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Parabolic Perturbation of the family λ tan z

Linda Keen and Shenglan Yuan

ABSTRACT. In this paper we study parabolic bifurcation in holomorphic dy-
namics and apply our result to the family λ tan z to complete the proof that there
are infinite cascades of non-standard period doubling bifurcations along the imagi-
nary axis.

1. Introduction

In conformal dynamics one is interested in describing the equivalence classes
of topologically conjugate functions in natural one parameter families such as
{Pλ = z2 + λ, λ ∈ C}. In this family, examples of such classes are the compo-
nents of the interior and exterior of the Mandelbrot set where the dynamics are
characterized by the combinatorics of the super attracting periodic cycle of the
function at the center of the component. These components, are called the hyper-
bolic components. These components come in pairs: the pair shares a common
boundary point at which the orbits of the asymptotic values land on a pole. The
boundary of a hyperbolic component also contains many other points that are
shared with another component. At such a boundary point there are one or two
parabolic periodic cycles; in one of the components at this point, called the root,
the parabolic cycle becomes attracting and in the other, called the bud, it becomes
repelling and another attracting cycle of a higher period develops. There are other
special boundary points called cusps. At these there are parabolic cycles, but they
are not boundary points of any other component.

Another natural one parameter family of transcendental meromorphic functions
is the family {Tλ = λ tan z, λ ∈ C \ {0}}. The dynamical properties of this family
were first studied by Devaney and Keen in [3, 4] and pursued by Keen and Kotus in
[7, 8] whose work was motivated by the computer pictures of the parameter plane
created by W. Jiang in his unpublished thesis [6]. These pictures indicate that
pairs of hyperbolic components share a common boundary point with a parabolic
cycle. In [6], bud components were observed at points of rational argument on the
unit circle.

On the imaginary axis a new period doubling phenomenon called non-standard
bifurcation was observed: instead of a single parabolic cycle bifurcating into an
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attracting cycle of double the period, one saw a parabolic cycle bifurcating into two
distinct attracting cycles of the same period. The question of whether a parabolic
cycle that is not at a cusp always has either a standard or non-standard bifurcation
was proved only under the assumption that the multiplier of the cycle is a monotone
function of the parameter as it passes through the parabolic point.

In this paper we prove this assumption is unnecessary; we give an independent
proof of the existence of the bifurcation. As a corollary, we deduce that for λ on the
imaginary axis there are infinite cascades of period doubling analogous to those for
quadratic polynomials on the real axis. This also completes the discussion in [8] of a
Sharkovskii-like ordering for the hyperbolic components intersecting the imaginary
axis. In particular, the inequalities in [8] on the number of components of given
period become equalities and we obtain a complete description of the deployment
of the hyperbolic components on the imaginary axis.

The main tool we use is the local normal form for a function in the neighborhood
of a parabolic fixed point of (λ tan z)◦p (see [1, 5, 9]). This gives us bifurcations
at rational points on the unit circle, theorem 1. The arguments for the imaginary
axis are more delicate. To prove the main result, theorem 4, we first prove a
local theorem, theorem 3 to obtain the properties of a perturbation of the form
(1 + δ)λ tan z. Then we apply this theorem to the two types of root components,
those with two attracting cycles of period 2n and those with a single attracting cycle
of period 4n, n > 1, to obtain standard and non-standard bifurcations respectively.

The paper is organized as follows. In section 2, we give the basic results about
perturbation near a parabolic fixed point z0. In section 3 we discuss the basic
facts we need about the dynamics of the tangent family. In section 4, we study
the bifurcations on the unit circle. In section 5, we study the bifurcation along the
imaginary axis and prove theorems 3 and 4. In section 6, we apply our results:
we prove that there exists an infinite cascade of non-standard period doubling
bifurcations along the imaginary axis; we also obtain the full description of the
ordering of components on the imaginary axis.

2. Parabolic Points

In holomorphic dynamics, a cycle 〈z〉 = {z, f(z), f2(z), . . . , fn−1(z), fn(z) =
z}, of period n, of a holomorphic or meromorphic function f has a multiplier
ρ = (fn)′(z). This multiplier is independent of the point of the cycle. The cy-
cle is called attracting if |ρ| < 1; it is indifferent if |ρ| = 1, and it is repelling if
|ρ| > 1. An indifferent cycle is rationally indifferent if ρ is a root of unity, otherwise
it is irrationally indifferent. A rationally indifferent cycle is called parabolic if f i is
not the identity map for any i.

We recall some standard facts about parabolic periodic points. Suppose that
in some neighborhood of the parabolic fixed point z0, which we assume to be the
origin, f is given by a power series of the form

f(z) = z − zm+1 + O(zm+2)

with m ≥ 2. Then, [1, 2, 9], f is locally holomorphically conjugate to a map of
the form

f̃ = z − zm+1 + bz2m+1 + O(z2m+2)
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If z0 is a periodic parabolic fixed point with period p and multiplier ρ, then in a
neighborhood of z0, f can be expressed as

f(z) = ρ(z − zm+1 + z2m+1) + O(z2m+2)

The dynamics in a neighborhood of z0 are described in the Leau Flower theorem,
(see for example, [2, 9]) which says that there are m disjoint simply connected
domains, called attracting petals, with common boundary point z0, that fall into
k = m

p distinct forward invariant cycles under f .
The following lemmas give the basic local picture of perturbations of parabolic

points.

Lemma 1. Assume that α is a real number and that f(z) has normal form
f(z) = z− zm+1 +αz2m+1 +O(z2m+2) in a neighborhood of z0 = 0. For any ε such
that 1

4|α| > ε > 0, the perturbation of f(z) defined by f1+ε(z) = (1 + ε) · f(z) has a
repelling fixed point at z0 and m attracting fixed points near z0.

Proof. Clearly f(z) has a fixed point at z0 with multiplicity m+1 and simple
fixed points close to the mth roots of 1

α . It is also obvious that f1+ε(z) has a simple
fixed point at z0. Let xi denote the mth roots of ε

1+ε where i = 1, 2, . . . , m. Set

F (z) = ε− (1 + ε)zm + (1 + ε)αz2m

Then when α > 0, we have F (xi) > 0 and when α < 0 we have F (xi) < 0. Let
yi denote the mth roots of 2ε

1+ε where i = 1, 2, . . . ,m so that F (yi) = −ε + α 4ε2

(1+ε) .
Either α > 0 or α < 0 and, by hypothesis ε < 1

4α ; in either case we see that
F (yi) < 0. Since F (0) > 0, we deduce that F (z) has m simple zeros inside the disk

with center z0 and radius m

√
2ε

1+ε . Let zi denote the m zeros of F (z) inside the disk
which are the simple fixed points of f1+ε(z). Then,

f ′1+ε(zi) = (1+ ε)(1− (m+1)zm
i +(2m+1)αz2m

i ) = (1+ ε)(1− (m + 1)ε
1 + ε

+mαz2m
i )

and z2m
i < ( 2ε

1+ε )
2; therefore f ′1+ε(zi) < 1.

Lemma 2. Assume again that for some real α, f(z) has the normal form f(z) =
z − zm+1 + αz2m+1 + O(z2m+2) in a neighborhood of z0 = 0. If α > 0, choose any
ε such that 1 > ε > 0, whereas if α < 0 choose any ε such that 0 < ε < 1

1−4α . Then
the perturbation of f(z) given by f1−ε(z) = (1 − ε) · f(z) has an attracting fixed
point at z0 and m repelling fixed points near z0.

Proof. Clearly f(z) has a fixed point at z0 with multiplicity m + 1 and a
simple fixed point close to each of the mth roots of 1

α . Also, f1−ε(z) has a simple
fixed point at z0. Let xi denote the mth roots of

1− ε−
√

(1− ε)2 + 4ε(1− ε)α
2(1− ε)α

where i = 1, 2, . . . ,m. Then

f ′1−ε(xi) = 1 + mε + (1− ε)mαx2m
i

Now when α > 0, 1 − ε > 0 so that xm
i is real and (1 − ε)mαx2m

i > 0.
Therefore f ′1−ε(xi) > 1. On the other hand, when α < 0, ε < 1

1−4α , so that
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√
1− ε +

√
1− ε + 4εα >

√
1− ε. Computing the multiplier at xi we have

f ′1−ε(xi) = 1+mε+(1−ε)mα
2(1− ε)2 + 4ε(1− ε)α− 2(1− ε)

√
(1− ε)2 + 4ε(1− ε)α

4(1− ε)2α2

= 1 + 2mε + m
−2ε

√
1− ε

(
√

1− ε +
√

1− ε + 4εα)

so that again f ′1−ε(xi) > 1.

Lemma 3. Assume that f(z)is given in normal form near a periodic parabolic
point z0 = 0 with period p and multiplier ρ, a primitive p− th root of unity so that
for some real α,

f(z) = ρ(z − zm+1 + αz2m+1)

For any sufficiently small ε > 0 satisfying |1−mε| < 1 and ε < 1
4
˜̃α, where ˜̃α depends

on m, p and α, there exists a perturbation f1+ε(z) = (1+ ε) · f(z) of f(z), such that
f1+ε(z) has a repelling fixed point at z0 and k = m

p attracting periodic points of
period p near z0.

Proof. There exists a holomorphic conjugation h such that g = h−1fh =
z−zm+1+αz2m+1+O(z2m+2 and gp = h−1fp(z)h = z−pzm+1+α̃z2m+1+O(z2m+2).
We see easily that z0 = 0 is a parabolic fixed point of fp(z) with multiplicity m+1
and there are simple fixed points close to the mth roots of α̃

p .

Let us look at the perturbation g̃ = (1 + ε)
1
p · g where we take the positive real

pth root. Set f̃ = hg̃h−1 We compute that:

g̃p = (1+ε)z−((1+ε)+(1+ε)
m
p +1+ . . .+(1+ε)m−m

p +1)zm+1+ ˜̃αz2m+1+O(z2m+2)

where ˜̃α is real. Since (g̃p)′(0) = (h−1f̃ph)′(0) = 1 + ε, z0 = 0 is a simple repelling
fixed point of f̃p. Arguing as we did in lemma 1, we set

G(z) = ε− ((1 + ε) + (1 + ε)
m
p +1 + . . . + (1 + ε)m−m

p +1)zm + ˜̃αz2m + O(z2m+1)

We let xi, i = 1, . . . , m be the mth roots of

ε

(1 + ε) + (1 + ε)k+1 + . . . + (1 + ε)(k−1)p+1

and yi, i = 1, . . .m be the mth roots of

2ε

(1 + ε) + (1 + ε)k+1 + . . . + (1 + ε)(k−1)p+1

where as above, k = m
p . We compute that for ε satisfying ε < 1

4
˜̃α, G(xi) and G(yi)

have opposite signs and we conclude that there are m simple roots of G(z) in a disk
centered at z0 with radius depending on ε.

These roots closely approximate the roots zi, i = 1, . . . ,m of f̃p that lie in a
perhaps slightly bigger disk. We compute (f̃p)′(zi) = 1−mε+O(ε2). If |1−mε| < 1,
the zi, i = 1, . . . ,m are attracting periodic points. Thus f bifurcates into a function
with one simple repelling fixed point at z0 and m attracting periodic points that
split into k cycles of period p.
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3. Basic facts about the Tangent Family

Let us recall some definitions and basic facts about the dynamics of meromor-
phic functions in general and the tangent family in particular.

For a complex analytic function f , the Julia set carries the interesting dynam-
ical information and is defined by any of the following equivalent conditions:

1. The Julia set J(f) is the complement of the set on which the iterates of f
form a normal family in the sense of Montel; its complement is called the Fatou
set.

2. J(f) is the closure of the set of repelling periodic points of f .
3. In addition, if f is meromorphic, there are points whose forward orbit lands

on a pole and are thus preimages of ∞. Such points are called prepoles and J(f)
is the closure of the set of prepoles of f.

It is well known that the parameter plane of the quadratic family Pc(z) = z2+c
is decomposed into the Mandelbrot set M = {c ∈ C|J(Pc) is connected} and its
complement C \M where J(Pc) is a Cantor set. Let

M ′ = {c ∈ C|Pc has a finite attracting periodic cycle}
The hyperbolic set is the union of M ′ and C \M .

The orbits of critical points and asymptotic values play an important role in
the study of Julia sets. The quadratic polynomials Pc have two critical points: one
at infinity, which is fixed, and one at the origin. For Pc ∈ C\M , the critical point at
zero is attracted to infinity and the Julia set is a Cantor set. Thus, the Mandelbrot
set is the same as the set of c for which the orbit of the critical point zero remains
bounded. In the connected components of M ′ the dynamics are determined by the
combinatorics of the orbit of the critical point at zero.

For the tangent family Tλ(z) = λ tan z, there are no critical points; there are
two asymptotic values, ±λi and the dynamics are controlled by the orbits of these
values. Recall that these values are omitted but that

lim
y→±∞

Tλ(x + iy) = ±λi

Since any attracting or parabolic cycle must attract the orbit of an asymptotic value,
[4], there are either two distinct cycles, each attracting one asymptotic value, or a
single cycle attracting both. Note that the symmetries in this family

Tλ(−z) = −Tλ(z) and T−λ(z) = −Tλ(z)

T ′λ(−z) = T ′λ(z) but T−λ(z) = −T ′λ(z)
imply that if there are two cycles they are symmetric and both are attracting or
parabolic with the same multiplier, if there is just one attracting or parabolic cycle,
the points of the cycle are symmetric in pairs.

The hyperbolic set for this family is defined as

H = {λ ∈ C|Tλ has a finite attracting periodic cycle}
In analogy with quadratic polynomials, the connected components of H can be

characterized by the combinatorics of the orbits of the asymptotic values (see [7]).
The unit disk minus the origin is the only hyperbolic component of H for

which λ tan z has only one attracting fixed point at 0. The multiplier at 0 is
T ′λ(0) = λ sec2(0) = λ. Both asymptotic values are attracted to 0 and the connected
component of the attracting basin of 0 is the full Fatou set; the Julia set is a



6 LINDA KEEN AND SHENGLAN YUAN

Cantor set, [3]. The set {0 < |λ| < 1} is thus analogous to the complement of the
Mandelbrot set.

In [6, 7, 8] the deployment of the remaining components of H are studied. We
summarize the results we need from those papers here. The results in [7, 8] confirm
the computer pictures of W. Jiang in [6].

Because there are no critical points, there are no superattractive cycles; thus
the components have no centers. Instead, they occur naturally in pairs (Ωp,Ω′p)
where in Ωp there are two distinct attractive cycles of period p and in Ω′p there
is one attractive cycle of period 2p. By symmetry, the two cycles in Ωp have
the same multiplier. These paired components share a boundary point called the
virtual center. At a virtual center, the asymptotic values are prepoles; that is
T p

λ (±λi) = ∞. The asymptotic values may be thought of as images of infinity
(along paths whose imaginary parts tend to infinity). In this sense, the asymptotic
values belong to a virtual cycle. The multiplier of this cycle is the limit of the
multipliers of the attractive cycles in the hyperbolic component as the parameter
approaches the virtual center, and it is zero — hence the name virtual center.

In Ωp the attracting periodic points of the cycle are holomorphic functions of
λ. As λ passes from Ωp through the center into the paired component Ω′p, in each
cycle, one of the periodic points passes through a pole and its image changes sign.
The two cycles thus intertwine and become a single cycle of double the period.

In [8] it is proved that for each hyperbolic component Ω there is a holomorphic
conjugation φ : Ω → H to the upper half plane H such that if M(λ) is the multiplier
of the attractive cycle(s) then M = exp(iφ). It follows that along φ−1(nπ + iy)
the multipliers are real and at the boundary points limy→0 φ−1(nπ + iy) there are
parabolic cycles.

4. Bifurcations on the Unit Circle

The computer pictures of the λ-plane by W. Jiang show the component pairs
bud off the unit circle along the endpoints of rational internal rays where the argu-
ment of λ is a root of unity. We prove here that the bifurcations at these endpoints
actually occur as shown in the pictures.

If λ is real, it is easy to see, [3], that for λ > 1, λ tan z has a repelling fixed
point at zero and two attracting fixed points ±ti, t real, while if λ < −1, zero is a
repelling fixed point and the points ±ti form an attracting cycle of period two.

First let us state a lemma that we need.

Lemma 4. Let Tλ(z) = λ tan z, where λ is a primitive n-th root of unity, n > 2.
Then in a neighborhood of zero we can write

Tn
λ = z + anz2n+1 + O(z2n+2)

when n is an odd number and

Tn
λ = z + anzn+1 + O(zn+2)

when n is an even number.

Proof. We know that, since the tangent is an odd function, in a neighborhood
of zero,

Tλ(z) = λ(z + a1z
3 + a2z

5 + a3z
7 + . . . + anz2n+1 + . . .)

When n is even,

Tn
λ (z) = λnz + (λ2 + λ4 + . . . + λ2n)a1z

3 + O(z4).
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The multiplier at the fixed point 0 is T ′λ(0) = λ sec2(0) = λ. Set n = 2k We have
the identity

(λ2)k − 1 = (λ2 − 1)((λ2)k−1 + (λ2)k−2 + . . . + 1) = 0,

and since λ 6= ±1
(λ2)k−1 + . . . + 1 = 0

Thus λ2 + λ4 + . . . + λ2n = 0.
By a similar calculation we can show that, when i < n/2, ai has a factor of

1 + λ2 + λ4 + . . . + λn−2; we conclude ai = 0 for all i < n
2 .

When n is odd, we again have a similar calculation, and we can show that ai

has a factor of 1 + λ + λ2 + . . . + λn−1 and this must also be 0. Thus ai = 0 when
i < n.

Proposition 1. Let Tλ = λ tan z and suppose λ = i. If ε < 0, the perturbation
of Tλ given by T

λ(1+ε)
1
4

has an attracting fixed point at 0 and repelling periodic
points of period 4. If ε > 0, the perturbation Tλ(1+ε) has a single repelling fixed
point at 0 and an attracting periodic cycle of period 4.

Proof. By lemma 4, we have Ti(z) = z + a5z
5 + O(z6); that is, T 4

i (z) has a
parabolic fixed point at zero with multiplicity 5.

For ε < 0, applying lemmas 2 and 3, we deduce that T 4

λ(1+ε)
1
4

has a single

attractive fixed point at 0 and a repelling point of period 4 near 0.
If ε > 0 we apply lemmas 1 and 3 to deduce that Ti(z) bifurcates into a repelling

fixed point at zero and an attracting periodic cycle with period 4.

In general, we have the following:

Theorem 1. Let Tλ = λ tan z and λ = e2πi p
q , where (p, q) = 1. If ε < 0

the perturbation T
λ(1+ε)

1
q

has an attracting fixed point at 0 and a repelling periodic

point of period q and if ε > 0, T
λ(1+ε)

1
q

has a repelling fixed point at 0 and an

attracting periodic point of period q. That is, the unit disk is a root component with
bud components at all the points on the circle with rational argument.

Proof. First apply lemma 4 to conclude that T q
λ(z) = z + a0z

2q+1 +O(z2q+2)
and hence that T q

λ has a parabolic fixed point at zero with multiplicity 2q + 1.
Now applying lemmas 1 and 3, we deduce that for ε > 0, the perturbed function
(1 + ε)Tλ has a repelling fixed point at zero and an attracting periodic cycle near
zero with period q.

5. Bifurcations along the imaginary axis

For the family Tλ the imaginary axis = in the parameter plane plays an impor-
tant role which is analogous to the role the real axis plays for the quadratic family.
Here we summarize the results we need from [KK2].

Proposition 2. If λ ∈ = and z ∈ R, then for every n ∈ N, we either have
T 2n

λ (z) ∈ R, and T 2n+1
λ ∈ =, or T 2n+1

λ (z) = ∞.

Proposition 3. If λ ∈ = belongs to a hyperbolic component, then the period
of the attracting cycle (or cycles) is even.
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Proposition 4. If λ ∈ =, then the multiplier M(λ) of any parabolic or at-
tracting periodic cycle of period 2n is always real and

(1) sgn(M(λ)) = sgn(λ2n) = (−1)n

A direct corollary of equation (1) is

Proposition 5. Let λ ∈ = belong to a hyperbolic component. If there is a
single cycle of period 4n, then 0 < M(λ) < 1, while if there are two cycles of period
2n, then either n is odd and −1 < M(λ) < 0, or n is even and 0 < M(λ) < 1.

In the components Ω′2n with a single cycle of period 4n, note that we can choose
a particular square root of the multiplier as follows. We set

m(λ) =
df2n

λ

dz
(zi(λ)).

Another immediate corollary of equation (1) is

Corollary 2. If λ ∈ Ω′2n ∩ = then sgn m(λ) = (−1)n.

We call m(λ) the half multiplier; note that it is well defined independent of i.

Proposition 6. Suppose a hyperbolic component Ω intersects the imaginary
axis =. Then it has a unique virtual center on the imaginary axis, and Ω∩= is an
interval whose endpoints are the virtual center λ0 and a parameter λ1 such that

lim
λ→λ1

M(λ) = ±1,

where the limit is taken inside Ω.

We call λ1 the real parabolic boundary point
We have the following proposition (corollary 8.5 of [8]) that characterizes at-

tracting petals at the real parabolic boundary points.

Proposition 7.
i) Suppose λ1 is the real parabolic boundary point of a component Ω2n inter-

secting the imaginary axis. If M(λ1) = 1, then there is exactly one attracting
petal at each periodic point in the parabolic cycle, whereas if M(λ1) = −1,
then there are two attracting petals at each periodic point in the parabolic
cycle.

ii) Suppose λ1 is the real parabolic boundary point of a component Ω′2n inter-
secting the imaginary axis. If m(λ1) = 1, then there are two attracting petals
at each periodic point in the parabolic cycle, whereas if m(λ1) = −1, then
there is only one attracting petal at each periodic point in the parabolic cycle.

We now turn our attention to the local behavior in the neighborhood of the real
parabolic parameter λ1 on the imaginary axis when there are two attracting petals.
In theorem 8.8 of [8], it is proved that standard and non-standard bifurcations
occur at such points under the assumption that the multiplier is monotonic there.
The following theorem shows that such an assumption is unnecessary.

Theorem 3. Suppose λ1 is a real parabolic boundary point of a hyperbolic
component intersecting the imaginary axis and suppose further that

there are two invariant attracting petals at each point of the single parabolic
cycle of period 2n. Then for small ε > 0, the perturbed function ((1+ε)

1
2n λ1 tan z)2n
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has a repelling fixed point and two attracting fixed points, close to, and on opposite
sides of it. In addition, for ε < 0, the perturbed function ((1 + ε)

1
2n λ1 tan z)2n has

a single attracting cycle of period 2n.

Remark 1. We have made the assumption that there is a single periodic cycle
to avoid dealing with two cases in the proof. If there are two periodic cycles of
period n and two attracting petals, the nth iterate also fixes the periodic point, but
interchanges the attracting petals. The 2nth iterate, however, maps each attracting
petal into itself as in the other case. The argument below will apply to this doubled
iterate. When ε > 0 it will show that there are two new attracting fixed points of
the 2nth iterate. Since in this case the multiplier of the parabolic cycle is negative,
the multiplier of the attracting cycle(s) is negative. It follows that both new points
belong to the same attracting cycle; this is a standard bifurcation.

Proof. We need only consider local behavior in the neighborhood of a periodic
point. The parameter λ1 is fixed in the discussion so we simplify our notation and
set T (z) = λ1 tan z. Let (z0, z1, . . . z2n−1) be the periodic cycle. Because λ1 is on
the imaginary axis, the points in the cycle alternate between the real and imaginary
axes; that is, if we assume z0 is real, then for k even, zk ∈ < and zk+1 ∈ =.

Now let hk(z) = z − zk and note that h2n = h0. Define

Sk(ζ) = hk+1 ◦ T ◦ h−1
k = T (ζ + zk)− zk+1

Each Sk has 0 as a fixed point.
Set

S = S2n−1 ◦ S2n−2 ◦ . . . S0 = h0T
2nh−1

0

Because there are two attracting petals at each fixed point of T 2n the same is true
for S. Introducing another conjugation if necessary, we can expand S about 0 as

(2) S(ζ) = ζ − ζ3 + αζ5 + O(ζ6)

Consider the derivatives, S′k(0) = T ′(zk) = µk. We know that

(3) Π2n−1
0 µk = 1

but each µk 6= 1. In fact, since the multiplier is independent of the point in the
cycle,

Π2n−1+j mod 2n
j µk = (−1)2n = 1

Also although S′′(0) = 0, the second derivatives S′′k (0) are not 0. We have the local
expansion

Sk(ζ) = µkζ + υkζ2 + ρkζ3 + O(ζ4)

Note that if k is even and ζ ∈ < then Sk(ζ) ∈ = whereas if k is odd and ζ ∈ = then
Sk(ζ) ∈ <. It follows that the derivatives µk and υk also alternate between the real
and imaginary axes.

Let a denote (1 + ε)
1
2n . Set

Sak
= aSk = a(µkζ + υkζ2 + ρkζ3 + O(ζ4)

and write
Sa = Sa2n−1 ◦ Sa2n−2 ◦ . . . Sa0

To get a local expansion for Sa(ζ) set

Sa0 = A0ζ + B0ζ
2 + C0ζ

3 + O(ζ4)
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where
A0 = aµ0, B0 = aυ0, C0 = aρ0

Recursively set ak = aµk, bk = aυk, ck = aρk and

Sak
◦ . . . Sa0 = Akζ + Bkζ2 + Ckζ3 + O(ζ4)

and find

Ak = akAk−1, Bk = bkA2
k−1 + akBn−1, Ck = ckA3

k−1 + 2Ak−1Bk−1 + akCk−1

Using equation 3 we find

(4) A2n−1 = (1 + ε)

Expanding, we have

B2n−1 = a4n−1(µ0 . . . µ2n−2)2υ2n−1 + a4n−2(µ0 . . . µ2n−2)2υ2n−1µ2n + . . .

+a2nυ0µ1 . . . µ2n−1

By the symmetry of the cycle, for k = 0, . . . n − 1, we have µk = µk+n and υk =
−υk+n. Using this observation we obtain

(5) B2n−1 = (1 + ε)((1 + ε)
1
2 − 1)

n−1∑

k=0

(1 + ε)
k−1
2n

υk+n

µk+n

1
µk+n . . . µ2n−1

It follows that B2n−1 = O(ε). Applying equations (4) and (5) we deduce that
C2n−1 = O(|1 + ε|).

Now comparing

(6) Sa(ζ) = (1 + ε)ζ + B2n−1ζ
2 + C2n−1ζ

3 + O(ζ4)

with equation (2), and using equation (5), we see that as ε → 0, B2n−1 = O(ε) → 0
and C2n−1 → −1. Moreover, since Sa(ζ) is real for ζ real, we deduce that B2n−1

and C2n−1 must be real.
Note that for ε < 0, ζ = 0 is an attracting fixed point and for ε > 0 it is

repelling.
Now consider the function

Sa − ζ

ζ
= ε + B2n−1ζ + C2n−1ζ

2 + O(ζ3)

which has two roots u1,2 near zero. These are approximate roots of ε + B2n−1ζ +
C2n−1ζ

2 = 0 and, since for ε suitably small we have C2n−1 < 0, the roots are real
and close to 0.

Computing the multipliers at ui, i = 1, 2, we have

M(ui) = 1 + ε− 2ε + C2n−1(ui)2 = 1− ε + C2n−1(ui)2 < 1

Thus, for ε > 0, these real roots are both attracting fixed points for Sa and so the
repelling fixed point at 0 must be between them. Therefore Sa is a perturbation
of S in which the parabolic fixed point at 0 has become repelling and two new
attracting fixed points ui have appeared.

We now need to compare Sa with (aT )2n. Set δ = a− 1 ≈ ε/2n and denote

Rk(ζ) = aT (zk + ζ)− zk+1 = hk+1(aT )h−1
k = Sak(ζ) + δzk+1

We can write
Rk(ζ) = δzk+1 + µkζ + υkζ2 + O(ζ3)

Now set
Ra(ζ) = R2n−1 ◦R2n−2 ◦ . . . R0(ζ) = h0(aT )2nh−1

0
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Expanding and collecting terms we can compute that

Ra(ζ) = Sa(ζ) + O(δ)

Moreover, since Ra(ζ) is real for ζ real, the graph of Ra restricted to R2 is a small
translation of the graph of Sa and both functions have the same dynamics. That
is, if ε < 0, Ra has an attracting periodic point of period 2n whereas if ε > 0
we conclude that Ra has a real repelling fixed point, w0, close to 0 and two real
attracting fixed points, u0 and v0, on either side of it. Using the conjugacy h0

we find that z0 + w0 is a repelling fixed point of (aT )2n and z0 + u0, z0 + v0 are
attracting fixed points.

Now we can prove our main result

Theorem 4. Suppose n is even and λ1 = q′2ni is the real parabolic boundary
point of a hyperbolic component Ω′2n. Then there is a non-standard bifurcation
at q′2ni; that is, as |q′2n| increases, the parabolic cycle of q′2ni tan z of period 2n
bifurcates into one repelling cycle of period 2n and two attracting cycles of period
2n so that there is a bud component Ω4n off the root component Ω′2n at λ1.
Next suppose n is odd and λ1 = q2ni is the boundary point of a hyperbolic component
Ω2n. Then there is a standard bifurcation at q2ni; that is, as |q2n| increases, each
parabolic cycle of period 2n bifurcates into one repelling cycle of period 2n and
one attracting cycle of period 4n so that there is a bud component Ω4n off the root
component Ω2n at λ1.

Proof. We first need to show that in either of the cases there are two attract-
ing petals at each point of the parabolic cycle.

In the first case, if n is even and the component is Ω′2n, then M(q′2ni) = 1. By
proposition 7, if z0 is a parabolic periodic point of q′2ni tan z there must be exactly
two attracting petals at z0. This is proved by noting that each attracting petal
must contain the orbit of at least one asymptotic value and these orbits lie either
on the real or imaginary axes. Moreover, since the multiplier is positive, the orbits
of the two asymptotic values lie on opposite sides of the periodic point and the
attracting petals at the periodic points fall into two forward invariant cycles.

In the second case, if n is odd and the component is Ω2n, the multiplier for each
cycle satisfies M(q′2ni) = −1. Again, applying proposition 7, if z0 is a parabolic
periodic point of q2ni tan z there must be exactly two attracting petals at z0. This
time, the argument proceeds by observing that since the multiplier is negative, the
orbit of exactly one of the asymptotic values, say q2n, lies on both sides of the
periodic point z0 (and the orbit of the other value −q2n lies on both sides of −z0).

We now apply theorem 3 in each of these cases:
In the first case z0 is a is a parabolic fixed point of (q′2ni tan z)4n. It is part

of a single parabolic cycle. In the perturbation, by theorem 3, (where we replace
n by 2n), if ε < 0, the perturbed function belongs to Ω′2n. For ε > 0, however, z0

has become a repelling fixed point w0 and two attracting fixed points u0 and v0 of
((1 + ε)

1
4n (q′2ni tan z))4n have been created. We may assume these points are all

real and u0 < w0 < v0.
Suppose, for the sake of argument that the orbit of the asymptotic value q′2n

accumulated to z0 in the attracting petal on the right and the orbit of −q′2n accu-
mulated to z0 in the attracting petal on the the left. By continuity we deduce that
after the perturbation, the orbit of q′2n(1 + ε)

1
4n accumulates to v0 and the orbit of
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−q′2n(1 + ε)
1
2n accumulates to u0. This implies that v0 and u0 belong to different

cycles, each of period 4n. Hence the bifurcation is non-standard and the perturbed
function belongs to a component Ω4n. (See also the proof of theorem 8.8 of [8].)

In the second case (q2ni tan z)2n has two distinct parabolic cycles of order 2n.
Let z0 be a parabolic fixed point on the real axis of (q2ni tan z)2n with multiplier
−1. We can apply theorem 3 with ε < 0 to obtain a perturbed function inside Ω2n.

For ε > 0, we can again apply theorem 3, (again using 2n instead of n), to
the doubled iterate (q2ni tan z)4n. The only differences in this case are first, that
υk = υk+n and second, that Π2n−1+j mod 4n

j µk = −1. These two changes in sign
cancel each other out and the formula for B4n−1 remains the same.

As indicated in the remark above, z0 has become a repelling fixed point w0 and
two attracting fixed points u0 and v0 of ((q4n(1+ ε)

1
2n i) tan z)4n have been created.

Again we may assume these points are all real and u0 < w0 < v0. In this case only
one of the asymptotic values, say q2n, accumulates to z0; that is, both the right and
left attracting petals of z0 contain points of the orbit of q2n and neither contains
points of the orbit of −q2n. The orbit of −q2n accumulates to −z0. Again, by
continuity we deduce that after the perturbation, the orbit of the new asymptotic
value q2n(1 + ε)

1
4n accumulates to both the left side of u0 and the right side of

v0 so that both the new points belong to the same cycle of period 4n. The point
−w0 is also a repelling periodic point and the points −u0,−v0 belong to another
newly created attracting cycle. Thus the bifurcation in this case is standard and
the perturbed function belongs to a bud component Ω4n

6. Applications

In order to apply our result to obtain the existence of an infinite cascade of
period doubling, and a Sharkovskii type ordering of the components we need some
notation. Although discussion here is for parameters on the upper imaginary axis,
iq, q > 0, by the symmetry of the parameter plane, we obtain results for the full
axis by reflection.

In the discussion below of the ordering of component pairs we will also care
about the order of the components in the pair. We will write (Ωp, Ω′p) if

sup
λ∈Ωp∩=

|λ| ≤ inf
λ∈Ω′p∩=

|λ|

and (Ω′p, Ωp) if
sup

λ∈Ω′p∩=
|λ| ≤ inf

λ∈Ωp∩=
|λ|.

We order the component pairs intersecting the imaginary axis in terms of their
distance from the origin. We say (Ωp,Ω′p) C (Ωq,Ω′q)

- if both pairs intersect =+ and

sup
λ∈(Ωp∪Ω′p)∩=+

|λ| ≤ inf
λ∈(Ωq∪Ω′q)∩=+

|λ|

- or both pairs intersect =− and

sup
λ∈(Ωp∪Ω′p)∩=−

|λ| ≤ inf
λ∈(Ωq∪Ω′q)∩=−

|λ|

As our first application we obtain the existence of a period doubling cascade.
More precisely, if we denote the interval [i(π

2 + kπ), i(π
2 + (k + 1)π)] by Ik, we have
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Theorem 5. If λk = i(π
2 + kπ) then λk is the virtual center of a component

pair (Ω′2, Ω2) and there exists a sequence of component pairs such that

(Ω′2, Ω2) C (Ω4, Ω′4) C (Ω8,Ω′8) C . . . C (Ω2n ,Ω′2n) . . .

such that at each symbol C, the left component is a root and the right component a
bud. Moreover, these pairs accumulate to a point q∗i with q∗ ≤ (k + 1)π.

Proof. The existence of the pairs (Ω′2,Ω2) was proved in [8]. The standard
bifurcation at the real parabolic boundary point of Ω2 and the non-standard bifur-
cations at the real parabolic boundary points of the Ω′2n , n ≥ 2 exist by theorem 4.
The intersection of the closures of these components with = must be a closed in-
terval J . We know, however, that for (k + 1)πi tan z, the asymptotic value lands
on a repelling fixed point, the origin. Thus the Julia set is the whole Riemann
sphere and this function cannot be in the interior or a boundary point of a hy-
perbolic component intersecting the imaginary axis. Therefore J ⊂ [λk, (k + 1)πi]
and the component pairs in the cascade accumulate to some point q∗i such that
λk < q∗ ≤ (k + 1)πi.

Theorem 7.2 of [8] says

Theorem 6. There exist component pairs of every even period in every Ik.
Moreover, in each Ik there are at least 2k(2k−1)n−2 pairs (Ω2n, Ω′2n) (or (Ω′2n, Ω2n)).
In fact, these are ordered inductively: to each of the perhaps more than 2k−1 pairs
of component pairs (Ω2n, Ω′2n) ( or (Ω′2n, Ω2n)), there are at least 2k component
pairs (Ω′2n+2, Ω2n+2) ( or (Ω2n+2,Ω′2n+2)).

We can now strengthen this theorem as follows

Theorem 7 (Sharkovskii ordering). There exist component pairs of every even
period in every Ik. Moreover, in each Ik there are exactly 2k(2k − 1)n−2 pairs
(Ω2n,Ω′2n) (or (Ω′2n,Ω2n)). In fact, these are ordered inductively: to each of the
2k − 1 pairs of component pairs (Ω2n, Ω′2n) ( or (Ω′2n,Ω2n)), there are exactly 2k
component pairs (Ω′2n+2,Ω2n+2) ( or (Ω2n+2, Ω′2n+2)).

Proof. The proof of theorem 6, is based on the proof of the existence of
standard and non-standard bifurcations at real parabolic points. This existence
was proved only under the assumption that the multiplier at the real parabolic
point was a monotonic function of the parameter. If this assumption were false,
extra components would exist. Using theorem 4 in the proof for the existence
of the bifurcations, we conclude these extra components do not exist. Hence the
inequalities become equalities.
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