
∆(z) so we may assume X is ∆.
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To evaluate κΩ
∆(z), recall that the Möbius transformation, A(w) = w−z

1−wz̄ maps
z to 0. Applying proposition 3 again,

(17) κΩ
∆(z) = κΩ

∆(0)|A′(z)| = κΩ
∆(0)

1− |z|2 = κΩ
∆(0)ρ(z).

We conclude κΩ
X(z) = K(Ω)ρX(z) where K(Ω) is a constant depending on

the domain. By proposition 1, K(Ω) ≥ 1. We saw in the previous example that
K(Ω) can be infinity. We will see in Examples 3 and 4 that it can take the value
one. For an example where it is finite but strictly greater than one see example 4
in [4] section 10.5.

EXAMPLE 3 Ω is a hyperbolic simply connected domain with a puncture
and X is an arbitrary hyperbolic domain.

Since there is a biholomorphic map from Ω union its puncture to ∆, such that the
puncture maps to the origin, we may, by proposition 6(c), assume Ω = ∆\{0} =
∆∗. Thus we want to find κ∆∗

X (z) for any z ∈ X.
Fix z ∈ X and let π : ∆ → X be a universal covering map. Since it is a

covering, ρX(π(t))|π′(t)| = ρ∆(t) for all t ∈ ∆. For the moment fix t such that
π(t) = z.

Choosing π|∆∗ as a candidate f in our definition, we have

κ∆∗
X (z) ≤ ρ∆∗(t)

|π′(t)| =
ρ∆∗(t)
ρ∆(t)

ρX(z).

Now suppose tn ∈ ∆ with |tn| → 1. By pre-composing with a Möbius trans-
formation we can choose πn : ∆ → X such that πn(tn) = z. From the above we
have

κ∆∗
X (z) ≤ ρ∆∗(tn)

ρ∆(tn)
ρX(z).

Using the fact that ρ∆∗(t) = 1
2|t| log 1

|t|
, it is an exercise to show that that

ρ∆∗(tn)
ρ∆(tn)

→ 1.

We conclude κ∆∗
X (z) ≤ ρX(z). Combining this with proposition 1 we see that

κ∆∗
X (z) = ρX(z). In particular, K(∆∗) = 1.

EXAMPLE 4 Let A = {z : 0 < a < |z| < 1}.
Let t be any point in A and let tn be any preimage of t under the map

fn(z) = zn. Since fn maps A into ∆, by definition,

kA
∆(t) ≤ ρA(tn)

|f ′n(tn)| .

Since fn is a covering map from ∆∗ onto itself, we have by theorem 1,

ρ∆∗(tn) = ρ∆∗(t)|f ′n(tn)|.
By the relation 17,

kA
∆(t) = kA

∆(0)ρ(t).
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Thus

K(A) = kA
∆(0) =

kA
∆(t)
ρ(t)

≤ ρA(tn)
ρ(t)|f ′n(tn)| =

ρA(tn)ρ∆∗(t)
ρ(t)ρ∆∗(tn)

→ ρ∆∗(t)
ρ(t)

as n →∞.

Now letting |t| → 1 it follows that K(A) ≤ 1.

EXAMPLE 5 We conclude with an example originally worked out by
Markowsky [6] that shows that the generalized Kobayashi metric can degenerate
at points without being degenerate on the whole domain. In this example the
Kobayashi density takes the value infinity at an isolated point, but the distance
from that point to any other is still finite. The point is thus like a pole for the
density function.

Let K = {∞, e
πi
6 , e

πi
3 , e

πi
2 , eπi} and set Ω = Ĉ \ f−1(K). Let f(z) = z2 and

set X = Ĉ \K; then f maps Ω onto X.
Suppose g is any non-constant holomorphic map in Hol(Ω, X). Because X is

the complement of the Riemann sphere punctured at n ≥ 3 points, g has remov-
able singularities at the punctures. It therefore extends to a rational function
of degree d, also called g, from the sphere to itself. By the Riemann-Hurwitz
formula, the cardinality of the set g−1(K) ⊂ f−1(K) is at least 5d − (2d − 2).
Since the cardinality of f−1(K) is 9, we see that d ≤ 2.

Note that there must be at least three points a, b, c in K\{∞} whose preimages
lie in f−1(K) \ {∞} and hence on the unit circle.

If d = 1, g is a Möbius transformation that sends three points on the unit
circle to a, b, c and so maps the whole circle to itself. The preimage of infinity
is therefore not on the unit circle so g fixes infinity and must be of the form
g(z) = λz, |λ| = 1. Since X 6⊆ λΩ we conclude d = 2.

Let h be a Möbius transformation that takes the unit circle to the real line
sending a, b, c to 0, 1,∞ and set g̃ = h ◦ g ◦ h−1. Then g̃ is a rational function of
degree 2 of the form

g̃(z) = λ
(z − r)(z − s)
(z − t)(z − u)

with the usual conventions if one of the constants is infinity. Since g̃−1({0, 1,∞}) ⊂
R∪{∞} we deduce that all the constants λ, r, s, t, u are real and g is a Blaschke
product. Since g−1(K) \ {∞} is contained in the unit circle, g fixes infinity and
is of the form λz2 with |λ| = 1. Again, the only way g(Ω) ⊆ X is λ = 1 so that
g(z) = z2.

Now we can easily compute the generalized Kobayashi density in terms of ρΩ.
We have

κΩ
X(z) = inf

±√z

ρΩ(
√

z)
|2√z| .

This takes the value infinity at the origin, but nowhere else in X. Note that if
γ(t) is a straight segment from a point z0 ∈ X that ends at the origin, its length
is finite.
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This construction can easily be extended to domains Ω and X with the single
non-constant holomorphic map zd, d > 2 between them by removing more points
from the circle and placing them appropriately.
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