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Abstract

We study the parameter planes of certain one-dimensional, dynamically-defined slices of
holomorphic families of entire and meromorphic transcendental maps of finite type. Our
planes are defined by constraining the orbits of all but one of the singular values, and leaving
free one asymptotic value. We study the structure of the regions of parameters, which we
call shell components, for which the free asymptotic value tends to an attracting cycle of
non-constant multiplier. The exponential and the tangent families are examples that have
been studied in detail, and the hyperbolic components in those parameter planes are shell
components. Our results apply to slices of both entire and meromorphic maps. We prove
that shell components are simply connected, have a locally connected boundary and have
no center, i.e., no parameter value for which the cycle is superattracting. Instead, there is a
unique parameter in the boundary, the virtual center, which plays the same role. For entire
slices, the virtual center is always at infinity, while for meromorphic ones it maybe finite or
infinite. In the dynamical plane we prove, among other results, that the basins of attraction
which contain only one asymptotic value and no critical points are simply connected. Our
dynamical plane results apply without the restriction of finite type.
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1 Introduction

Our starting point is a holomorphic family F = {f(x, z) = fx(z) : X×C→ Ĉ} of transcendental
entire or meromorphic functions defined over a complex analytic manifold, the parameter space.
By a meromorphic map we mean a map with at least one pole which is not omitted. Iterating fx
for a given value of x gives rise to a dynamical system. A fundamental problem is to understand
what bifurcations occur in the dynamics as one varies the parameter x. In this generality,
the problem is very difficult and no results exist. Because the dynamics of these systems are
controlled by the orbits of the singular values of the maps fx, one effective way to approach
the problem is to define one-dimensional subspaces, or “slices” through the manifold X that
constrain all but one of these singular values and analyze the structure within these slices. For
the family of quadratic polynomials this analysis has been carried out more or less completely.
(See for example [DH84, DH85a, CG93]). For polynomials of higher degree and rational maps,
this is also true to a lesser extent (see e.g. [Ree95, BH88, BH92, Ber13]), and this analysis
shows that behavior for quadratics is not special, but is a paradigm for rational dynamics as
well. To wit, one often sees copies of Mandelbrot sets in one dimensional slices of rational or
transcendental families; the slice of degree two rational maps with an attracting fixed point and
fixed multiplier, or Newton’s method for cubic polynomials are examples of this [DH85b, GK90]).

The exponential and the tangent family were the first examples of transcendental entire and
meromorphic functions respectively to be systematically studied (e.g. [BR75, RG03, DFJ02,
KK97]). The essential new feature for transcendental functions is that they have asymptotic
values, which are, in effect, images of infinity along certain paths. This introduces new phenom-
ena into the structure of the parameter spaces that are not seen for rational maps. In the same
way that the Mandelbrot-like sets code the influence of the critical values of the dynamics of ra-
tional maps, these new phenomena code the influence of the asymptotic values on the dynamics
of our families of transcendental maps.

This work is the first to find a context for studying parameter spaces of large classes of both
transcendental entire and meromorphic maps. Our goal is to show that in holomorphic families
of such functions, there are natural one-dimensional slices in the parameter space in which there
are always certain kinds of components whose properties are characterized by the existence of
asymptotic values.

We define a one-dimensional slice by allowing only one “free” asymptotic value to vary. Our
main results concern properties of the parameter regions for which this free asymptotic value
is attracted to an attracting cycle. These regions, which we call “shell components”, are the
analogues in this setting of the hyperbolic components of the interior of the Mandelbrot-like sets
for rational maps.

To make these ideas precise, consider the dynamical system formed by iterating an entire or
meromorphic transcendental map of the complex plane

f : C→ C ∪ {∞}.

Because of the essential singularity at infinity, the global degree of f is infinite and the dynamics
is richer than for rational maps. The exponential and the tangent maps are in this class. Other
examples are generated by applying Newton’s method to an entire function, which almost always
yields a transcendental meromorphic map as the root finder function to be iterated.
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The dynamical plane of f splits into two disjoint completely invariant subsets: the Fatou
set, or points for which the family of iterates is well defined and form a normal family in some
neighborhood; and its complement, the Julia set. The Fatou set is open and contains, among
other types of components, all basins of attraction of attracting periodic orbits. By contrast,
the Julia set is closed in the sphere and it is either the whole sphere or has no interior. It can
be characterized as the closure of the repelling periodic points or, if the map is meromorphic, as
the closure of the set of poles and prepoles. For general background on meromorphic dynamics
we refer to the survey [Ber93] and the references there.

A key role in the dynamics of a transcendental map f is played by points in the set S(f) of
singular values of f ; these are either critical values (images of zeroes of f ′, the critical points),
or asymptotic values (points v = limt→∞ f(ω(t)) where ω(t)→∞ as t→∞), or accumulations
thereof. Indeed every periodic connected component of the Fatou set is, in some sense, associated
to the orbit of a point in S(f). For example, basins of attraction of an attracting or parabolic
cycle must actually contain a singular value, but weaker conditions associating a singular value
to Siegel disks or Baker domains [Mil06, Ber95, BF20] and even to wandering domains [BFJK20]
also exist. Note that S(f) coincides with the set of singularities of the inverse map.

Transcendental entire or meromorphic functions with a finite number of singular values have
finite dimensional parameter spaces [EL92, GK86]. These are known as finite type maps and
denoted by

S := {f : C→ C ∪ {∞} entire or meromorphic | #S(f) <∞}.

Maps in the class S have several special properties such as the absence of wandering domains
[Sul85, GK86, EL92, BKY92] or the existence of at most a finite number of non-repelling cycles.

Entire transcendental functions, whose dynamics have attracted a great deal of attention in
the last few years, may be thought of as special cases of transcendental meromorphic maps in a
wider sense, namely those with all their poles at infinity. The simplest example is the exponential
family Eλ(z) = ez+λ. By Iversen’s theorem [Ive14] entire functions (and meromorphic functions
with finitely many poles), all have infinity as an asymptotic value, which may be taken to mean
that infinity is a multiple pole. By contrast, meromorphic maps for which infinity is not an
asymptotic value are at the other end of the spectrum: they necessarily have infinitely many
poles and this difference in behavior at infinity has consequences for the dynamical and parameter
spaces (see e.g. [BK12]). The tangent family of maps Tλ(z) = λ tan(z) [DK88, KK97, GK08] is
the simplest example of these. This class, which we denote as

M∞ := {f ∈ S | ∞ is not an asymptotic value},

in some sense captures the essence of meromorphic maps since the condition that infinity is not
an asymptotic value persists under small perturbations of f in S.

To center the discussion, we consider dynamically natural families (or slices) of functions
in S which, roughly speaking, consist of one-dimensional slices of larger holomorphic families
of entire or meromorphic maps, for which only one singular value is allowed to bifurcate at
any given parameter value (see Definition 4.5 for details). We concentrate our attention on the
behavior of a marked asymptotic value called the free asymptotic value, and in particular, on the
connected components of parameters for which this marked point is attracted to an attracting
cycle whose basin contains no other singular value. We call these sets shell components and
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they are the transcendental version of the hyperbolic components one finds in parameter planes
of rational maps. Note, however, that because we allow parabolic cycles to exist and attract a
non-free singular value, the maps here need not be hyperbolic. While shell components occur
in the parameter planes for many families of entire functions, they are better understood in the
broader context which includes meromorphic functions.

The first part of the paper deals with the properties of attracting basins in the dynamical
plane of maps belonging to a shell component. Our main results about the dynamical plane are
proved in Section 3, and are summarized (in a slightly weaker form) in the following statement.

Theorem A. Let f be an entire or meromorphic function. Suppose that a0, . . . , ap−1 is an
attracting cycle of period p ≥ 1 whose basin of attraction A contains exactly one asymptotic
value v and no critical points. For i = 0, . . . , p − 1 let Ai be the component of A containing ai
and labeled so that f(Ai) = Ai+1 (mod p) and v ∈ A1. Set A := A0 ∪ · · · ∪ Ap−1, the immediate
basin of attraction. Then:

(a) Every component of A is simply connected;

(b) A contains no finite preimage of v;

(c) A0 is unbounded and maps infinite to one onto A1 \ {v} while f : Aj → Aj+1 is univalent
for all j 6= 0;

(d) If in addition, S(f) ∩ ∂A = ∅, then A contains only one asymptotic tract of v.

Note that the only assumption on f in Theorem A is that it is transcendental. In particular,
it may have infinitely many singular values.

The rest of the paper concentrates on properties of parameter spaces. A dynamically natural
slice is represented by a one-dimensional manifold, Λ ⊂ X, isomorphic to the complex plane
with perhaps a discrete set of punctures called parameter singularities, where, for example, the
function may reduce to a constant. For simplicity we require the parametrization to trace the po-
sition of the marked asymptotic value in an affine fashion. Most of the best known one-parameter
slices such as quadratic rational maps with a super attracting cycle (quadratic polynomials),
cubic polynomials with a super attracting fixed point, exponential or tangent functions, and so
on, are dynamically natural slices of maps in different classes where the parameter is an affine
function of a singular value (see Section 7).

If Λ is a dynamically natural slice for the family F of entire or meromorphic maps in S,
we call the restriction of the family to Λ a “dynamically natural family” and denote it by
{fλ}λ∈Λ. The slice Λ contains different types of “distinguished” parameter values which are so-
lutions of algebraic or transcendental equations. Slightly abusing the usual terminology we call
those parameter values for which the free singular value lands on a repelling cycle Misiurewicz
parameters. Centers, parameters for which a critical point is periodic, are also distinguished pa-
rameters. Meromorphic transcendental maps have an additional type of distinguished parameter
which does not occur for rational maps. We call a parameter λ a virtual cycle parameter if some
iterate of the asymptotic value is a pole for fλ. This name is motivated by the existence of a
virtual cycle, morally a “cycle” that contains the point at infinity and the asymptotic value (see
Definition 6.7). Virtual cycle parameters are important in our discussion and they are generally
quite abundant in the following sense (see Proposition 5.6).
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Proposition B. Let {fλ}λ∈Λ be a dynamically natural family of entire or meromorphic maps
in S, and let v = v(λ) be the free asymptotic value. Both the virtual cycle parameters, when
they exist, and the Misiurewicz parameters are dense in the set

B(v) := {λ0 ∈ Λ | {λ 7→ fnλ (vλ)} is not a normal family in any neighborhood of λ0}.

Moreover B(v) has no isolated points in Λ.

The set B(v) is known as the activity locus of the free asymptotic value and is part of
the bifurcation locus B, or the set of parameters for which at least one of the singular values
bifurcates. It follows from our definition of a dynamically natural slice, that the boundary of
any shell component is a subset of B(v).

General results of this nature have been shown for parameters spaces of rational maps using
bifurcation currents (see for example [Ber13, DF08, Duj14, Gau12]).

By definition, functions in a shell component of a dynamically natural slice have no critical
points in the basin of the attracting cycle, so the multiplier of the cycle is never zero, and
therefore the component has no center. We see however, that some virtual cycle parameters
play the role of centers in our setting (see Theorem 6.10).

Definition 1.1 (Virtual center). Let Ω be a shell component of a dynamically natural family
{fλ}λ∈Λ of entire or meromorphic maps. We say that λ∗ ∈ (∂Ω ∩ Λ) ∪ {∞} is a virtual center
of Ω, if there exists a sequence of λn ∈ Ω such that λn → λ∗ and the multiplier ρΩ(λn) of the
attracting cycle for λn tends to 0.

Here and throughout the paper, when we say a point is finite we mean that it is not the
point at infinity.

Theorem C. Let {fλ}λ∈Λ be a dynamically natural family of entire or meromorphic maps in
S and let Ω be a shell component. Then, if λ∗ ∈ ∂Ω∩Λ is a virtual center, λ∗ is a virtual cycle
parameter. Thus, if the functions are entire, there are no finite virtual centers.

Although maps in a shell component might be non-hyperbolic, a shell component Ω shares
many properties with hyperbolic components of known families like the exponential or tangent
families, [RG03, KK97]. Indeed, shell components can be parametrized by the multiplier map

ρ = ρΩ : Ω −→ D∗

where D∗ := D \ {0}, and ρ(λ) is the the multiplier of the attracting cycle to which v(λ) is
attracted. Since the multiplier is never zero, ρ is a covering (see Theorem 6.4) and hence shell
components are either simply connected and ρ has infinite degree or else they are homeomorphic
to D∗, where the puncture is a parameter singularity (see Theorem 2.2 and Corollary 6.5).

Our last result describes the internal structure and the boundary of a shell component and
establishes the existence and uniqueness of the virtual center (see Theorem 6.13, and corollaries
6.14, 6.14 and 6.18).

Theorem D. Let {fλ}λ∈Λ be a dynamically natural family of entire or meromorphic maps in S
and let Ω be a simply connected shell component. Let p ≥ 1 be the period of the attracting cycle
throughout Ω. Then:
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(a) ∂Ω is locally connected and hence a continuous curve.

(b) ∂Ω has a unique virtual center.

(c) If p = 1 or if the family is entire, the virtual center is at infinity and therefore Ω is
unbounded.

(d) Define the internal ray in Ω of angle θ as

RΩ(θ) := {ρ−1
Ω (exp(t+ 2πiθ)), t ∈ (−∞, 0)}.

Then, all internal rays have one end at the virtual center and the other end at a point in
∂Ω (which a priori could be infinity). If the virtual center λ∗ is finite no internal ray has
both ends at λ∗.

When the shell component is not simply connected then the puncture, which is a param-
eter singularity, plays the role of the virtual center. An example of a doubly connected shell
component can be seen in Example 1(d) in Section 7.

Figure 1: Sketch of two shell components and their internal rays. On the left (resp.
right) the virtual center is at infinity (resp. at a finite point) and therefore the component
is unbounded (resp. bounded).

Numerical experiments show that for meromorphic functions in M∞ shell components of
period larger than one are always bounded, that is, they have their virtual center at a finite
parameter value, so that it seems reasonable to conjecture that this is so in general. At present,
we can only prove this fact for particular families like the tangent family. (See [CK19]).

The paper is structured as follows. In Section 2 we recall the definition of singular values of
transcendental functions and we state some standard theorems on the covering and connectivity
properties of their Fatou components. In Section 3 we discuss the properties of the dynamical
planes of these functions, proving Theorem A. In Section 4 we define the dynamically natural
slices of parameter spaces that are the main subject of the paper and in Section 7 we give a
number of examples. In Section 5 we define various types of distinguished parameter values that
lie in the bifurcation locus and prove Proposition B. Section 6 is the heart of the paper where,
after some preliminary results, we prove Theorems C and D. We conclude with an Appendix
where we discuss a theorem of Nevanlinna that allows us to characterize certain functions of
finite type. We also extend this theorem to a somewhat larger class of functions.
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2 Preliminaries and Setup

2.1 Singularities of the inverse function

Let f be a transcendental entire or meromorphic map. A point v ∈ C is a singular value of f if
some branch of f−1 fails to be well defined in every small enough neighborhood of v. Singular
values may be critical, asymptotic or accumulations thereof. If c is a critical point, that is, a zero
of f ′ then its image v = f(c) is a critical value. If there is a path ω(t) such that limt→1 ω(t) =∞
and limt→1 f(ω(t)) = v then the limit v is an asymptotic value of f . Observe that the point at
infinity is always an essential singularity, but it may be or not be a singular value. It is a critical
value if and only if it is the image of a multiple pole of f and it is an asymptotic value if some
unbounded curve has an image that tends to infinity. For example, infinity is not a singular
value for the tangent map.

Singular values are classified in terms of the branches of f−1 as follows (see [BE95],[Ive06]).

Proposition 2.1 (Classification of singularities). Let f be an entire or meromorphic transcen-
dental map. For any z ∈ C and r > 0, let B(z, r) be the disk of radius r centered at z. Let Ur
be a connected component of f−1(B(z, r)), chosen such that Ur ⊂ Ur′ if r < r′. Then there are
only two possibities:

(a)
⋂
r Ur = {p}, p ∈ C

(b)
⋂
r Ur = ∅.

In case (a), f(p) = z, and either f ′(p) 6= 0 and z is a regular point, or f ′(p) = 0 and z is a
critical value. In case (b), the chosen inverse branch with image Ur defines a transcendental
singularity over z, and it can be shown that z is an asymptotic value for f .

The map f is said to be of finite type if it has a finite number of singular values. Note that
this implies all the singular values are isolated.

If an asymptotic value v is isolated, the radius r in the above proposition can be chosen
small enough so that f : Ur → B(v, r) \ {v} is a universal covering map. In this case Ur is called
an asymptotic tract for the asymptotic value v and v is called a logarithmic singular value or a
logarithmic singularity. The number of distinct asymptotic tracts of a given asymptotic value
is called its multiplicity. Note that this notion is not the same as the multiplicity of a critical
value, that is, the sum of the multiplicities (local degree minus one) of f over all its preimages.
Using this term in these two ways should not cause confusion.

We denote the set of singular values of f by S(f) and the post-singular set by

P (f) =
⋃
x∈Sf

⋃
n≥0

fn(x).
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By Iversen’s Theorem [Ive14] an entire transcendental function f always has an asymptotic value
at infinity.

2.2 Mapping properties

The following lemma is well known in algebraic topology. See for example [Mas67] for the general
theory of coverings or [Zhe10, Thm. 6.1.1.] for a proof of the lemma below.

Let U, V ⊂ C. Recall that a map f : U → V is a covering map if for every z ∈ V and every
small enough neighborhood Nz of z, f−1(Nz) consists of a collection of disjoint topological disks
{Di}i such that f : Di → Nz is a homeomorphism. If f : Di → Nz is equivalent to zd for some
d > 1, f is a branched covering of order d− 1. If f is unbranched and U is simply connected we
say that f is a universal covering.

Lemma 2.2 (Holomorphic coverings of D and D∗). Let U ⊂ Ĉ be an open set, D be the unit
disk and and D∗ = D \ {0}.

(a) If f : U → D is a holomorphic covering map, then U is simply connected and f is univalent.

(b) If f : U → D∗ is a holomorphic covering map, then either

(i) U is conformally equivalent to D∗ and there exists a biholomorphic mapping ψ : U →
D∗, such that f = (ψ)d for some d ∈ N, or

(ii) U is simply connected and there exists a biholomorphic mapping ψ : U → Hl = {z :
Rez < 0} such that f = exp ◦ψ.

3 Dynamical plane. Proof of Theorem A.

In this section we describe some properties of the dynamical plane for general entire or mero-
morphic maps. In particular, we do not assume our maps to have a finite number of singular
values. Theorem A in the introduction follows from the three propositions in this section, which
are slightly stronger than the theorem itself.

We are interested in basins of attraction of attracting cycles containing a unique asymptotic
value v. Since v is the only singular value in the basin, it is isolated and is thus a logarithmic
singularity (see Section 2.1). It follows that if V ∗ is a punctured neighborhood of v, there exists
at least one asymptotic tract among the components of f−1(V ∗).

We shall prove that under this weak assumption, a great deal can be said about the attracting
basin. We begin with connectivity properties.

Proposition 3.1 (Simply connected basin). Let f be an entire or meromorphic transcendental
function. Suppose that a0, · · · , ap−1 is an attracting cycle of period p ≥ 1 whose immediate
basin of attraction A contains exactly one asymptotic value v and no critical points. Then every
component of A is simply connected and A contains no finite preimage of v. If, moreover, there
are no other singular values or critical points in the whole basin of attraction A, then every
component of A is simply connected.
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Proof. For k = 0, . . . , p − 1, let Ak denote the component of A which contains ak where labels
are defined so that f(Ak) = Ak+1 (mod p). Let U0 ⊂ A0 be a topological open disk with a smooth

boundary containing a0 in its interior and such that fp is one to one in U0 and fp(U0) ⊂ U0.
This set exists by Koenig’s Linearization Theorem (see e.g. [Mil06]). Consider the successive
preimages of U0 which follow the cycle in reverse order; that is for every k ≥ 1, recursively define
the set Uk ⊂ A(p−k) mod p as the component of f−1(Uk−1) that contains the point a(p−k) mod p.
This defines a nested sequence of open sets around each of the points in the cycle. That is, for
every 0 ≤ k ≤ p− 1 we have

Uk ⊂ Uk+p ⊂ Uk+2p · · ·

and the infinite union of these nested sets equals Ak. By definition, since every component Ak
is the infinite union of a collection of nested open sets, the components of the immediate basin
are simply connected if and only if Uk is simply connected for every k.

We will use induction to show every Uk is simply connected. For k = 0, this is true by
construction. We assume now that Uk is simply connected and prove that the same is true for
Uk+1.

First suppose that v /∈ Uk. Then Uk has no singular value and so Uk+1 has no critical point
and thus f : Uk+1 → Uk is a covering map. Since Uk is conformally equivalent to a disk by
hypothesis, it follows from Lemma 2.2 that Uk+1 is simply connected and f is conformal on this
set.

Now suppose that v ∈ Uk. Then Uk+1 either contains an asymptotic tract of v and f |Uk+1

has infinite degree, or it does not. Suppose it does. By hypothesis f : Uk+1\{f−1(v)} → Uk\{v}
is a covering map. Since Uk \ {v} is conformally equivalent to a punctured disk, it follows from
Lemma 2.2 that f−1(v) ∩ Uk+1 contains at most one point. But if it contained a point, f |Uk+1

would have finite degree, and that is not the case. Hence f−1(v)∩Uk+1 = ∅ and Uk+1 is simply
connected and we are done.

Now suppose Uk+1 does not contain an asymptotic tract. In this case, f : Uk+1 \{f−1(v)} →
Uk \ {v} is still a covering, but now of finite degree, and thus f−1(v) is a single point, a finite
preimage v′ of v. Note that this degree must be one because there are no critical values in
the basin. Eventually, however, Uk+qp+1 must contain an asymptotic tract of v for some q > 0
because the immediate basin must contain a singular value and v is the only such by hypothesis.
Since the sets are nested, Uk+qp+1 would then contain not only v′ but also the asymptotic tract
of v so that f : Uk+1+qp → Uk+qp has infinite degree and would contradict part (ii) of Lemma 2.2.

We conclude that every component of the immediate basin is simply connected and v has
no finite preimages in A.

If furthermore A contains no critical points, the same arguments applied to preimages of
every Ak for every k, show that at every component A is simply connected.

Proposition 3.2 (Simple asymptotic value). In the setup of Proposition 3.1, suppose that p ≥ 2
and let A0, . . . , Ap−1 be the components of the immediate basin of attraction A of the attracting
p−cycle, indexed so that v ∈ A1, f(Aj) = Aj+1 (mod p), and aj ∈ Aj for 0 ≤ j < p− 1. Let S(f)
be the set of singular values of f and suppose S(f) ∩ ∂A = ∅. Then,

(a) A0 is unbounded and maps infinite to one onto A1 \ {v}. Moreover infinity is accessible
from A0.
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(b) f : Aj → Aj+1 is one to one for all j 6= 0 mod p. If f ∈ M∞, then ∂Ap−1 contains an
accessible pole.

(c) A0 contains only one asymptotic tract of v (i.e., v has multiplicty one in A)

Proof. Let B ∈ A1 be a neighborhood of v with a smooth boundary. Then f−1(B) contains a
simply connected unbounded set T in A0 (an asymptotic tract) whose boundary is a open curve
which tends to infinity in both directions, showing that infinity is accessible from A1. Moreover,
f : T → B has infinite degree, hence f : A0 → A1 has infinite degree. This shows (a).

Since v ∈ A1 is the only singular value in the basin, f : Aj → Aj+1 (mod p) is a covering map
for all j 6= 0. Consequently, since all components of the basin are simply connected, these maps
are all univalent.

Let γ : [0, 1) → A0 be any curve tending to infinity as t → 1, and let σ : [0, 1) → Ap−1 be
a path satisfying γ = f ◦ σ. By continuity, any accumulation point of σ(t) when t → 1 must
be infinity or a pole. Since the set of poles is discrete, it follows that σ must actually land at
infinity or at a pole of f . If σ were to land on infinity, infinity would be an asymptotic value.
Therefore, if we assume that∞ is not an asymptotic value of f , it follows that it lands at a pole
in ∂Ap−1; it is accessible from Ap−1 (i.e., the limit of an arc σ(t) ⊂ Ap−1) by construction. This
ends the proof of (b).

The strategy for proving (c) relies on showing that if A0 contains two asymptotic tracts
of v, it must also contain a critical point of f , contradicting the hypotheses. Although this is
probably well known, we did not find a reference for it and therefore we include a proof. We
need to set up some notation. Let δ : [0, 1] → C be a simple curve such that δ(0) = w ∈ ∂A1,
δ(0, 1] ⊂ A1 and δ(1) = v. (Recall that most boundary points are accessible [Pom92, Sect. 6.4]).
Since f : A0 → A1 \ {v} is a covering map, the set of preimages of δ in A0 consists of countably
many disjoint simple curves {δi}i∈Z, each connecting∞ to a preimage wi ∈ ∂A0∩C of w. No δi
can have both ends at infinity, because otherwise w would be an asymptotic value in ∂A1 which
contradicts the hypotheses. The curves δi divide A0 into infinitely many fundamental domains
Di, each of which maps conformally onto A1 \ δ. Hence the inverse branches ψi : A1 \ δ → Di

are well defined and univalent.

Let B ∈ A1 be a simply connected neighborhood of v such that δ crosses ∂B exactly once.
Suppose that f−1(B) ∩ A0 has two (and for simplicity, only two) different components T and
T ′; that is, there exist two asymptotic tracts of v in A0. Our goal is to show that this cannot
happen under the assumption that there no singular values in ∂A1.

To that end, start by observing that T and T ′ are both unbounded simply connected sets
whose boundary is an open curve that tends to infinity in both directions. Together, T and T ′

form the full preimage of B in A0. Hence the preimages of δ ∩B are unbounded subsets of the
curves δi which map to B, and thus belong either to T or to T ′. Now let {δTj }j∈Z and {δT ′k }k∈Z
denote the two biinfinite subsets of {δi}i∈Z that tend to infinity within T or T ′ respectively, and
indexed in such a way that δTj is in between δTj−1 and δTj+1 (respectively for T ′). Also relabel

the domains Di and the points wi accordingly, so that DT
j is bounded by δTj and δTj+1, and

wTj ∈ ∂A0 is the finite endpoint of δTj (respectively for T ′). See Figure 2.

Now consider a point b ∈ ∂B, b /∈ δ, and let bT and bT
′

be two arbitrary preimages (out
of the infinitely many) in ∂T and ∂T ′ respectively. Let γ be a simple curve joining bT and bT

′
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Figure 2: Sketch of the proof of Proposition 3.2. In light gray we trace part of the
boundaries of A0 and A1 although they play no role in this proof.

through the open set A0 \ (T ∪ T ′). Then γ divides this set into two unbounded components,
say C1 and C2, whose union must contain the whole boundary of A0. In particular, the points
wTi and wT

′
i , each belong either to C1 or to C2.

Our first claim is that not all these points can belong to the same component C1 or C2.
Indeed if they did, infinitely many curves δTj and δT

′
j would intersect γ. This would in turn

imply that f(γ) ∈ A1 \ B crosses δ infinitely many times and hence runs around v infinitely
many times and has infinite length. But this cannot happen because f(γ) is a finite length
closed curve with initial and endpoint b ∈ ∂B. We conclude that γ crosses only finitely many
curves δi and thus there are infinitely many points wTj and wT

′
k in each component C1 or C2, as

claimed.

Choose one of the components, say C1, and let J,K ∈ Z be the “last” indices for which wTJ
and wT

′
K belong to C2 or, in other words, wTJ , w

T ′
K ∈ C2 but wTj , w

T ′
k ∈ C1 for all j > J and

k < K. This in turn implies that the curves δTj and δT
′

k do not intersect γ for any j > J or
k < K; note that if they do, because both their endpoints lie on C1, γ can be modified slightly
to avoid such intersections.

Finally observe that the domains DT
J and DT

K−1 must then be part of the same fundamental
domain, which is “double” in some sense. Indeed, one could join the preimage bTJ of b in ∂T ∩DT

J

to the preimage bT
′

K−1 of b in ∂T ′ ∩DT ′
K−1 by a curve γ′ not crossing any curve δTj or δT

′
k . This

would imply that f(γ′) ⊂ A1 \ δ and therefore γ′ = ψi(f(γ′)) for some fixed i ∈ Z. But γ′

contains at least two preimages of the point b which contradicts the fact that the inverse branch
ψ is univalent, and ends the proof of part (c).

This concludes the proof of Theorem A.
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3.1 Boundaries of basins of attraction

In the next proposition, we make the additional restrictions that ∂A is locally connected and
contains no singular values to obtain properties of the component of the basin that maps to a
neighborhood of the asymptotic value. Under the additional assumption that f ∈ M∞, we get
a complete understanding of the topology and dynamics of the whole basin for these maps.

Proposition 3.3 (Bounded components). Let f be an entire or meromorphic function with
an attracting cycle of period p ≥ 1. Let A be its immediate attracting basin and suppose it
contains a unique asymptotic value v and no critical points. Assume ∂A is locally connected and
S(f)∩∂A = ∅. Let A0, A1, . . . , Ap−1 be the components of A, named so that f(Ai) = Ai+1 (mod p)

and v ∈ A1. Then ∂A0 is connected and unbounded.

If, moreover, f ∈ M∞, there is a unique pole in ∂A which is in ∂Ap−1, and for all j =
1, . . . , p− 1, Aj is bounded.

Proof. Recall from the propositions above that all components of A are simply connected, A0

is unbounded and maps infinite to one to A1, and f : Ai → Ai+1 (mod p) is one-to-one for i 6= 0.
The assumption of local connectivity of A, implies that Ai is bounded if and only if ∂Ai is a
single closed curve. Otherwise ∂Ai is a countable union of continuous unbounded curves.

We first show that ∂A0 is a single continuous curve with both ends at infinity. Indeed, if
∂A0 had at least two components, an argument analogous to the proof of Proposition 3.2 would
show that at least one of the fundamental domains Dj would be bi-infinite and thus map 2 to
1 onto A1, contradicting the injectivity of f on Dj .

Thus ∂A0 is connected and since A0 is simply connected, A0 has only one access to infinity;
that is, if B(0, R) is a disk of radius R, then for all large R, A0 \ B(0, R) consists of a single
unbounded component C.

Now assume f ∈ M∞ and let γ(t) → ∞ in A0. Then f−1(γ(t)) must converge to a pole,
say P ∈ ∂Ap−1 or otherwise ∞ would be an asymptotic value. Let N be the neighborhood of
P which maps onto C \ B(0, R) for some large R. Then N ∩ Ap−1 contains the full preimage
of C. Now suppose there is a second pole P ′ ∈ ∂Ap−1 and choose a curve σ(t) → P ′ in Ap−1.
Then f(σ(t)) must tend to infinity in C since there is no other access to infinity. Let N ′ be a
preimage of C \ B(0, R) containing P ′. Choosing R larger if necessary, N and N ′ are disjoint.
But N ′ ∩ Ap−1 must contain preimages of all points in C, which implies f : Ap−1 → A0 is not
one to one. Thus there is no second pole on ∂Ap−1.

Now suppose that Ap−1 is unbounded and let γ(t) → ∞ within Ap−1. Since we can choose
N so that γ /∈ N , f(γ) cannot enter C and so must converge to a finite boundary point which
is therefore an asymptotic value, contradicting the hypothesis that f ∈ M∞. This proves that
Ap−1 is bounded. By the same argument, since ∂A contains no asymptotic values, it follows that
each component Ai, i = 1, . . . , p− 2 is bounded by a continuous closed curve without poles.

Remark 3.4. In this proposition we assumed local connectivity of the boundary of the immediate
basin and concluded that all its components except A0 are bounded. It is plausible that a partial
converse statement is also true. If we assume that A1 is bounded, and add some hyperbolicity
condition, it is very possible that ∂A1 locally connected. Then the same would be true for the
remaining components.
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4 Parameter space: Dynamically natural slices

Families of functions defined by explicit formulas such as rational functions, tangent or expo-
nential functions clearly have “natural” embeddings into Cn for an appropriate n in terms of
their coefficients or singular values. Up to affine conjugation, the images of these embeddings
can be thought of as parameter spaces and we can study how the dynamics depends on these
parameters. We do not necessarily have closed forms for the families we are discussing here.
Nevertheless, there is a sense in which every transcendental function f with N < ∞ singular
values belongs to an N dimensional complex analytic manifold [GK90, EL92, BKY92].

To make this precise we use the theory of holomorphic motions for holomorphic families of
entire and meromorphic maps. For rational maps, the theory is explained in [McM94] and it is
adapted to meromophic functions in [KK97]. We state the results from the latter reference that
we use here.

Definition 4.1 (Holomorphic family). A holomorphic family of entire or meromorphic maps
over a complex manifold X is a map F : X×C→ Ĉ, such that F(x, z) =: fx(z) is meromorphic
for all x ∈ X and x 7→ fx(z) is holomorphic for all z ∈ C. If X has dimension n, we say the
family has dimension n and X is the parameter space for F .

Definition 4.2 (Holomorphic motion). A holomorphic motion of a set V ⊂ Ĉ over a connected
complex manifold with basepoint (X,x0) is a map φ : X × V → Ĉ given by (x, v) 7→ φx(v) such
that

1. for each v ∈ V , φx(v) is holomorphic in x,

2. for each x ∈ X, φx(v) is an injective function of v ∈ V , and,

3. at x0, φx0 ≡ Id.

A holomorphic motion of a set V respects the dynamics of the holomorphic family F if
φx(fx0(v)) = fx(φx(v)) whenever both v and fx0(v) belong to V .

Because maps in F that are conjugate by an affine map have the same dynamics, we want
to restrict ourselves to one representative for each conjugacy class. We do this by choosing an
appropriate normalization for the functions and restricting F to those normalized functions.
Below, we always assume the family is normalized in some way; the normalization depends on
the family.

The following equivalencies are proved for rational maps in [McM94] and extended to the
transcendental setting in [KK97].

Theorem 4.3. Let F be a holomorphic family of normalized entire or meromorphic maps with
finitely many singular values, over a complex manifold X, with base point x0. Then the following
are equivalent.

(a) The number of attracting cycles of fx is locally constant in a neighborhood of x0.

(b) There is a holomorphic motion of the Julia set of fx0 over a neighborhood of x0 which
respects the dynamics of F .
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(c) If in addition, for i = 1, . . . , N , si(x) are holomorphic maps parameterizing the singular
values of fx, then the functions x 7→ fnx (si(x)) form a normal family on a neighborhood of
x0.

Definition 4.4 (J−stability). A parameter x0 ∈ X is a J-stable parameter for the normalized
family F if it satisfies any of the above conditions. We denote by Xstab, the set of J-stable
parameters for the family F . Its complement

BX := X \Xstab

is known as the bifurcation locus of the family F , and the elements in BX are the bifurcation
parameters.

In families of maps with more than one singular value, it makes sense to consider subsets of
the bifurcation locus where only some of the singular values are bifurcating, in the sense that
the families {gin(x) := fnx (si(x))}n are normal in a neighborhood of x0 for some values of i, but
not for all. We define

BiX := BX(si) = {x0 ∈ X | {gin(x)} is not normal in any neighborhood of x0 in X.}

This is also known as the activity locus (in X) of the singular value si (see [DF08, Gau12]).

In this paper we investigate one dimensional slices of holomorphic families in which the
activity loci of the different singular values are disjoint. This means that at any given parameter
on our slice only one of the singular values is allowed to bifurcate at a given parameter value.
More precisely, if the maps in our slice have N distinct singular values, we require the existence of
N − 1 persistent attracting or parabolic cycles of fixed multiplier throughout the slice. Singular
values can take turns in “serving” these basins but only one of them at a time is allowed to be
free. These and other conditions are collected in the definition below of a dynamically natural
slice.

Definition 4.5 (Dynamically natural slice). Let F be a holomorphic family of normalized
entire or meromorphic maps over X. Assume S(fx), the set of finite singular values of fx has
cardinality N < ∞ for all x ∈ X. A one dimensional subset Λ ⊂ X is a dynamically natural
slice with respect to F if the following conditions are satisfied.

(a) Λ is embedded or conformally equivalent to C minus a discrete set. The removed points
are called parameter singularities. (By abuse of notation we denote its image in C by Λ
again, and denote the variable in C by λ, and the function fx by fλ.

(b) The singular values are given by distinct holomorphic functions si(λ), i = 1, . . . , N − 1,
and an asymptotic value vλ := v(λ) 6≡ si(λ) for any 1 ≤ i ≤ N − 1, that is an affine
function of λ. We further assume that no preimage of vλ is a critical point for all λ. We
call vλ the free asymptotic value, and we require that BΛ(vλ) 6= ∅ and BΛ(vλ) 6= Λ.

(c) The poles (if any) are given by distinct holomorphic functions {Pi(λ)}0≤i≤M≤∞, λ ∈ Λ.

(d) There are N − 1 distinct attracting or parabolic cycles whose period and multiplier are
constant for all λ ∈ Λ.
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(e) Suppose there exists a parameter λ0 such that vλ0 is the only singular value in Aλ0 , the
basin of attraction of an attracting cycle whose multiplier is not a constant function of λ.
Then the slice Λ contains, up to affine conjugacy, all meromorphic maps g : C → Ĉ that
are quasiconformally conjugate to fλ0 in C and conformally conjugate to fλ0 on C \ Aλ0 .

(f) Λ is maximal in the sense that if Λ′ = Λ ∪ {λ0} where λ0 is a parameter singularity, then
Λ′ does not satisfy at least one of the conditions above.

From now on, as long as it is understood from the context, we will drop the index Λ. In
other words B := BΛ.

Definition 4.6 (Dynamically natural family). We define the subfamily of the holomorphic
family F of normalized entire or meromorphic functions, FΛ = {fλ}λ∈Λ, as those fλ ∈ F for
which λ lies in the dynamically natural slice Λ. We call FΛ (or {fλ}λ∈Λ) a dynamically natural
family for the slice Λ. When referring to the parameters we use Λ and when referring to the
functions we use FΛ.

Let us make some remarks on the conditions above.

Remark 4.7. (i) A given family F may contain both entire and meromorphic functions. Con-
dition (c) implies that in a dynamically natural slice the functions are either all entire or
all meromorphic.

(ii) Condition (d) could actually be weakened for our purposes. As an example, we could
require only N − 2 attracting or parabolic cycles of constant multiplier plus an orbit
relation between two distinct singular values (e.g. symmetry, or the two orbits coinciding
after some iterates.) The tangent family is an example. Although most of our results hold
in these more general situations, for simplicity of exposition we choose to require condition
(d) as stated. We will, however, also consider more general dynamically natural slices in
the examples in Section 7.

(iii) Condition (e) is generally easy to verify in concrete families.

(iv) Condition (f) is imposed to avoid artificial parameter singularities. In general, these singu-
larities occur because the functions become constant or some of the singular values coalesce
and/or some poles coalesce and become critical points; either of these events will create
parameter singularities.

(v) Suppose Λ is a dynamically natural slice. For a given parameter value λ0 ∈ Λ, if the
free asymptotic value vλ0 is attracted to an attracting cycle, it follows that λ0 ∈ Λstab

(indeed, if any of the cycles is parabolic, it must be persistent and therefore the map is
J−stable, although not necessarily hyperbolic). Because there are N − 1 attracting or
parabolic basins which need to attract N − 1 different singular values, only one of the
singular values can be active at any given parameter. That is, if we set B0 := B(vλ), then
for i, j = 0, 1, . . . , N − 1,

Bi ∩ Bj = ∅
whenever i 6= j. If we relax the definition of a dynamically natural slice as indicated in
Remark (ii) above, then we must also allow the possibility that Bi = Bj for some i 6= j.
This is the case, for example, in the tangent family.
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Most of the slices which have been systematically studied in the literature, like the expo-
nential family ez + λ or the tangent family λ tan z, are dynamically natural slices of the larger
family of functions with two asymptotic values and no critical values. In the Appendix we show
that many other slices can be constructed by pre- or post- composing functions with finitely
many asymptotic values with rational maps, and some examples are shown in Section 7.

5 Distinguished parameter values: Proof of Proposition B.

Let Λ be a dynamically natural slice for a family of entire or meromorphic functions and let
FΛ = {fλ}λ∈Λ be the corresponding dynamically natural family. Recall that the definition
implies that #S(fλ) is constant and finite for all λ ∈ Λ. Let vλ denote the free asymptotic
value of fλ. Our goal is to discuss special parameter values for which the forward orbit of
the free singular value is finite. We restrict our discussion to parameters varying in Λ and to
the bifurcation locus B(vλ), although the definitions could be adapted for the full holomorphic
family defined over X.

Definition 5.1 (Misiurewicz parameters). A parameter λ ∈ Λ (or the map fλ) is called a Λ slice
Misiurewicz parameter if the free singular value vλ has the property that fnλ (vλ) is a repelling
or parabolic periodic point for some n ≥ 0.

Remark. In the definition above we assumed the periodic point fnλ (vλ) to be repelling or
parabolic, because we want our Misiurewicz parameters belong to B(vλ). Indeed, otherwise
fnλ (vλ) would be attracting, Siegel or Cremer. In the first case the parameter λ would be
J−stable while the last two cases cannot occur since by definition of Λ, they would imply the
presence of N non-repelling cycles, and therefore N singular values apart from vλ.

For simplicity of exposition, throughout this paper we will refer to Λ slice Misiurewicz pa-
rameters as Misiurewicz parameters.

By definition, Misiurewicz parameters are solutions of

fmλ (vλ) = fnλ (vλ) (5.1)

for some m > n ∈ N. If fλ is conjugate to a Misiurewicz map fλ′ which satisfies Equation (5.1)
for certain values of m,n ∈ N, then fλ satisfies the same equation for the same m,n.

The second kind of distinguished parameter value that we discuss is specific to meromorphic
maps. A meromorphic function has at least one pole that is not an omitted value. The pre-
images of the poles have a finite forward orbit and play an important role in the dynamics.

Definition 5.2 (Order of a prepole). A point p ∈ C is a prepole of order n > 0 for fλ if fkλ (p)
is defined for k < n and fnλ (p) =∞.

With this definition a pole is a prepole of order 1.

For every λ ∈ Λ, the poles form a discrete set so they can only accumulate at infinity. Unless
there are at most two poles and both are omitted values, which is never the case for functions
of finite type, Picard’s theorem implies that the prepoles of order 2 form an infinite set. Their
accumulation set is the set of poles and the point at infinity. Prepoles of order n ≥ 3 accumulate
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both at prepoles of order n − 1 and at infinity. It is well known that prepoles are dense in the
Julia set of fλ [Ber93, BKY91].

We now look at the parameter plane and consider parameters for which some iterate of the
free asymptotic value is a pole.

Definition 5.3 (Virtual cycle). Let f be a meromorphic map. A virtual cycle for f of period
p ≥ 2 is a set of points {a1, a2, . . . , ap−1,∞}, ai ∈ C for i = 1, . . . , p−1, where a1 is an asymptotic
value, ap−1 is a pole and f(ai) = ai+1 for 1 ≤ i ≤ p − 2. In other words a virtual cycle is the
forward orbit of an asymptotic value which is a prepole.

Definition 5.4 (Virtual cycle parameter). A parameter λ ∈ Λ is called a virtual cycle parameter
of order p ≥ 2 if fλ has a virtual cycle of period p.

For λ ∈ Λ, let {Pi(λ)}0≤i≤M≤∞ denote the set of poles of fλ. Recall that since we are working
in a dynamically natural slice, each Pi(λ) is a distinct holomorphic function of λ throughout Λ.
By definition, virtual cycle parameters of order p ≥ 2 in Λ are λ−values that are solutions of

fp−2
λ (v(λ)) = Pi(λ) (5.2)

for some 0 ≤ i ≤M , where as usual v(λ) denotes the free asymptotic value of fλ.

Remark. Virtual cycle parameters are parameter values for which an orbit relation exists in the
sense of (5.2). Hence if λ is a virtual cycle parameter and fλ and fλ′ are topologically conjugate,
then λ′ must be virtual cycle parameters of the same order.

Proposition 5.5 (Special parameters are unstable). Misiurewicz parameters and virtual cycle
parameters belong to the bifurcation locus B(vλ) ⊂ BΛ.

Proof. Virtual cycle parameters are solutions of (5.2) while Misiurewicz parameters are solutions
of (5.1). Since the zeroes of holomorphic functions are discrete, for fixed m,n and p both
equations have a discrete set of solutions. Hence, since both conditions are invariant under
topological conjugacy, the maps must be structurally unstable. In addition, since repelling and
parabolic periodic points as well as poles are in the Julia set, the maps are not J−stable.

Proposition 5.6 (Density of special parameters). Let Λ be a dynamically natural slice. Both
the virtual cycle parameters and the Misiurewicz parameters are dense in B(vλ). Moreover B(vλ)
has no isolated points in Λ.

Proof. The proof is a standard application of Montel’s Theorem (See e.g. [Bea91, Thm 3.36,
p.57] and [CG93, Thm.1.5, p.129].) We begin with the virtual cycle parameters in slices of
meromorphic maps. Let λ0 ∈ B(vλ) and let U be a neighborhood of λ0 in Λ. Let Pi(λ),
i = 1, 2, 3 be three prepoles of order 3 which are distinct for every λ ∈ U . These exist since the
set of prepoles of order 3 or larger is infinite. Now observe that because of the assumption that
λ0 ∈ B(vλ), {gn} is not normal in U , and so there must be some λ ∈ U such that gn(λ) = fnλ (vλ)
takes one of the values Pi(λ), for some i = 1, 2 or 3 and some n.

To show that Misiurewicz parameters are dense we use a repelling periodic point a(λ)
of period 3 (for example) for all λ ∈ U , and apply the above arguments to the functions
{a(λ), fλ(a(λ)), f2

λ(a(λ))}, and to gn(λ) := fnλ (vλ).
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Note that these proofs actually show that the sets of virtual cycle parameters of order 4 or
Misiurewicz parameters of preperiod 1 and period 3 are dense in B(vλ). By choosing prepoles
of a different order or periodic points of a different period, the same proof would show that
fixing these numbers arbitrarily, the corresponding subsets are also dense in B(vλ). Since these
subsets are disjoint, it follows that they must accumulate on each other and therefore B(vλ) has
no isolated points.

6 Shell components. Proof of Theorems C and D.

Let Λ be a dynamically natural slice of a normalized family of entire or meromorphic maps
and let FΛ = {fλ}λ∈Λ be the associated dynamically natural family. Let vλ denote the free
asymptotic value of fλ which, we recall, depends affinely on λ.

We are interested in studying those stable components in the slice Λ that reflect the behavior
of the free asymptotic value.

Definition 6.1 (Shell Component). A set Ω ⊂ Λ is a shell component if it is a connected
component of the set

H := {λ ∈ Λ | vλ is attracted to an attracting cycle with nonconstant multiplier}.

Observe that if λ ∈ H, then all remaining singular values must belong to the N − 1 basins of
parabolic or attracting cycles with constant multiplier, so that vλ is the only singular value in
the basin of attraction of the cycle with nonconstant multiplier. As a consequence, parameters
in H are J−stable in Λ; that is

H ⊂ Λ \ B = Λstab,

where as above, B = BΛ is the bifurcation locus of the slice Λ.

Since ∂Ω is in B, it follows that Ω is also a connected component of Λ \ B.

Shell components may be hyperbolic components in the usual sense — or they may not be;
for example, if some of the cycles with constant multiplier are parabolic then no map in Λ is
hyperbolic. Conversely, capture components, where one of the persistent cycles attracts vλ and
another singular value, are hyperbolic components but are not shell components.

The following property follows directly from the definition.

Lemma 6.2 (The period is constant). Let FΛ be a dynamically natural family and let Ω ⊂ Λ be
a shell component. Then the period of the attracting cycle to which vλ is attracted is constant
throughout Ω. It is called the period of Ω.

Since the dynamics of all but one of the attracting cycles of fλ are fixed as λ varies in a
shell component, the attracting cycle for this shell component is the one whose multipler varies
with λ. Below, when we talk about an attracting cycle or its multiplier, in relation to a shell
component, it is these that we mean.

Every hyperbolic component of the parameter plane of the well known exponential family
Eλ = z 7→ ez+λ is an example of a shell component. In this case, the multiplier of the attracting
cycle of Eλ is never zero. This is a general phenomenon for shell components.
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Lemma 6.3 (Nonzero multipliers). Let FΛ be a dynamically natural family and let Ω ⊂ Λ be a
shell component. Then the multiplier of the attracting cycle is nonzero for all λ ∈ Ω.

Proof. If the multiplier of the attracting cycle were zero for λ∗ ∈ Ω, the cycle would contain a
critical point. Therefore, since vλ is not persistently critical, in a neighborhood of λ∗ there would
be two singular values in the basin. This is impossible because we are in a shell component.

The following theorem explains how shell components are parameterized by the multiplier
of the attracting cycle. Let Ω be a shell component of period k > 0. We define the multiplier
map as

ρ = ρΩ : Ω→ D∗

where ρ(λ) is the multiplier of the attracting cycle which attracts vλ.

Theorem 6.4 (Multiplier map is a covering). Let FΛ be a dynamically natural family and let
Ω ⊂ Λ be a shell component. Then the multiplier map of the attracting cycle, ρ : Ω → D∗, is a
holomorphic covering.

Proof. The proof uses quasiconformal surgery on the basin of attraction of the attracting cycle
that attracts vλ. For details see [BF14]. Note that because fλ is a holomorphic family both ρ
and its derivative are holomorphic functions of λ.

Choose a parameter λ0 ∈ Ω such that ω0 := ρ(λ0) ∈ D∗. Let k > 0 be the period of Ω
and a0 = {a0

0, · · · , a0
k−1} the attracting periodic orbit to which the free asymptotic value vλ0 is

attracted. Let A0 denote its full basin of attraction and let A0
i be the connected component of

A0 containing a0
i for i = 0, · · · , k − 1. Assume without loss of generality that vλ0 ∈ A0

1.

Let W ⊂ D∗ be a (simply connected) neighborhood of ω0. For any ω ∈ W we define
a Beltrami form µω in A0

1 invariant under fkλ0 as follows. Since a0 is attracting, there is a
biholomorphic map ψ from a neighborhood U of a0

1 to the unit disk D such that ψ(a0
1) = 0

and ψ(fkλ0(z)) = ω0ψ(z) for every z ∈ U . In D choose an annular fundamental domain R0 =
{|ω0| < |z| < 1} for the map ψ(z) 7→ ω0ψ(z). Now define the surgery using standard arguments:
Construct a quasiconformal map φ̃ω : D → D such that it fixes the origin and the unit circle
and it maps R0 to Rω = {|ω| < |w| < 1}, conjugating multiplication by ω0 to multiplication
by ω. In addition, it should satisfy φ̃ω0 = Id and φ̃ω should depend holomorphically on ω.
To do this, first define the map on R0 and then extend it by the dynamics to all of D. The
Beltrami coefficient µ̃ω of φ̃ω lifts to a Beltrami coefficient µω on U invariant under the map ψ

that satisfies µω(fkλ0(z))
(fkλ0

)′(z)

(fkλ0
)′(z)

= µω(z). Extend µω to the full backward orbit of U so that for

any inverse branch gn of f−nλ0 defined on a component of A0, µω(gn(z))gn
′(z)

gn′(z)
= µω(z). Extend it

to be identically zero on the complement of A0 in C. A Beltrami coefficient with this property is
said to be compatible with fλ0 . Notice that the Beltrami coefficient µω depends holomorphically
on ω.

By the Measurable Riemann Mapping Theorem [AB60], there is a quasiconformal homeo-
morphism φω : C → C with Beltrami coefficient µω. It is unique up to post-composition by an
affine map and depends holomorphically on ω. Moreover, φω0 is conformal.

19



At this point we recall that we fixed the affine conjugacy class by normalizing all the functions
in the family FΛ in the same way. Different normalizations work and/or are more convenient
for different slices – for example, in some, but not all slices, one could ask that fλ fix two given
points in C, or ask that it fix one point and also fix its multiplier.

We can chose a uniform normalization for φω that preserves the normalization for FΛ and
define the new entire or meromorphic map

Fω := φω ◦ fλ0 ◦ φ−1
ω .

This map respects the dynamics: it has an attracting periodic cycle a(ω) = φω(a0) of multiplier
ω. Moreover, Fω is quasiconformally conjugate to fλ0 in the respective basins of attraction and
conformally conjugate to fλ0 everywhere else. Since φω0 is conformal and fixes two points it
follows that it is the identity map. Hence Fω0 = fλ0 .

Since fλ is in a dynamically natural slice, property (d) ensures that Fω = fλ(ω) for some
λ(ω) ∈ Λ. Observe that the asymptotic value of fλ(ω) is vω = φω(vλ0) and it depends holo-
morphically on ω. Since vλ = v(λ) is affine, λ = λ(v) is also affine and hence λ(ω) = λ(vω)
is holomorphic. Since the multiplier changes with ω, the map is nonconstant and thus open.
Finally, λ(ω0) = λ0 and therefore λ(W ) ⊂ Ω.

This construction defines a holomorphic local inverse of the multiplier map ρ in a neighbor-
hood of any point ω0 = ρ(λ0) ∈ D∗. It follows that ρ is a covering map from Ω to D∗.

Corollary 6.5 (Connectivity of shell components). Let Ω be a shell component in a dynamically
natural slice Λ. Then one of the two following possibilities occurs:

(a) Ω is simply connected and ρ : Ω→ D∗ is a universal covering (hence of infinite degree), or

(b) Ω is conformally equivalent to D∗ and lim|ω|→0 ρ
−1(ω) = λ∗ where λ∗ /∈ Λ is a parameter

singularity.

Proof. Since ρ : Ω → D∗ is a covering, it follows from Lemma 2.2 that either ρ is a universal
covering and hence has infinite degree and Ω is simply connected, or ρ has finite degree and Ω
is conformally equivalent to D∗. In this case, the point λ∗ := lim|ω|→0 ρ

−1(ω) cannot belong to
B(vλ) because, by Proposition 5.6, B(vλ) has no isolated points. It follows from Lemma 6.3 that
ρ cannot extend continuously to λ∗ because fλ has no superattracting cycles. Therefore λ∗ is a
parameter singularity.

Corollary 6.6 (Quasiconformal conjugacy in shell components). Let FΛ be a dynamically nat-
ural family and let Ω ⊂ Λ be a shell component. Then, any two maps fλ and fλ′ with λ, λ′ ∈ Ω
are (globally) quasiconformally conjugate.

Proof. This follows from the proof of Theorem 6.4. Indeed, let γ : [0, 1] → Ω be a continuous
path with endpoints λ and λ′. Then σ(t) := ρ(ω(t)) is a continuous path in D∗ joining ω = ρ(λ)
and w′ = ρ(λ′). The image of σ is a compact set so it can be covered by a finite number of
open disks {Di}1≤i≤N in D∗ each centered at a point σ(ti). Using the construction in Theorem
6.4, we can construct local inverses of ρ mapping Di to an open neighborhood D′i of γ(ti).
By compactness, γ[0, 1] ⊂ ∪Ni=iD′i. Since all pairs of parameters in each D′i correspond to
quasiconformally conjugate maps, it follows that fλ is quasiconformally conjugate to fλ′ .
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6.1 Virtual centers of shell components.

In standard rational dynamics, hyperbolic components have a distinguished point called the
center of the component at which the attracting cycle is superattracting. This is not the case
for the shell components we are studying, where the multiplier of a finite cycle cannot vanish.
Nevertheless we shall see that there is a unique point in the boundary of the shell component
that plays the role of the center.

Definition 6.7 (Virtual center). Let FΛ be a dynamically natural family and let Ω ⊂ Λ be a
shell component. Let ρ : Ω → D∗ be the multiplier map of Ω. A point λ ∈ (∂Ω ∩ Λ) ∪ {∞} is
a virtual center of Ω if there exists a sequence λn → λ, with λn ∈ Ω, such that the multipliers
ρ(λn) tend to 0.

Our goal in this section is to describe the relation between virtual cycle parameters and
virtual centers. To do this we need a preliminary result which will also be useful later on.

Proposition 6.8 (Bounded or unbounded cycle). Let Ω ⊂ Λ be a shell component of period
p ≥ 1 for a dynamically natural family FΛ. Let λn ∈ Ω be such that λn → λ∗ ∈ ∂Ω ∩ Λ. Let
an = {an0 , . . . , anp−1} be the attracting cycle of period p for fn := fλn, attracting the asymptotic
value v(λn).

(a) Suppose the cycle an stays bounded as n→∞. Then, fλ∗ has an indifferent cycle a whose
period divides p and an → a as n→∞.

(b) Suppose that |anj | → ∞ as n → ∞ for some 0 ≤ j < p. Then, p > 1 and fk(v(λ∗)) is a
pole for some 0 ≤ k ≤ p− 2, thus λ∗ is a virtual cycle parameter.

Consequently, if the maps are entire or if p = 1, only case (a) can occur.

For this and other results in this section we shall use the following lemma. Recall that S(f)
denotes the set of singular values of f and B(a, r) denotes the disk of center a and radius r.

Lemma 6.9 ([RS99, Lemma2.2]). Let f be a transcendental meromorphic or entire function.
Let R0 > 0 be such that a periodic orbit of f belongs to B(0, R0). Let p ≥ 1, and R > R0 such
that {fk(S(f))}0≤k<p ⊆ B(0, R), and |z|, |fp(z)| > R2. Then,

∣∣(fp)′ (z)∣∣ > |fp(z)| log |fp(z)|
16π|z|

.

Proof of Proposition 6.8. (a) Since the cycle stays bounded and λ∗ ∈ Λ, it follows that for all
0 ≤ i ≤ p − 1, there exists a subsequence of the sequence ani that has a limit ai and that this
limit point is a fixed point of fpλ∗ . This cycle must be non-repelling. Since λ∗ ∈ ∂Ω, it cannot be
attracting. It also cannot have multiplier 0 because if it did, a∗ would be superattracting and
some point in the limit cycle would be a critical point. But then, for every λ in a neighborhood
of λ∗, the analytic continuation of this cycle would be attracting and its basin would contain a
critical point, and thus λ∗ would be in the interior of Ω and not on its boundary. Hence a∗ is
an indifferent cycle and part (a) is proved.
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(b) We will give a proof by contradiction. We will show that if the conclusion in (b) does not
hold, then for n large enough the multiplier of the cycle must be larger than one in modulus.
Set f∗ = fλ∗ , vn = v(λn) and v∗ = v(λ∗).

Let c∗ be a periodic point of f∗ which can be analytically continued to c(λ) in a neighborhood
of λ∗, and choose R0 so that |fkn(c(λn))|, |fk∗ (c∗)| < R0 for all k ≤ p and all n > 0.

Let us first deal with the case p = 1 and show that the fixed point an0 of fn cannot tend
to infinity with n. Suppose it does. Let R be large enough to satisfy R > e8π and also large
enough that for n > N , B(0, R) contains vn and all the remaining singular values of fn. This is
possible because λ∗ ∈ Λ so that f∗ is well defined as a limit of fn, and thus vn → v∗ and all the
other singular values (finite in number) also depend holomorphically on λ.

Now choose N > 0 such that for n > N , |an0 | > R2 and recall that since p = 1, fn(an0 ) = an0 .
Then Lemma 6.9 implies that

|f ′n(an0 )| > log |an0 |
16π

>
logR

8π
> 1,

which contradicts the assumption that λn ∈ Ωn for all n > 0.

Next assume that p > 1. Suppose that the conclusion in part (b) is not true so that fk∗ (v∗)
is not a pole for any k < p − 1. Then, for all 0 ≤ k ≤ p − 1, fk∗ (v∗) is well defined and
fkn(vn) → fk∗ (v∗) as n → ∞. Since all the singular values of fn and f∗, other than the free
asymptotic value, vary continuously with λ and are attracted to parabolic or attracting cycles of
fixed multiplier, there exists R > max{R0, e

8π} large enough, and independent of n, such that
for all n, B(0, R) contains the first p− 1 iterates of all these singular values; that is⋃

0≤k<p
fk(S(fn)) ⊂ B(0, R), for all n > 0.

Since by hypothesis |anj | → ∞ as n → ∞, and fpn(anj ) = anj , there exists N > 0 such that

|anj | > R2 for all n > N . Hence the hypotheses of Lemma 6.9 are satisfied for every n > N and
we conclude that ∣∣(fpn)′ (anj )

∣∣ > log |anj |
16π

>
logR

8π
> 1.

It follows that the multiplier of the cycle an is larger than 1 for n > N which contradicts the
hypothesis that λn ∈ Ω for all n > 0.

With these results in hand, we can prove that virtual centers are always virtual cycle pa-
rameters.

Theorem 6.10 (Virtual centers are virtual cycle parameters). Let FΛ be a dynamically natural
family and let Ω ⊂ Λ be a shell component. Let Ω ⊂ Λ be a shell component of period p ≥ 1 and
let λ∗ be a parameter in ∂Ω∩Λ. Then, if λ∗ is a virtual center, λ∗ is a virtual cycle parameter.

Consequently, if Λ is a slice of entire maps, Ω∩Λ has no virtual centers or, in other words,
every virtual center is at infinity.

Proof. Suppose that λ∗ ∈ Ω ∩ Λ is a virtual center. Then there exists a sequence of parameters
λn ∈ Ω such that λn → λ∗ ∈ ∂Ω∩Λ and the multipliers ρ(λn) tend to 0. Let an = {an0 , · · · , ank−1}
be the cycle to which the free asymptotic value vn = v(λn) is attracted by the iterates of fλn .
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We claim that, taking a subsequence if necessary, one of the points in the cycle must tend
to infinity as n→∞. Indeed, otherwise the cycle would converge to a finite cycle a∗ of f∗λ with
multiplier 0, which is impossible by Proposition 6.8 (a).

Hence one of the points in the cycle tends to infinity. It now follows from Proposition 6.8
(b) that λ∗ is a virtual cycle parameter.

Remark 6.11. It seems plausible to believe that a partial converse is true. More precisely, if a
virtual cycle λ∗ ∈ ∂Ω is accessible from Ω, then λ∗ is a virtual center. The idea for a proof
would be to find a new path in Ω, λ̃(t)→ λ∗ along which the multiplier would tend to 0. This
could be accomplished if a path through a preasymptotic tract of v(t) such that v(t)→ v∗ could
be found. See Conjecture 6.17.

Propositions 6.8 and 6.10 above have an immediate consequence for components of period
one.

Corollary 6.12 (Period one shell components). Let FΛ be a dynamically natural family and let
Ω ⊂ Λ be a shell component. Let Ω be a shell component of period one. Then, for any sequence
λn → λ∗ ∈ ∂Ω∩Λ, the attracting fixed point an converges to an indifferent fixed point a∗ of fλ∗.
Moreover, ∂Ω ∩ C has no virtual cycle parameters and consequently no virtual centers.

6.2 The boundary of the shell component

Let Ω be a simply connected shell component and as usual, let Hl denote the left half plane.
Recall from Corollary 6.5 that the multiplier map ρ : Ω → D∗ is a universal covering. Thus,
there exists a biholomorphic map ϕ : Hl → Ω, unique up to precomposition by a Möbius
transformation, such that

(ρ ◦ ϕ)(w) = ew.

Theorem 6.13 (Extension to the boundary). Let FΛ be a dynamically natural family and let
Ω ⊂ Λ be a shell component. Let Ω be a simply connected shell component in Λ and let ρ and ϕ
be as above. Then, ϕ extends continuously to a map ϕ : Hl → Ω, where the closures are taken
in Ĉ. Moreover, the point ϕ(∞) ∈ Ĉ is a virtual center.

Given a < b ≤ ∞, we say that an arc γ : (a, b) → C lands at z0 ∈ Ĉ if limt→b γ(t) = z0 in
the spherical metric.

Proof of Theorem 6.13. Let p be the period of Ω. We first deal with the case p ≥ 2.

Let ω(t), t ∈ (0, 1), be an arbitrary arc in Hl such that limt→1 ω(t) = iθ∗ for some θ∗ ∈ R.
We want to show that as t→ 1, the accumulation set of λ(t) = ϕ(ω(t)) in ∂Ω = Ω \Ω is a single
point. That is, λ(t) lands at a point in the boundary (which could be infinity) when t→ 1.

To this end, assume that λ(t) does not land at infinity and let λ∗ be a finite accumulation
point of λ(t) as t → 1. This means that there exists a sequence tn → 1 as n → ∞, such that
λn = λ(tn) ∈ Ω satisfies λn → λ∗. Let an denote the attracting cycle corresponding to λn and
set f∗ = fλ∗ .

If the attracting cycle an remains bounded for all n > 0, it follows from Proposition 6.8 that
f∗ has an indifferent cycle whose period divides p.
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On the other hand if the cycle does not remain bounded, let nk → ∞ be a subsequence
for which some point in the attracting cycle tends to infinity. Since λnk → λ∗, it follows by
Proposition 6.8 that λ∗ is a virtual center.

Thus, all accumulation points of the curve λ(t) are either parameters with a neutral cycle
of period dividing p or virtual cycle parameters, and both these sets are discrete subsets of
Λ. Since, the set of accumulation points must be connected [Pom92, p.33], it follows that λ(t)
accumulates at a single point, i.e., that λ(t) actually lands at a point λ∗ ∈ ∂Ω (which might be
infinity).

Since ω(t) was arbitrary among all curves tending to iθ, all of them have the same property.
By Lindelöf’s theorem [Pom92, Prop. 2.14], all their images by ϕ must land at the same point
λ∗. Hence ϕ has an unrestricted limit at every point iθ in the imaginary axis, and ϕ(iθ), θ ∈ R,
is a continuous curve running along ∂Ω. Note that this curve might pass through infinity several
times.

It remains to consider the case that ω(t)→∞ in Hl. Using exactly the same arguments as
above, λ(t) = ϕ(ω(t)) must land at a single point λc ∈ ∂Ω and hence the limit of ϕ at ∞ exists
and is independent of the choice of ω(t). In particular, if we choose ω(t) to be the negative
real axis, λ(t)→ λc as t→ 1, and the multiplier γ(λ(t)) tends to zero. This shows that λc is a
virtual center and, by Theorem 6.10, also a virtual cycle parameter.

Since the unrestricted limit exists at every point of ∂Hl, it follows that ϕ extends continuously
to Hl. If any of the limits is the point at infinity, continuity has to be understood in the spherical
metric.

Finally suppose that p = 1. The same arguments as above show that ϕ has unrestricted
limits at all points in ∂Hl. Nevertheless, since in this case Ω has no finite virtual centers,
λ(1) =∞.

Using Caratheodory’s Theorem [Pom92, Theorem 2.1] we obtain the following corollary.

Corollary 6.14 (Local connectivity). Let Λ be a dynamically natural slice of a family of entire
or meromorphic maps. Let Ω be a simply connected shell component in Λ. Then ∂Ω is locally
connected and has a unique virtual center. Moreover, if the period of Ω is one, this virtual center
is at infinity and Ω is unbounded.

Remark 6.15. If a shell component is not simply connected, the arguments above show that
ϕ extends continuously to all points in on the boundary but the the role of the virtual center
may be taken by a parameter singularity. An example of this can be found in the tangent
family z 7→ λ tan(z), where D∗ is a shell component of period one and the origin is a parameter
singularity. In this example, the multiplier map is biholomorphic.

Remark 6.16. Our methods do not show that ∂Ω has a unique virtual cycle parameter because
we have not discarded the possibility that while λ(1) = ϕ(iθ) = λ∗ ∈ C is a virtual cycle
parameter, λ∗ 6= λc, the virtual center of Ω. If such a parameter were to exist, it would need to
be isolated. Nevertheless, in view of Remark 6.11 we believe that this should never happen. We
state this as a conjecture.

Conjecture 6.17. In the setup of Corollary 6.14, ∂Ω has a unique virtual cycle parameter
which is the virtual center.
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Theorem 6.13 also allows us to define an internal structure in the simply connected shell
component Ω.

Corollary 6.18 (Internal rays). Under the hypotheses of Theorem 6.13 and Corollary 6.14,
define the internal ray in Ω of angle θ by

RΩ(θ) := {ϕ(t+ 2πiθ), t ∈ (−∞, 0)}.

Then, all internal rays have one end at the virtual center and the other end at a point in ∂Ω
(which could be infinity). If the virtual center λ∗ is finite no internal ray has both ends at λ∗.

Notice that the internal rays foliate the shell component. The rays landing at parameters
corresponding to parabolic cycles of multiplier one, that is the preimages of {0, 1} under the
multiplier map extended to ∂Ω, divide Ω into fundamental domains which are mapped one to
one to the punctured disk by the multiplier map ρ. See Figure 1.

We have shown that simply connected shell components of period one are always unbounded.
In the next section we look at some examples of dynamically natural slices of parameter spaces
for specific families. The first is the exponential family {Eλ = ez + λ}λ∈C where all hyperbolic
components are unbounded. Other examples are dynamically natural slices Λ of meromorphic
families F ⊂M∞. In these parameter planes we observe that all of the simply connected shell
components of period greater than one are bounded. These observations lead us to the following
conjecture.

Conjecture 6.19 (Boundness conjecture). Let Λ be a dynamically natural slice of the mero-
morphic family F ⊂ M∞. Let Ω ⊂ Λ be a simply connected shell component of period p ≥ 2.
Then Ω is bounded.

Remark 6.20. If the slice is defined in the relaxed sense of Remark 4.7, there may be a finite
number of unbounded components of period greater than 1 because of the relations among the
asymptotic values. An example is given by the tangent family, where a shell component of
period two is unbounded.

7 Examples

Our results apply to very general families of entire and meromorphic functions. To find examples,
we need to look at families whose singular sets depend holomorphically on the parameters. We
also want to be sure that if we perturb a hyperbolic map in our family by a holomorphic motion,
the resulting map is still in the family. And finally, to compute a dynamically natural slice, we
would like to have an explicit formula for the maps that contains the parameters as constants.
In the appendix, we show how to find fairly large classes of families with these properties.

The examples in this section are all families of entire and meromorphic functions that have
two asymptotic values and either no critical values or just one critical value. That the formulas
we use for the functions are valid under perturbation follows from the material in the appendix.

Example 1. Any meromorphic function with exactly two asymptotic values and no critical
points belongs to the family

F2 =

{
aez + be−z

cez + de−z
, a, b, c, d ∈ C, ad− bc = 1

}
.
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See the Appendix and the references there. The asymptotic values are a/c and b/d. If b or c
is equal to zero, the function is the exponential function and infinity is an asymptotic value.
Otherwise both asymptotic values are finite. Any function in the family is determined by three
complex constants.

We will look at several dynamically natural slices of F2 and use different normalizations for
each.

(a) The exponential family Eλ(z) = ez + λ is one of the best understood dynamically natural
slices of F2. It is the slice defined by fixing one of the asymptotic values of the functions
fλ ∈ F2 at infinity by setting c = 0 and taking the other as the parameter λ = b/d. We
can put these functions into the form above, normalizing by an affine conjugation that
replaces z by 2z. Choosing the coefficients as a = 1/2, d = 2, c = 0 and b = λ we get
Eλ(0) = 1 + λ. The infinite asymptotic value has neither a forward nor backward images
(poles). Thus the dynamics of the functions in this slice are determined by the orbit of
the other asymptotic value, vλ = λ ∈ Λ = C. Since every meromorphic map with these
properties is affine conjugate to a member of this family, property (e) holds.

Note that another normalization for {Eλ}λ in common use is one that fixes the second
asymptotic value at the origin. The family then takes the form aez and the parameter is
an affine function of the first iterate of the finite asymptotic value. Standard references
include [BR75, DFJ02, Sch03, RG03].

Figure 3 shows the parameter plane for Eλ. It is known that all hyperbolic components
in Λ are unbounded and simply connected and that the multiplier goes to zero as the
parameter goes to infinity inside the component; that is, infinity acts as a virtual center
for all the hyperbolic components. In the figure, components are colored according to their
respective period, yellow for 1, cyan-blue for 2, red for 3, brownish green for 4, etc.

(b) Another dynamical slice that can be extracted from F2 is formed by requiring the origin
to be a fixed point with persistent multiplier ρ0, |ρ0| < 1. The resulting slice is Λ =
C \ {0, ρ0/2} and the maps have the form

fλ(z) =
ez − e−z

(1/λ)ez + (1/µ)e−z
,

with µ = ρ0λ/(2λ− ρ0). The asymptotic values are λ and −µ and at least one of them is
attracted by the origin. See [CJK19, CJK20] for a discussion of the topology of the capture
component for maps in the slice where ρ = 2/3 and [GK08] for a discussion of properties
of maps in the slice where ρ0 = 1/2. To see that condition (e) is satisfied, observe that
any conjugacy which is conformal in the basin of attraction of 0 keeps the multiplier of
this fixed point unchanged. Since the resulting conjugate map again has two asymptotic
values and no critical points, it belongs to F2. Using an affine conjugacy, we may require
that the new fixed point be the origin again; thus the new map belongs to the slice.

Figure 4 shows the parameter plane for for ρ0 = 2/3 and hence µ = −λ/(1 − 3λ) and
Λ = C \ {0, 1/3}.
As in Figure 3, the color represents the period of the attracting orbit that the free asymp-
totic value λ is attracted to. It does not reflect the behavior of the orbit of the other
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Figure 3: The parameter plane of the exponential family Eλ(z) = exp(z) + λ. Compo-
nents are colored according to their respective period, yellow for 1, cyan-blue for 2, red
for 3, brownish green for 4, etc.

q0

-

Figure 4: Left: The λ−plane of the meromorphic family fλ, showing the dynamics of
the free asymptotic value λ. Dimensions [−12, 12]× [−12, 12]. Right: Zoom in on a shell
component of period two (cyan-blue). Color coding is explained in the text. Dimensions
[0.5, 1.9]× [−3.25, 1.92]

asymptotic value −µ. In the unbounded green capture component on the left λ is at-
tracted to the origin. As we see below, −µ may or may not also be attracted to the
origin in this component. In the yellow shell component on the right, λ is attracted to an
attracting fixed point different from zero while −µ is attracted to zero. It follows from
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Theorem C (c) that this component is indeed unbounded. In the cyan-blue bounded shell
components, λ is attracted to a cycle of period 2; in the red ones the attracting cycle has
period three, etc. Bifurcations occur at parabolic parameters as usual, giving rise to shell
components of all periods attached to the boundary of any given shell component.

In Figure 5 we again plot the λ−plane but we show the dynamics of the second asymptotic
value −µ. On the unbounded green region of Figure 5, −µ is attracted to the origin.
This figure should be superimposed on top of Figure 4 near the origin in the large green
component on the left in Figure 4; it is relatively so small that it almost vanishes. In
intersection of the green regions of the the combined figure both asymptotic values are
attracted to the origin. On the complement of the green region in Figure 4, λ is attracted
to the origin and −µ is free. The yellow region is a shell component of period one which
should have a virtual center at the parameter λ = 1/3, (where µ = ∞) but this is a
parameter singularity.

Observe that µ is not an affine function of the parameter λ; this would explain the numerics
which seem to indicate that this period one component is bounded. In fact, if we were to
reparametrize the family so that µ depended affinely on the parameter, we would see the
same picture as in Figure 5 because of the symmetry in the equation connecting µ and λ.

t1
3

Figure 5: The λ− plane of the family fλ, showing the dynamics of the second asymptotic
value −µ = λ/(1− 3λ). Dimensions [0.28, 0.44]× [−0.08, 0.08].

(c) A slice of F2 is given by the tangent family of maps

Tλ(z) = λ tan z

with Λ = C∗ and vλ = λi [DK88, KK97, KY06]. This is a dynamically natural slice in the
relaxed sense of Remark 4.7 because the second asymptotic value is s1(λ) = −vλ = −λi and
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Tλ is symmetric. It follows that the bifurcation locus is the same for both singular values.
Condition (e) should be replaced by the condition that the relation s1(λ) = −vλ = −λi
must persist under deformation. Figure 6 shows the parameter plane of Tλ.1 There is a
lot of symmetry in this family. We have

Tλ(−z) = T−λ(z) and Tλ(−z) = −Tλ(z) so that

T−λ(−z) = Tλ(z).

In addition
Tλ̄(z) = Tλ(z̄).

This says, for example, that if for some λ0, z1 is a fixed point of Tλ0 , then T−λ0(z1) = −z1

so that z1 is a period 2 point of T−λ0 . It also says that complex conjugate values of λ have
conjugate periodic cycles.

q0

Figure 6: The parameter plane of the family Tλ(z) = λ tan z. Dimensions [−6, 6]× [−6, 6].

The figure shows the λ plane where we can observe these symmetries. We only follow
the orbit of one asymptotic value, λi, and we color the components based on the period
of the cycle it is attracted to. The colors do not reflect the behavior of the orbit of the
other asymptotic value. Thus, we see the same color for a λ value for which there are two
separate attracting periodic cycles of period 2k as we do when there is a single attracting
periodic cycle of period 2k attracting both asymptotic values.

There is a single non-simply connected component, the punctured unit disk, for which both
asymptotic values are attracted to the origin. There are two unbounded components, one
on the right (yellow) and one on the left (cyan-blue). In the one on the right, λi is attracted

1Note that the maps λ tan z and λ tanh z are conjugate under z → iz so they are dynamically the same.
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to a fixed point a0 with multiplier ρ0, and −λi is attracted to −a0 with the same multiplier.
It has the same color as the unit disk. In the unbounded component on the left, both λi
and −λi are attracted to the attracting period two cycle a0,−a0 and its multiplier is ρ2

0.
Neither of these components has a finite virtual center. Although the left one is colored
for period 2, it cannot have a finite virtual center because if λ∗ were a finite virtual center,
−λ∗ would be a virtual center for the unbounded component on the right of period 1,
contradicting Corollary 6.14.

Note that, except for the punctured disk, each bounded component is paired with another
bounded component; the two have a common virtual center and are tangent there. The two
unbounded components can be thought of as paired at infinity. The relationship between
these component pairs is discussed in in [KK97] and in detail for λ on the imaginary axis
in [CJK18].

Example 2. Functions in F2 can be composed with rational or polynomial functions and, up
to affine conjugation, the dynamics of the composed functions remain invariant under quasi-
conformal deformations supported on the Fatou set (see Theorem 8.3 in the Appendix). Below
we describe dynamically natural slices formed by pre- and post- composition with a quadratic
polynomial Q(z) = az2 + bz + c.

(a) If we start with an an f ∈ F2 with finite asymptotic values and pre-compose by a degree
two polynomial, Q(z) = az2 + bz + c, the resulting function

g(z) = f(az2 + bz + c)

has the same two asymptotic values as f does. Since each asymptotic tract of f has two
pre-images under Q, each asymptotic value of g has two asymptotic tracts and so has
multiplicity two. Since f has no critical points, g has a single critical point at −b/2a and a
single critical value at f(−b/2a). If we assume the origin is fixed, then c = 0. If we assume
it is also a critical value then b = 0. Now making one of the asymptotic values land on
the fixed point 0, we can form a dynamically natural slice. This determines the coefficient
a. This is a slice in the relaxed sense of Remark 4.7, because one of the singular values is
preperiodic. The functions in the slice can then be written

gλ(z) =
ez

2 − e−z2
1
λe

z2 + ( 1√
πi

)e−z2

The asymptotic values are λ and −
√
πi. The singular parameter values are at 0 and −

√
πi.

Theorem 8.3 implies that condition (d) holds.

Figure 7 shows the λ-plane. The green components are capture components where the
orbit of λ falls into the basin of attraction of the origin. In the unbounded yellow shell
components, λ is attracted to an attracting (not super attracting) fixed point. In the
cyan-blue (bounded) components it is attracted to a cycle of period two, in the red ones
to a cycle of period three and in the brownish green ones to a cycle of period four. The
components come in pairs because the asymptotic values have multiplicity two. This is
discussed in [CK19].
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Figure 7: Dynamically natural slice for functions in F2 pre-composed with a quadratic
polynomial.

(b) We can form a dynamically natural slice, in the relaxed sense, with the functions h =
af2 + bf + c, for f ∈ F2 by assuming the origin is a super attracting fixed point and that
the two asymptotic values coincide. In this case the functions in the slice each have one
asymptotic value of multiplicity two. We can write these functions as

λ tanh2 z.

The parameter λ is the free (double) asymptotic value and so determines a dynamically
natural slice of the parameter space Λ = C \ {0}. Condition (e) is satisfied in the modified
sense.

In the left plot of Figure 8 we see the λ−plane. In the center of the figure we see a green
capture component formed by parameters for which the asymptotic value belongs to the
immediate basin of 0. This component is doubly connected because of the puncture at
λ = 0. The remaining green components are capture components for higher iterates.

In the two yellow shell components the period is one. They are unbounded in accordance
with Proposition 6.12. The remaining shell components are all of higher period and nu-
merics indicate that they are all bounded. We see that they are grouped into quadruples
that share a virtual center. This is because the asymptotic value has two asymptotic tracts
and each asymptotic tract has two pre-asymptotic tracts.

Compare this figure to the right plot in Figure 8 which shows the parameter plane for
the family λ tanh z2. It is essentially the “square root” of this slice, since both maps are
semiconjugate by z2. The asymptotic values now have multiplicity 2. These examples
are investigated further in [CK19] where it is proved that all shell components of period
greater than 1 are bounded.

Example 3. Our last example is a slice in the family R(z)eQ(z) (see the Appendix) where R(z)
is rational and Q(z) is a polynomial. Choosing the degrees of R and Q to be 1, we obtain a
function with two asymptotic values, one of which is infinity. It also has two critical points and
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Figure 8: Left: Parameter plane of the family λ tanh2 z. Dimensions [−6, 6] × [−6, 6].
Right: Parameter plane of the family λ tanh z2. Dimensions [−3, 3]× [−3, 3]

two critical values. For our slice, we fix one of the critical points at infinity so it is both a critical
point and an asymptotic value. We let the second asymptotic value a be free. We normalize so
that the origin is an attracting fixed point with fixed multiplier |ρ| < 1; the origin attracts the
critical value that is the image of the finite critical point which we take as ρ/(ρ+ a). Note there
is then a single pole at −a/(ρ + a). With this normalization, the functions depend only on a
and have the form

fa(z) = a
(
1− aez

(ρ+ a)z + a

)
.

The previous examples contained only two types of components, shell components and cap-
ture components. This example also contains very small yellow Mandelbrot sets at the ends of
the Cantor bouquets inside the big green capture component in the blow-up. They correspond
to parameters where the critical point behaves independently, while the asymptotic value a is
attracted to 0. There are also both bounded and unbounded shell components in the picture.
In the blow-up, we see bounded shell components bifurcating from the unbounded yellow fixed
one on the left. The virtual center of the period two component on the right is at infinity.

This example has only one pole, so infinity must be an asymptotic value. It could be thought
as a ”hybrid” between a slice in an entire family and a meromorphic slice in M∞. The other
examples have either infinitely many poles or none.

Further examples

Other one-dimensional slices recording the position of a free asymptotic value while keeping the
other ones under control have been studied in the literature. These are mostly entire functions
and we refer the reader to [BF10, Den15] for these examples.
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Figure 9: Left: Parameter plane of the family fa(z) with ρ = 1/2. Dimensions
[−6, 6]× [−6, 6]. Right: Blow-up showing the Mandelbrot sets (tiny yellow in the center).
Dimensions [−3, 3]× [−3, 3]

8 Appendix

Any meromorphic function that is a branched cover of the sphere of finite degree d is a rational
function and so can be expressed as a quotient of relatively prime polynomials at least one of
which has degree d. The 2d + 1 coefficients of these polynomials define a natural embedding
of the space of such functions into C2d+1. Up to affine conjugation then, these functions are
represented as a complex analytic manifold of dimension 2d− 2. This family is denoted by Ratd
in the literature.

Not all holomorphic families of meromorphic functions have such an obvious representation
as a complex manifold. In this appendix we consider some transcendental families that do.
These are the families that most of our examples are drawn from. The functions have explicit
expressions that involve complex constants. We show that under quasiconformal deformation,
the deformed function has a similar expression in which only the constants are changed. Thus
the constants determine the embedding of the manifold into Cn for the appropriate n.

We begin with families of meromorphic functions with p <∞ asymptotic values, no critical
points and a single essential singularity at infinity. We denote these by Fp. (See [DK88, KK97,
EG09] for further discussion.)

These functions have a particularly nice characterization. Recall that the Schwarzian deriva-
tive of a function g is defined by

S(g)(z) = (g′′/g′)′ − 1

2
(g′′/g′)2. (8.1)

Nevanlinna, [Nev70, Nev32], Chap X1, proved
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Theorem 8.1. Every meromorphic function g with p <∞ asymptotic values and q <∞ critical
points has the property that its Schwarzian derivative is a rational function of degree p+ q − 2.
If q = 0, the Schwarzian derivative is a polynomial P (z). In the opposite direction, for every
polynomial function P (z) of degree p − 2, the solution to the Schwarzian differential equation
S(g) = P (z) is a meromorphic function with exactly p asymptotic values and no critical points.

Since the theorem is classical and the proof is not well known, we sketch the proof here and
refer the reader to the literature for details.

Proof. The proof follows from the construction of a function with p asymptotic values and
no critical points as a limit of rational functions with p branch points. Letting the order of
the branching at some or all of these p points increase, one obtains a sequence of rational
functions. In the limit, the images of the branch points whose order goes to infinity become
logarithmic singularities and the limit function has finitely many branch points and finitely many
logarithmic singularities. The limit function is a parabolic covering map from the plane to itself.
The Schwarzian derivatives of the rational functions in the sequence are again rational functions
with degree determined only by the number of branch points, not their order. The limit of the
Schwarzian derivatives is the Schwarzian derivative of the limit and so must be rational.

If all the branch points become asymptotic values in the limit, the limit function has no
critical points or critical values and hence its derivative never vanishes. It follows from the
definition of the Schwarzian that in the limit, it must be a polynomial.

It is classical, ( see e.g. [Hil76]), that solutions to the Schwarzian equation S(g) = P (z) are
related to solutions of the linear second degree ordinary differential equation

w′′ +
1

2
P (z)w = 0. (8.2)

Such an equation has a two dimensional space of holomorphic solutions. If w1, w2 are a pair of
linearly independent solutions, and

g =
aw2 + bw1

cw2 + dw2
, a, b, c, d ∈ C, ad− bc = 1,

it is easy to check that S(g) = P (z). Moreover, if g is any solution of the Schwarzian equation,
w =

√
1/g′ is a solution of the linear equation.

Remark 8.2. One of the basic features of the Schwarzian derivative is that it satisfies the following
cocycle relation: if f, g are meromorphic functions then

S(g(f))(z) = S(g(f))f ′(z)2 + S(f(z)). (8.3)

In particular, if T is a Möbius transformation, S(T (z)) = 0 and S(T ◦ g(z)) = S((g(z)) so
that post-composing by T does not change the Schwarzian. Under pre-composition by a Möbius
transformation the Schwarzian behaves like a quadratic differential. In particular, pre-composing
by an affine transformation multiplies the Schwarzian by a constant.

34



This means that if we find a specific pair (w∗1, w
∗
2) of solutions to the second order linear

equation and set g∗ = w∗2/w
∗
1, then every solution of the Schwarzian equation S(g) = P (z) has

the formula

g =
ag∗ + b

cg∗ + d
, a, b, c, d ∈ C, ad− bc = 1,

In particular, if p = 2, P (z) is identically constant. Using one of the constants in an affine
conjugation, we may assume P ≡ −1/2; then a specific pair of solutions to equation (8.2) is
w∗1 = e−

z
2 , w∗2 = e

z
2 so we have g∗ = w∗2/w

∗
1 = ez. The functions in the family F2 have the form

g(z) =
aez + b

cez + d
, a, b, c, d ∈ C, ad− bc = 1.

Since there is one more degree of freedom from the affine conjugation, we see this is a three
dimensional family. We have discussed several dynamically natural slices of F2 in this paper.

For F3, P (z) is linear and two specific solutions to the second order linear equation

w′′ +
1

2
ζw = 0

are given by the Airy functions2 Ai(ζ), Bi(ζ). Setting g∗(ζ) = Ai(ζ)/Bi(ζ) we obtain a solution
with three asymptotic values, 0, i and −i. Since we are interested in the dynamics, we may
conjugate by the affine transformation ζ = rz + s. We may thus transform any function whose
Schwarzian is linear, and hence any function in F3, up to affine conjugation, to one given by the
formula

g(ζ) =
ag∗(ζ) + b

cg∗(ζ) + d
, a, b, c, d ∈ C, ad− bc = 1.

The asymptotic values of g are b
d ,

ai+b
ci+d ,

−ai+b
−ci+d .

We could define a dynamically natural slice, for example, by choosing the coefficients a, b
and d so that

g(1) = 1, and g′(1) = 1/2.

It is not hard to compute that the remaining coefficient c is an affine function of the asymptotic
value b

d .

There are standard functions that solve the second order equation when the coefficient poly-
nomial is of degree two or three, and they give formulas for functions in F4 and F5.

The following families of holomorphic functions have rational Schwarzian derivatives and are
determined by their topological covering properties. We list them here and refer the reader to
the cited literature for further discussion of them.

• Functions of type ReQ for R rational and Q polynomial. See [CJK17, Zak10] for discussions
with R polynomial.

• Functions of type
∫ z
z0
P (t)eQ(t)dt for P,Q polynomials. See [Bak84, Th. 6.2] and [Tan01,

Prop. 2]).

2These are named after the British astronomer G.B.Airy (1801-92). Others have studied this equation and
solutions are expressed in terms of Bessel functions and Gamma functions. We won’t write the formulas but will
describe the properties we need.
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Compositions

The following theorem shows how we can find more families for which the functions have explicit
formulas. (See [CK19] for further discussion of these functions).

Theorem 8.3. Let f0 ∈ Fp

1. Suppose g0 = f0◦Q0 is a function such that Q0 is a polynomial of degree d and suppose that
g is a meromorphic function quasiconformally conjugate to g0. Then g can be expressed
as g = f ◦Q for some function f ∈ Fp and some polynomial Q of degree d.

2. Suppose R0 ∈ Ratd is rational of degree d and h0 = R0 ◦ f0. Then if h(z) is quasicon-
formally conjugate to h0, h can be expressed as h = R ◦ f for functions R ∈ Ratd and
f ∈ Fp.

Remark 8.4. The proof of part 1 of the theorem works if Q0 is replaced by a rational function
R0 ∈ Ratd but then the composed function g0 has essential singularities at the poles of R0.

Remark 8.5. Note that in part 1, g = f ◦ Q is a function with rational Schwarzian. For each
asymptotic value of f of multiplicity m, g has an asymptotic value of multiplicity dm; moreover
g has the same critical points as Q, namely 2d − 2 critical points counted with multiplicity,
d− 1 of which are at infinity. In part 2, however, it is no longer true that the Schwarzian of the
composed function h = R ◦ f is a rational function. For example, it may have infinitely many
critical points.

Remark 8.6. Observe that if f ∈ Fp and Q is a degree d polynomial then Q ◦ f and f ◦ Q are
semiconjugate by a degree d polynomial – in fact by Q.

Proof. The proof of both parts of the theorem is essentially the same. We therefore carry it out
only for part 1.

In part 1, let φµ be a quasiconformal homeomorphism with Beltrami coefficient µ such that

gµ = φµ ◦ g0 ◦ (φµ)−1

is meromorphic. We can use f0 to pull back the complex structure defined by µ := ∂̄φµ/∂φµ to
obtain a complex structure ν = f∗0µ such that the map

fµ = φµ ◦ f0 ◦ (φν)−1

is meromorphic. Note that this is not a conjugacy since it involves two different homeomor-
phisms.

We can now write
gµ = φµ ◦ f0 ◦ (φν)−1 ◦ φν ◦Q0 ◦ (φµ)−1

and set
Qµ = φν ◦Q0 ◦ (φµ)−1.

Again this is not a conjugacy but it is meromorphic since gµ and fµ are homeomorphisms.

The main point here is that although fµ is not a conjugate of f0, since the quasiconformal
maps φµ and φν are homeomorphisms, the map fµ is a meromorphic map with the same topology
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as f0; that is, it has p asymptotic values and no critical values. By Nevanlinna’s theorem,
Theorem 8.1, fµ belongs to Fp. Similarly, although Qµ is not defined as a conjugate of Q0, since
the quasiconformal maps φν and φη are homeomorphisms, the map Qµ is a meromorphic map
with the same topology as Q0; that is, it is a degree d branched covering of the Riemann sphere
with the same number of critical points and the same branching as Q0 and thus it must be a
polynomial of degree d.
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