
A FRAMEWORK TOWARDS UNDERSTANDING THE
CHARACTERIZATION OF HOLOMORPHIC MAPS

YUNPING JIANG

DEDICATED TO PROFESSOR JOHN MILNOR ON HIS 80TH BIRTHDAY

Abstract. This paper gives a review of our work on the char-
acterization of geometrically finite rational maps and then out-
lines a framework for characterizing holomorphic maps. Whereas
Thurston’s methods are based on estimates of hyperbolic distor-
tion in hyperbolic geometry, the framework suggested here is based
on controlling conformal distortion in spherical geometry. The
new framework enables one to relax two of Thurston’s assump-
tions, first, that the iterated map has finite degree and, second,
that its post-critical set is finite. Thus, it makes possible to char-
acterize certain rational maps for which the post-critical set is not
finite as well as certain classes of entire and meromorphic coverings
for which the iterated map has infinite degree.

1. Characterization

Suppose f : S2 ! S2 is an orientation-preserving branched covering
of the two-sphere S2. We just call it a branched covering. We use
fn = f � . . . � f| {z }

n

to denote the nth-composition. Let d = deg f > 1 be

the degree of f , let

⌦f = {c | degc f � 2}
be the set of all branched points, where degc f means the local degree
of f at c. Let

Pf = [n�1fn(⌦f )

be the post-critical set. A rational map which is a quotient of two
polynomials, is a holomorphic branched covering.
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Definition 1.1 (Combinatorial Equivalence). Two branched cover-
ings f and g are said to be combinatorially equivalent if there are two
homeomorphisms �, : S2 ! S2 such that:

(S2, Pf )
��! (S2, Pg)

# f # g

(S2, Pf )
 �! (S2, Pg)

commutes and �
homotopy⇠  rel Pf . (The term “rel Pf” means that

 |Pf = �|Pf and the homotopy preserves this equation, refer to Defi-
nition 4.1.)

A basic problem in complex dynamics is that

Problem 1. Can a branched covering f be combinatorially equivalent
to a rational map?

Consider the complex plane C and consider the Riemann sphere
bC = C [ {1} which is the two-sphere equipped with the standard
conformal structure. Let

M(C) = {µ | µ is a measurable function on C such that kµk1 < 1}
be the open unit ball of the complex Banach space L1(C). Each µ in
M(C) is called a Beltrami coe�cient and can be viewed as a conformal
structure on bC. The Beltrami equation

(1) wz = µwz

has a unique quasiconformal homeomorphism solution fixing 0, 1,1
(refer to [Ahlfors-Bers]). We always use wµ to denote this solution.

Assume f is locally quasiconformal except for ⌦f . In other words,
we assume that f is quasiregular, that is, f = R � g, where g is a
quasiconformal homeomorphism and R is a rational map. Given a
Beltrami coe�cient µ (viewed as a conformal structure on bC), the pull-
back f⇤µ of µ by f can be calculated as

f⇤µ(z) =
µf (z) + µ(f(z))✓(z)

1 + µf (z)µ(f(z))✓(z)

where µf (z) = fz(z)/fz(z) is a Beltrami coe�cient and where ✓(z) =

fz(z)/fz(z).
Let E ◆ Pf be a closed subset of bC such that f(E) ✓ E. Suppose

0, 1,1 2 E. Then f⇤µ ⇠E µ means that (wf⇤µ)�1 �wµhomotopy⇠ id rel E



A FRAMEWORK 3

(the term “rel E” means that (wf⇤µ)�1 �wµ|E = id and the homotopy
preserves this equation, refer to Definition 4.1).

Problem 2. Can we view f : (bC, E) ! (bC, E) as a holomorphic map?
More precisely, can we find a Beltrami coe�cient µ such that f⇤µ ⇠E µ
rel E?

A special case is when E = bC. The answer to Problem 2 in this
special case is the uniform quasiconformality, that is,

Theorem 1.1 ([Sullivan;2]). There is a Beltrami coe�cient µ (in
other words, a conformal structure on bC) such that f⇤µ = µ if and
only if supn�0K(fn)  K0 < 1, where K(fn) means the maximal
quasiconformal dilatation of fn.

Remark 1.1. Sullivan proved the above theorem for two-dimensional
quasiconformal semi-groups acting on the Riemann sphere. Hinkka-
nen [Hinkkanen] proved that a similar method can also be applied to
prove the above theorem for any quasi-entire function, f = e � g, and
any quasi-meromorphic function, f = m�g, where g is a quasiconformal
homeomorphism and e and m are an entire function and a meromorphic
function on the complex plane, as a two-dimensional semi-group act-
ing on the complex plane. Sullivan [Sullivan;1] and Tukia [Tukia] also
proved the above theorem for two-dimensional quasiconformal groups
acting on the Riemann sphere.

2. Obstruction

In general, answers to Problems 1 and 2 are not easy. There is a
topological obstruction which we call a Thurston obstruction in this
study.

Suppose E ◆ Pf is a closed subset of the Riemann sphere (it is not
necessary to assume that 0, 1,1 2 E). A simple closed curve � in
S2 \ E is called non-peripheral if every component of S2 \ � contains
at least two points from E. A multi-curve � = {�1, . . . , �n} is a set
of finitely many pairwise disjoint, non-homotopic, and non-peripheral
curves in S2 \ E.

Since E ◆ Pf , ⌦f ✓ f�1(E) and f : S2 \ f�1(E) ! S2 \ E is
a covering map of finite degree and every component of f�1(�) is a
simple closed curve. A multi-curve � is said to be f -stable if for any
� 2 �, every non-peripheral component of f�1(�) is homotopic to an
element of � rel E.
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For a stable multi-curve �, define f� as follows: For each �j 2 �, let
�i,j,↵ denote the components of f�1(�j) homotopic to �i in S2 \E and
di,j,↵ be the degree of f |�i,j,↵ : �i,j,↵ ! �j . Define

f�(�j) =
X

i

⇣X

↵

1

di,j,↵

⌘
�i.

Then f� : R� ! R� is a linear transformation with a non-negative
matrix A = (f�). There exists a largest non-negative eigenvalue �(A)
of A with a non-negative vector.

Definition 2.1 (Thurston obstruction). A stable multi-curve � is
called a Thurston obstruction if the largest eigenvalue �(A) is greater
than or equal to 1.

Definition 2.2 (Levy Cycle). If there is a finite set of non-peripheral
curves � = {�0, �1, . . . , �n} which is f -invariant in the sense that there
is a component �0i of f

�1(�i+1) such that �0i ⇠ �i rel Pf and f : �0i !
�i+1, with i taken mod n, is a homeomorphism, then � is called a Levy
cycle.

Remark 2.1. Usually a Levy cycle is only a multi-curve but it can be
extended to a stable multi-curve. A stable Levy cycle is a special kind of
Thurston obstruction. On the other hand, for a topological polynomial
(not necessarily post-critically finite) or a post-critically finite branched
covering of degree two, a Thurston obstruction always contains a Levy
cycle (see [Levy, Rees] and also refer to [Tan, Godillon]). Among all
Thurston obstructions (if they exist), the canonical obstruction is the
most interesting one (see Definition 4.4).

3. Review

A branched covering f is called post-critically finite if Pf is a finite
subset. In this case, an answer to Problems 1 and 2 is Thurston’s
Theorem as follows.

Proposition 1. Any post-critically finite branched covering f is com-
binatorially equivalent to a quasi-regular post-critically finite branched
covering g = R�h where R is a rational map and h is a quasiconformal
homeomorphism, in other words, g is locally quasiconformal except for
⌦g.

Proof. Recall that ⌦f is the set of branched points of f in bC. Consider
the topological surface S = bC \ ⌦f . For every p 2 S, let Up be a small
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neighborhood about p such that �p = f |U : U ! f(U) ⇢ bC is injective.
Then ↵ = {(Up,�p)}p2S defines an atlas on S with charts (Up,�p). If
Up \ Uq 6= ;, then �p � ��1

q (z) = z : �q(Up \ Uq) ! �p(Up \ Uq). Thus
all transition maps are conformal (1 � 1 and analytic) and the atlas
↵ defines a Riemann surface structure on S which we again denote by
↵. Denote this Riemann surface by (S,↵). From the uniformization
theorem, (S,↵) is conformally equivalent to the Riemann surface bC\A
with the standard complex structure induced by bC, where A consists
of #(⌦f ) points. Thus we have a homeomorphism bh : bC ! bC such

that bh : (S,↵) ! bC \ A is conformal. Thus R = f � bh�1 : bC ! bC is
holomorphic with critical points at bh(⌦f ). Since the set Pf is finite,
following the standard procedure in quasiconformal mapping theory,
there is a K-quasiconfornal homeomorphism h : bC ! bC such that h

is isotopic to bh rel Pf . The map g = R � h is a quasi-regular map
and combinatorially equivalent to f . This completes the proof of the
proposition. ⇤

Associated to the finite set E = Pf , one can introduce an orbifold
structure as follows:

Define the signature ⌫f : S2 ! N [ {1} as

⌫f (x) =

(
1, x /2 [n�1f

�n(⌦f );

lcm{degy fn | n > 0, fn(y) = x}, otherwise,

where lcm means the least common multiple and degy f
n means the

local degree of fn at y. The orbifold associated to f is Of = (S2, ⌫f )
and the Euler characteristic of Of is defined as

�(Of ) = 2�
X

x2S2

✓
1� 1

⌫f (x)

◆
.

It is known that �(Of )  0 for any post-critically finite branched cover-
ing f . The orbifold Of is called hyperbolic if �(Of ) < 0 and parabolic
if �(Of ) = 0.

Theorem 3.1 ([Thurston], in [Douady-Hubbard]). A post-critically
finite branched covering f with hyperbolic orbifold is combinatorially
equivalent to a rational map if and only if it has no Thurston obstruc-
tion. Moreover, the rational map is unique up to conjugation by an
automorphism of the Riemann sphere.
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Remark 3.1. The paper [Douady-Hubbard] is a good source to learn
Thurston’s theorem, where a complete and detailed and comprehensive
proof is presented. Another source to learn this theorem is video tapes
of Sullivan’s lectures given at the CUNY Graduate Center in 1981-
1986 [Sullivan;3].

Furthermore,

Theorem 3.2 ([Pilgrim]). If a post-critically finite branched covering
f is not combinatorially equivalent to a rational map (i.e., a negative
answer to Problem 1), then it must have the canonical obstruction (see
Definition 4.4). The canonical obstruction is a Thurston obstruction.

Things become very di↵erent when one turns to geometrically finite
branched coverings. We started this study in [Cui-Jiang-Sullivan;M]
and then summarized in [Cui-Jiang-Sullivan]. The latter puts our study
into two parts, the first part concentrates on a local combinatorial the-
ory and the second part focus on a global combinatorial theory. A
branched covering f is called geometrically finite if #(Pf ) = 1 but
the accumulation set P 0

f is finite. In this case, P 0
f = {a1, . . . , ak} con-

sists of finitely many periodic orbits. In [Cui-Jiang], it is proved that
this definition of a geometrically finite branched covering is equivalent
to the traditional definition of a geometrically finite rational map when
the branched covering is holomorphic. Recall that the traditional def-
inition of a geometrically finite rational map is that a rational map is
geometrically finite if the intersection of the post-critical set and the
Julia set is a finite set. There was little progress towards the under-
standing of the characterization of geometrically finite rational maps
(for example, [Brown]) until our work below. Note that for a general
rational map R, we have the following.

Theorem 3.3 ([McMullen]). Suppose R is a rational map. Take E =
PR. Let � be a f -stable multi-curve on bC \E. Then �(�)  1. Only in
the following two cases, �(�) may be 1:

1) R is post-critically finite with #(E) = 4 and the orbifold Of is
(2, 2, 2, 2). Moreover, R is a double covered by an integral torus
endomorphism.

2) E is an infinite set and � includes the essential curves in a finite
system of annuli permuted by R. These annuli lie in Siegel disks
or Herman rings (refer to [Milnor]) for R and each annulus is
a connected component of bC \ E.
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A geometrically finite rational map has no Thurston obstruction (re-
fer to the proof of [Douady-Hubbard, Theorem 4.1] or refer to Theo-
rem 3.3 since it has no Siegel disks and Herman rings). Furthermore,
we found a counterexample in the geometrically finite case which pre-
vents a similar theorem to Thurston’s theorem under the combinatorial
equivalence.

Theorem 3.4 (Counterexample [Cui-Jiang]). There exists a geomet-
rically finite branched covering f having no Thurston obstruction and
giving a negative answer to Problem 1 (i.e., it is not combinatorially
equivalent to a rational map).

The idea to construct this counterexample is to start with q(z) =
�z + z2, 0 < |�| < 1. Then 0 is its attractive fixed point such that
the critical point c = ��/2 is in the immediate basin of 0. The post-
critical orbit {q(c), . . . , qn(c), . . .} has a limiting point 0. Since q(z)
is a geometrically finite rational map, it has no Thurston obstruction.
Apply Dehn twists along this post-critical orbit such that the topolog-
ical structure near this limiting point has infinite complexity and such
that there is no new Thurston obstruction being introduced. Remem-
ber that according to Kœnig’s Theorem (see [Milnor]), the topological
structure of a holomorphic map near an attractive fixed point must be
very simple. Thus the newly constructed geometrically finite branched
covering can not be combinatorially equivalent to a rational map. Pic-
tures in [Cui-Jiang, Figures 1-3] provide the further idea about this
construction.

Based on this counterexample, we define a semi-rational branched
covering and a sub-hyperbolic semi-rational branched covering.

Definition 3.1 (Semi-rational and sub-hyperbolic [Cui-Jiang]). Sup-
pose f : Ĉ ! Ĉ is a geometrically finite branched covering of degree
d � 2. We say f is semi-rational if

1) f is holomorphic in a neighborhood of P 0
f ;

2) each cycle < p0, . . . , pk�1 > of period k � 1 in P 0
f is either

attracting, that is, 0 < |(fk)0(p0)| < 1, or super-attracting, that
is, (fk)0(p0) = 0 or parabolic, that is, [(fk)0(p0)]q = 1 for some
integer 1  q < 1.

3) For each parabolic cycle in P 0
f , every attracting petal associated

to this cycle contains at least one point in a critical orbit.
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Furthermore, if in addition P 0
f contains only attracting and super-

attracting periodic cycle, then we call f sub-hyperbolic semi-rational.

Furthermore, we proved that

Theorem 3.5 ([Cui-Jiang]). Any semi-rational branched covering
is always combinatorially equivalent to a sub-hyperbolic semi-rational
branched covering.

Therefore, we concentrated our study on the sub-hyperbolic semi-
rational case. In the same paper [Cui-Jiang], we gave the following def-
inition of the CLH-equivalence (combinatorial and locally holomorphic
equivalence) among all sub-hyperbolic semi-rational branched cover-
ings.

Definition 3.2 (The CLH-equivalence [Cui-Jiang]). Suppose f and g
are two sub-hyperbolic semi-rational branched coverings. We say that
they are CLH-equivalent if there are two homeomorphisms �, ' : bC !
bC such that

1) � is isotopic to ' rel Pf ,
2) � � f = g � ', and
3) �|Uf = '|Uf is holomorphic on some open set Uf � P 0

f .

Remark 3.2. In the study of the family x : 7! x + a + b
2⇡ sin(2⇡x), a

similar concept called the strong combinatorial equivalence is defined
in [Epstein-Keen-Tresser] but the meaning is a little di↵erent from the
above definition.

Similar to Proposition 1, we have

Proposition 2. Any sub-hyperbolic semi-rational branched covering f
is CLH-equivalent to a quasi-regular sub-hyperbolic semi-rational branched
covering g = R�h where R is a rational map and h is a quasiconformal
homeomorphism, in other words, g is locally quasiconformal except for
⌦g.

Proof. Suppose P 0
f = {a1, . . . , an}. Let Di be a round disk of radius

ri > 0 centered at ai such that there is no point Pf on @Di and such

that f |Di is holomorphic. Let U = [n
i=1Di. Let P = bC \ U . Then

#(P ) < 1.
Recall that ⌦f is the set of branched points of f in bC. Consider the

topological surface S = bC \ ⌦f . For every p 2 S, let Up be a small

neighborhood about p such that �p = f |U : U ! f(U) ⇢ bC is in-
jective. When p 2 Di, we pick Up ⇢ Di. Then ↵ = {(Up,�p)}p2S
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defines an atlas on S with charts (Up,�p). If Up \ Uq 6= ;, then
�p � ��1

q (z) = z : �q(Up \ Uq) ! �p(Up \ Uq). Thus all transition
maps are conformal (1� 1 and analytic) and the atlas ↵ defines a Rie-
mann surface structure on S which we again denote by ↵. Denote this
Riemann surface by (S,↵). From the uniformization theorem, (S,↵) is
conformally equivalent to the Riemann surface bC\A with the standard
complex structure induced by bC, where A consists of #(⌦f ) points.

Thus we have a homeomorphism bh : bC ! bC such that bh : (S,↵) ! bC\A
is conformal. Moreover, bh|U : U ! h(U) is also conformal. Thus
R = f � bh�1 : bC ! bC is holomorphic with critical points at bh(⌦f ).
Since the set P is finite, following the standard procedure in quasicon-
formal mapping theory, there is a K-quasiconfornal homeomorphism
h : bC ! bC such that h is isotopic to bh rel P [ U . The map g = R � h
is a quasi-regular map and CLH-equivalent to f . This completes the
proof of the proposition. ⇤

Furthermore, we proved the following theorem.

Theorem 3.6 ([Cui-Jiang-Sullivan] ([Cui-Tan]), [Zhang-Jiang]). Sup-
pose f is a sub-hyperbolic semi-rational branched covering. Then it is
CLH-equivalent to a rational map if and only if f has no Thurston ob-
struction. Moreover, the rational map is unique up to the conjugation
by an automorphism of the Riemann sphere.

Remark 3.3. The idea in the proof given in [Cui-Jiang-Sullivan] and
the idea in the proof given in [Zhang-Jiang] are very di↵erent. The
former is to decompose a sub-hyperbolic semi-rational branched cover-
ing along a stable multi-curve into finitely many post-critically finite
branched coverings and to check they have no Thurston obstruction
if the original map does not have (Thurston obstruction) and then to
apply Thurston’s theorem. A good source to learn the former proof
is [Cui-Tan] where the proof was rewritten with more detailed and com-
prehensive explanations. The latter is first to develop Thurston’s idea
working on an induced map from the associated Teichmüller space into
itself. In this case, we have an infinite dimensional Teichmüller space.
Similar to Thurston’s idea, we study an iterated sequence by the induced
map. Each element in this iterated sequence represents a punctured
Riemann sphere with infinitely many punctures. We then compare the
geometry of this punctured Riemann sphere with the geometry of an-
other Riemann sphere with finitely many punctures (see [Zhang-Jiang,
Lemma 5.6]). Here the shielding ring lemma (Lemma 1) guarantees
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this comparison. Note that the punctured Riemann sphere with finitely
many punctures, which is used in the comparison, has no relationship
with the punctured Riemann sphere with infinitely many punctures dy-
namically. This comparison enables us eventually to prove that the
induced map strongly contracts the Teichmüller distance along this it-
erated sequence.

Both methods in [Cui-Jiang-Sullivan] ([Cui-Tan]) and in [Zhang-Jiang]
can be further developed. The former method of “decomposition along
a stable multi-curve” can be used to study the renormalization of ratio-
nal maps as well as their combinatorics (for examples, trees, wander-
ing continuum) and branched coverings with “Siegel disks” and “Her-
man rings”, for examples, the recent work in [Zhang;1, Zhang;2, Wang]
for the characterization of rational maps with Siegel disks and Her-
man rings. The latter method of “iterations in the Teichmüller space”
can be used to characterize several kinds of holomorphic maps beyond
post-critical finite rational maps, including hyperbolic maps, exponen-
tial maps and some other meromorphic maps, and maps with “Siegel
disks” and “Herman rings” (see §4).

Furthermore, we proved in a later paper that

Theorem 3.7 ([Chen-Jiang]). If a sub-hyperbolic semi-rational branched
covering f is not CLH-equivalent to a rational map (i.e., a negative an-
swer to Problem 1 under the CLH-equivalence), then it must have the
canonical Thurston obstruction (see Definition 4.4). The canonical ob-
struction is a Thurston obstruction.

4. Geometry

In this section, a framework is outlined for the further study of Prob-
lems 1 and 2 (under either the combinatorial equivalence or the CLH-
equivalence). We divide this study into three steps. The first step is
to introduce the important concept, bounded geometry and to study
Problems 1 and 2 under this condition. The second step is to prove the
equivalence between the bounded geometry condition and Thurston’s
topological condition. The third step is to prove that the equivalence
between the bounded geometry condition and the canonical topological
condition.

The bounded geometry condition is useful in the study of this direc-
tion and should be fully developed. It is an analytic condition but can
be very well connected with Thurston’s topological condition and the
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canonical topological condition in the critically finite case and in the
sub-hyperbolic semi-rational case as we will show. With the bounded
geometry condition we will be able to work in this direction based on
calculations in spherical geometry. This enables us to work on Te-
ichmüller spaces T (E) of closed subsets E on the Riemann sphere di-
rectly. This is di↵erent from Thurston’s original work based on calcula-
tions in hyperbolic geometry (refer to [Douady-Hubbard]), which first
works on moduli spaces and then lifts results obtained on moduli spaces
to Teichmüller spaces (this process needs assumptions that finite de-
gree and finiteness on the post-critical set (refer to [Douady-Hubbard,
Lemma 5.2])). The bounded geometry condition can be also defined
for quasi-entire functions or quasi-meromorphic functions and used in
the study of Problems 1 and 2 (under either the combinatorial equiva-
lence or the CLH-equivalence) for these maps without involving moduli
spaces and Lemma 5.2 in [Douady-Hubbard] directly.

The idea of bounded geometry is very important in complex dynam-
ics. Besides its application to single dynamics, it could be applied to
the parameter space. For examples, infinitely renormalizable quadratic
polynomials and hyperbolic rational maps with Sierpinsky curve Julia
sets.

Since our definition of bounded geometry relates to Teichmüller
spaces T (E) of closed subsets E on the Riemann sphere, let us briefly
mention the definition of T (E) and some related properties.

Suppose E is a closed subset of bC. Suppose 0, 1,1 2 E (which al-
lows us to consider it is as a subset in spherical geometry rather than
consider it as a subset in hyperbolic geometry which treats two subsets
are the same if one is the image of another one under a Möbius trans-
formation). Recall that we use wµ to denote the unique quasiconformal
homeomorphism with 0, 1,1 fixed and with Beltrami coe�cient µ in
M(C) (refer to the Beltrami equation (1)).

Definition 4.1 (Teichmüller space of a closed subset). Two elements
µ, ⌫ 2 M(C) are said to be E-equivalent, denoted as µ ⇠E ⌫, if

(wµ)�1 � w⌫ homotopy⇠ id rel E.

(The term “rel E” means that we have a continuous map H(t, z) :
[0, 1]⇥ bC ! bC such that (a) H(0, z) = z and H(1, z) = (wµ)�1 �w⌫(z)
for all z 2 bC and (b) H(t, z) = z for all 0  t  1 and all z 2 E.) The
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Teichmüller space of E is defined as

T (E) = {[µ]E}
the space of all E-equivalence classes.

The space T (E) is very useful for people working on complex dynam-
ics and the study of T (E) is closely related to the study of holomorphic
motions of E. From [Earle-McMullen], [Lieb], [Epstein], [Earle-Mitra],
[Mitra], [Gardiner-Lakic], and [Jiang-Mitra], [Beck-Jiang-Mitra-Shiga],
[Gardiner-Jiang-Wang], [Jiang-Mitra-Shiga], [Jiang-Mitra-Wang], we
know a lot about T (E) now. The reader may find many similarities and
di↵erences between T (E) and classical Teichmüller spaces of Riemann
surfaces. An excellent book on the classical Teichmüller theory which is
comprehensive for people working on complex dynamics is [Hubbard].
We now give a very brief summary of some basic properties of T (E).

i) T (E) has a complex manifold structure such that the projection

PE(µ) = [µ]E : M(C) ! T (E)

is holomorphic.
ii) The projection PE is a holomorphic split submersion, that is, for

any ⌧ 2 T (E), 9U (neighborhood) about ⌧ and a holomorphic
section s⌧ : U ! M(C) such that PE � s⌧ = id.

iii) 9 a continuous global section S : T (E) ! M(C) such that
PE � S = id. Therefore, T (E) is contractible.

iv) If dimT (E) � 2, there is no global holomorphic section.
v) T (E) is biholomorphically equivalent to

Q
i T (Si, @Si)⇥M(E),

where Si are components of bC \ E and T (Si, @Si) is the Te-
ichmüller space of the hyperbolic Riemann surface Si with the
ideal boundary @Si.

vi) We have the lifting property for T (E): any holomorphic map
f : � = {z | |z| < 1} ! T (E) can be lift to a holomorphic map
f̃ : � ! M(C) such that PE � f̃ = f , that is, the following
diagram

M(C)
f̃ % # PE

�
f�! T (E)

commutes.
vii) Teichmüller’s metric dT on T (E) coincides with Kobayashi’s

pseudo-metric dK on T (E).
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Proposition 3. Suppose f : bC ! bC is quasiregular (or a quasi-entire
or a quasi-meromorphic). Suppose E is a closed subset of bC such that
E ◆ Vf = f(⌦f ) and E ✓ f�1(E) (in the quasi-entire and quasi-
meromorphic case, Vf must contains all asymptotic values and essential
singularities). If µ ⇠E ⌫, then f⇤µ ⇠E f⇤⌫.

Proof. From the assumption, µ ⇠E ⌫, we can find a continuous map
H(t, z) : [0, 1]⇥ bC ! bC such that

1) H(0, z) = z for all z 2 bC;
2) H(1, z) = (wµ)�1 � w⌫(z) for all z 2 bC; and
3) H(t, z) = z for all z 2 E and all 0  t  1.

Since Vf ✓ E, we have that ⌦f ✓ f�1(E). This implies that f :
bC \ f�1(E) ! bC \E is a covering map. The homotopy H(t, z) : [0, 1]⇥
(bC \E) ! bC \E rel @E can be lift to a homotopy eH(t, z) : [0, 1]⇥ (bC \
f�1(E)) ! bC \ f�1(E) rel @f�1(E) such that

H(t, f(z)) = f( eH(t, z)), 8z 2 bC \ f�1(E), 0  t  1

and
eH(t, z) = z, 8z 2 @f�1(E), 0  t  1.

Define eH(t, z) = z for all z 2 f�1(E) and 0  t  1. Then the
new defined map, which we still denote as eH, is a continuous map
eH(t, z) : [0, 1]⇥ bC ! bC such that

a) eH(z, 0) = z for all z 2 bC and
b) eH(z, t) = z for all z 2 E and all 0  t  1.

Therefore, it is a homotopy from the identity to eH1(z) = eH(1, z).
Let H1(z) = H(1, z). Since H1 � f = f � eH1 and H1 = (wµ)�1 � w⌫

is quasiconformal, eH1 is quasiconformal.
Now by using two commuting equations,

(wµ)�1 � w⌫(z) � f = f � eH1 and g � wf⇤µ = wµ � f,
where g is holomorphic, we have that

g � wf⇤µ � eH1 = wµ � f � eH1 = wµ � (wµ)�1 � w⌫(z) � f = w⌫(z) � f.
Since g is holomorphic,

µ
wf⇤µ� eH1

= µ
g�wf⇤µ� eH1

= µw⌫(z)�f = f⇤⌫.

Since both wf⇤µ � eH1 and wf⇤⌫ fix 0, 1,1, we get

wf⇤µ � eH1 = wf⇤⌫ .
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In other words,
eH1 = (wf⇤µ)�1 � wf⇤⌫ .

Thus eH(t, z) : [0, 1] ⇥ bC ! bC is a homotopy from the identity to
(wf⇤µ)�1 � wf⇤⌫ rel f�1(E). But E ✓ f�1(E), so the last statement
implies that f⇤µ ⇠E f⇤⌫. This completes the proof. ⇤

From the above proposition, we can induce a map

�f (⌧) = [f⇤µ]E : T (E) ! T (E), µ 2 ⌧.

Since
�f (⌧) = PE � f⇤ � s⌧ ,

�f is holomorphic. Thus it is weakly contracting due to the property
that Kobayashi’s metric and the Teichmüller metric are the same. That
is,

dT (�f (⌧),�f (⌧
0))  dT (⌧, ⌧

0), 8⌧, ⌧ 0 2 T (E).

Suppose f is holomorphic on E and {0, 1,1} ⇢ E ✓ f�1(E). For
any µ with µ|E = 0, we have that f⇤µ|E = 0.

Problem 3. Can we find a (unique) fixed point ⌧ = [µ]E with µ|E = 0
of �f?

A positive answer to Problem 2 (under either combinatorially equiv-
alence or CLH-equivalence) is equivalent to a positive answer to Prob-
lem 3 (by recalling Theorem 1.1).

For any ⌧0 = [µ0]E 2 T (E) with µ0|E = 0, let ⌧n = �f (⌧n�1) =
[µn]E 2 T (E) where µn = f⇤µn�1 with µn|E = 0 for all n � 1. Let wµn

be the corresponding quasiconformal homeomorphism solution of the
Beltrami equation (1) with 0, 1,1 fixed. Then we can define a sequence
of subsets En = wµn(E) such that 0, 1,1 2 En. Roughly speaking,
f has bounded geometry if we have a subsequence Eni “converging”
to E1 as i goes to 1 such that E1 is homeomorphic to E. We will
give a more precise definition in the critically finite case and in the
sub-hyperbolic semi-rational case. We use dSP to mean the spherical
distance on bC.
Definition 4.2 (Bounded geometry in the critically finite case). Sup-
pose f is a critically finite branched covering. Suppose E = Pf =
{0, 1,1, p1, . . . , pk�3}. We say f has bounded geometry if there are a
constant C > 0 and a point ⌧0 2 T (E) such that

dSP (a, b) � C, 8a, b 2 En = wµn(E), n � 0.
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Lemma 1 (Shielding ring lemma [Zhang-Jiang]). Suppose f is a sub-
hyperbolic semi-rational branched covering. Let P 0

f = {ai} be the set of
accumulation points of Pf . There exists a collection of finite number
of open disks {Di} centered at ai and a collection of finite number of
annuli {Ai} (we call them the shielding rings) such that

i) Ai \ Pf = ;;
ii) Ai \Di = ;, but one components of @Ai is the boundary of Di;
iii) (Di [Ai) \ (Dj [Aj) = ; for i 6= j;
iv) f is holomorphic on Di [Ai; and
v) every f(Di [ Ai) is contained in Di+1 for 1  i  k � 1 and

f(Dk [Ak) is contained in D1 where k is the period of ai

Suppose {(Di, Ai)} are domains and annuli constructed in the shield-
ing ring lemma. Take

D0 = [k
i=1Di and P0 = Pf \ D0.

Then #(P0) < 1. Take

(2) E = P0 [D0.

For any ⌧0 = [µ0]E such that µ0|D0 = 0, we have that µn|D0 = 0 for
all n � 1. Then En = wµn(E) for n = 0, 1, . . .. Note that

En = Pn [Dn

where
Pn = wµn(P0) and Dn = wµn(D0).

Every component D in D0 is a round disk with center a. The image
Dn = wµn(D) is a topological disk in Dn. We call an = wµn(a) the
center of Dn. Then Dn consists of finitely many disjoint topological
disks. Suppose 0, 1,1 2 E. Then 0, 1,1 2 En for all n > 0.

Definition 4.3 (Bounded geometry in the sub-hyperbolic semi-rational
case). We say f has bounded geometry if there are a constant C > 0
and a point ⌧0 = [µ0]E 2 T (E) with µ0|D0 = 0 such that

i) dSP (a, b) � C, for any two points a, b 2 Pn = wµn(P0) and for
all n � 0.

ii) dSP (A,B) � C, for any two di↵erent components A and B of
Dn = wµn(D0) and for all n � 0.

iii) dSP (a,A) � C, for any point a 2 Pn and any component A of
Dn and for all n � 0.

iv) Each component Dn of Dn contains a round disk of radius C
centered at the center point an of Dn.
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Remark 4.1. Both Definition 4.2 and Definition 4.3 are not preserved
under actions of Möbius transformations.

Consider bC \ E with the standard conformal structure ⌧0 = [0]E
as the hyperbolic Riemann surface R0 and consider bC \ E with the
conformal structure ⌧n = [µn]E as the hyperbolic Riemann surface Rn.
Then Rn is Teichmüller equivalent to bC \ En.

For any non-peripheral simple closed curve � in bC \ E, wµn(�) is a
non-peripheral simple closed curve in bC\En. We use ln(�) to denote the
hyperbolic length of a unique geodesic which is homotopic to wµn(�)
in bC \ En. Under the condition of bounded geometry, we can find a
positive constant b > 0 such that

(3) ln(�) � b, 8n � 0, 8� (non-peripheral simple closed curve).

However, to get from (3) to bounded geometry, we need the assumption
that 0, 1,1 2 E (consequently, 0, 1,1 2 En).

In both the critically finite and the sub-hyperbolic semi-rational
cases, non bounded geometry is equivalent to saying that there is a
sequence of non-peripheral simple closed curves �ni in bC \E such that

lni(�ni) ! 0, as i ! 1.

In particular, we have the following definition. (Refer to [Pilgrim] for
the post-critical finite case and to [Chen-Jiang] for the sub-hyperbolic
semi-rational case.)

Definition 4.4 (Canonical obstruction). Let

�c = {� | ln(�) ! 0, n ! 1}
where � is a non-peripheral simple closed curve in bC \ E. If �c 6= ;,
then it is called the canonical obstruction for f .

Clearly, if �c 6= ;, then f has no bounded geometry. Moreover, we
have that

Theorem 4.1 (Equivalent statements for the critically finite case).
Suppose f is a critically finite branched covering with #(Pf ) � 4 and
has a hyperbolic orbifold. Then the following are equivalent:

(1) f can be viewed as a holomorphic map (i.e, it is combinatorially
equivalent to a unique rational map).

(2) f has bounded geometry.
(3) �c = ;.
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(4) f has no Thurston obstruction.

Similarly, we have that

Theorem 4.2 (Equivalent statements for the sub-hyperbolic semi-ra-
tional case). Suppose f is a sub-hyperbolic semi-rational branched cov-
ering. Then the following are equivalent:

(1) f can be viewed as a holomorphic map (i.e, it is CLH-equivalent
to a unique rational map).

(2) f has bounded geometry.
(3) �c = ;.
(4) f has no Thurston obstruction.

Proofs of these two theorems can now be put into one framework
through bounded geometry. Let E = Pf in the post-critically finite case
and let E = P0 [ D0 as defined in Equation (2) in the sub-hyperbolic
semi-rational case.

First prove that �kf : T (E) ! T (E) is contracting for some k � 1,

that is, dT (�kf (⌧),�
k
f (⌧

0)) < dT (⌧, ⌧ 0) for any ⌧, ⌧ 0 2 T (E). In the post-
critically finite case, k = 2, and in the sub-hyperbolic semi-rational
case, k = 1. Secondly, prove the family of rational maps {gn = wµn �
f � (wµn+1)�1 forms a compact subset in the space of all rational maps
of degree d = deg(f) with the uniform convergence topology under the
assumption of bounded geometry. Thirdly, consider the operator d�kf
from the cotangent space T ⇤

⌧n+k
T (E) to the cotangent space T ⇤

⌧nT (E)
and show that it is strictly contracting by using bounded geometry
and the formula for d�f : T ⇤

�f (⌧)
T (E) ! T ⇤

⌧ T (E) defined as a transfer
operator

Lq(z) =
X

gn(w)=z

q(w)

(g0n(w))
2

where q(w) is the coe�cient of an integrable holomorphic quadratic
di↵erential on the hyperbolic Riemann surface bC \En+1. All the above
steps imply that �kf is strongly contracting on the sequence {⌧n}1n=0 in
T (E), that is, there is a constant 0 < c < 1 such that

dT (�
k
f (⌧n+1),�

k
f (⌧n))  cdT (⌧n+1, ⌧n).

Then prove that the bounded geometry is equivalent to the no Thurston
obstruction condition. And finally, by using some properties of Thurston
obstructions (if they exist), prove that �c is not empty.
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In this framework, we first prove the equivalence (1) , (2) and then
prove (2) , (3) and (2) , (4). A detailed explanation will be given in
a later expository paper.

The existing proof of (3) ) (2) (refer to [Pilgrim, Chen-Jiang]) uses
a Thurston obstruction as a bridge to argue that if f has no bounded
geometry, then f has a Thurston obstruction, furthermore, by using
this Thurston obstruction, prove that �c 6= ;. However, we are more
interested in a proof without using those properties of Thurston ob-
structions, that is,

Problem 4. Find a direct proof of (3) ) (2) in both Theorem 4.1 and
Theorem 4.2. In other words, without using a Thurston obstruction as
a bridge show that if f has no bounded geometry, then �c 6= ;.

This is an interesting problem because for a quasi-entire or a quasi-
meromorphic function, it is not clear to us that the equivalence between
the bounded geometry condition and the no Thurston obstruction con-
dition due to infinite degree and the existence of asymptotic values and
essential singularities (refer to sectiom 6).

5. Geometrization

Given the canonical obstruction �c = {�1, . . . , �n} 6= ; for a map
f which is either (i) a critical finite branched covering or (ii) a sub-
hyperbolic semi-rational branched covering, we can use curves in �c (up
to homotopy) dividing the two-sphere S2 into finitely many topological
surfaces which are topological two-spheres removing finite number of
disks as follows.

Let E be the post-critical set Pf in the case (i) or the set defined

in Equation (2) in the case (ii). Consider the Riemann surface bC \ E.
Suppose A0,i (i = 1, . . . , n) are a collection of disjoint annuli whose
core curves are �i (i = 1, . . . , n), respectively. Set

A0 =
n0[

i=1

A0,i and n0 = n.

Let

A1 =
n1[

i=1

A1,i

be the union of preimage of elements of A0 such that every element of
A1 is homotopic to some element in A0 rel E since �c is a stable and
full multi-curve. Up to homotopy, we can assume that
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1) every curve �i is the core curve of the annulus A0,i;
2) every A1,k is a component of the preimage of some A0,j and

homotopic to some A0,i, denote by A1,ji,↵;
3) the union [j,↵A1,ji,↵ of elements of A1 which are homotopic to

�i, denote by B1,i,i, is contained inside A0,i;
4) the two outmost annuli of B1,i,i share their outer boundary

curves with A0,i; and
5) restricted to a boundary curve � of A0,i, the map f : �! f(�)

is conjugated to z 7! zd : S1 ! S1 for some d. Note that f(�)
is a boundary of A0,j .

Each component A0,i of A0 is called a thin part and each component
of C\A0 is called a thick part.

Let P0 = {P 0
i }n0

i=1 be the collection of all thick parts. The pull-back
of all thick parts by fk is denoted as Pk = f�k(P0). Each element of
Pk belongs to one and only one of the following four classes:

i) Disk component: if it is a topological disk D and D \ Pf = ;.
ii) Punctured disk component: if it is a topological disk P and

](P \ Pf ) = 1.
iii) Annulus component: if it is an annulus A and A \ Pf = ;.
iv) Complex component: if it is not in i), ii), and iii).

Since all elements of �c are non-peripheral and non-homotopic to each
other, P 0

0 , . . . , P
0
n are all complex components.

For each P 0
i 2 P0 and any k, since P 0

i is a component of bC \A0 sat-
isfying 1)� 5) above, there exists an unique component of Pk, denote
by P k

i such that each component of @P k
i is either peripheral or some

component of @P 0
i and such that each component of @P 0

i is some com-
ponent of @P k

i . This gives a relationship between P 0
i and P k

i . We use
P 0
i ⇡ P k

i to denote this relation. Therefore, P k
i and f(P k

i ) are complex
components and, furthermore, if f(P k

i ) = P k�1
j , then f(P l

i ) = P l�1
j for

any l. Thus, by using the action of the branched covering f , for each P 0
i ,

we have a unique P k
i such that P 0

i ⇡ P k
i and then f(P k

i ) = P k�1
j and

then a unique P 0
j such that P 0

j ⇡ P k
j . Let n = n0. This defines a map

⌧ : {0, 1, . . . , n} ! {0, 1, . . . , n} such that ⌧(i) = j if f(P k
i ) = P k�1

j .
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Under the relationship ⇡, each component of P0 is eventually periodic
and at least one is periodic. Thus we conclude that

Decomposition. Suppose f is a post-critically finite or sub-hyperbolic
semi-rational branched covering not combinatorially equivalent or CLH-
equivalent to a rational map. Then f can be decomposed into thin parts
and thick parts according to the canonical obstruction. Furthermore,
an equivalent relationship can be introduced on thick parts such that
every thick part is eventually periodic and at least one is periodic.

Suppose P 0
0 2 P0 is a periodic component of periodic k > 0. Sup-

pose �1, . . . , �p are boundary curves of P 0
0 and �1, . . . , �p,�1, . . . ,�q are

boundary curves of P k
0 where �j(j = 1, . . . , q) are peripheral curves.

For any �j , it must be a component of f�k(�i) for some �i. For any �i,
it must be a component of f�k(�l) for some �l. Denote

P 0
0 \ P k

0 =
q[

j=1

D(�j), C\P 0
0 =

p[

i=1

D(�i).

Let

d�j = deg(fk : �j ! �i), d�i = deg(fk : �i ! �l = fk(�i)).

Define a new branched covering by

(4) ef = efP 0
0
=

8
><

>:

fk, z 2 P k
0

'j � zd�j �  j , z 2 D(�j) (j = 1, . . . , q)

'i � zd�i �  i, z 2 D(�i) (i = 1, . . . , p)

where  j ,'
�1
j are homeomorphisms from D(�j) and D(�i) to unit

disk D, respectively, and  i,'
�1
i are homeomorphisms from D(�i) and

D(�l) = D(fk(�i)) to unit disk D, respectively, such that ef is continu-
ous. Marking a point in each D(�i), say zi, we set

P ef = Pf |P 0
0
[ (

q[

j=1

zj).
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If D(�j) contains a point, say z⇤, belonging to Pf and fk(�j) = �i, we

can select 'j ,'i and  j , i such that ef(z⇤) = zi. Also, if fk(�i) = �l,

we can select 'i,'l, i, l such that ef(zi) = zl. So ef(P ef ) ✓ P ef .

Extension. Any periodic thick part P 0
i of period k can be extended to a

topological two-sphere with finitely many marked points and the restric-
tion fk|P k

i can be extended to either a critically finite type branched cov-

ering or a sub-hyperbolic semi-rational type branched covering ef = efP 0
i

such that
ef |P k

i = fk|P k
i .

Theorem 5.1 ([Selinger]). Suppose f is a post-critically finite branched
covering which is not combinatorially equivalent to a rational map.
Then every ef associated to a hyperbolic orbifold is combinatorially
equivalent to a unique rational map (up to conjugation of an auto-
morphism of the Riemann sphere).

Remark 5.1. Actually, the paper [Selinger] contains more. In the
post-critically finite case, let E = Pf , then the Riemann surface bC \ E
is a punctured sphere with finitely many punctures. The Teichmüller
space T (E) is the same as the Teichmüller space T (bC \E) of Riemann
surfaces with basepoint bC \E. Thus, one can define its augmented Te-
ichmüller space T (E), which is the space of all Teichmüller equivalent
classes but allows an equivalent class with a representation of continu-
ous maps from bC \E to a Riemann surface with nodes that are allowed
to send a whole non-trivial closed annulus or a whole non-trivial closed
curve in the complement of marked points to a node. From [Masur], we
know that the closure of the Teichmüller space T (E) under the Weil-
Petersson metric is its augmented Teichmüller space. Selinger proved
that �f from T (E) into itself can be extended to a continuous self map
of T (E) such that it either has a fixed point in T (E) or a fixed point
in the boundary @T (E) = T (E) \ T (E).

Remark 5.2. In [Bonnot-Yampolsky], another approach is given to
prove Theorem 5.1 by applying a result in [Minsky] and a result in [Hassinsky].

In our latest study, we worked on the geometrization of a sub-
hyperbolic semi-rational type branched covering as follows.
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Theorem 5.2 ([Cheng-Jiang]). Suppose f is a sub-hyperbolic semi-
rational branched covering which is not CLH-equivalent to a rational
map. Then every ef = efP 0

i
is either a post-critically finite type branched

covering or a sub-hyperbolic semi-rational type branched covering. In
the post-critically finite type case, if the orbifold associated to ef is hy-
perbolic, then ef is combinatorially equivalent to a rational map; in the
sub-hyperbolic semi-rational type case, ef is CLH-equivalent to a ra-
tional map. Moreover, in the both cases, the realized rational map is
unique up to conjugation of an automorphism of the Riemann sphere.

Unless in the post-critically finite case, in the sub-hyperbolic semi-
rational branched covering case, we work on an infinite-dimensional
Teichmüller space of the Riemann sphere minus a set of finitely many
points and a set of finitely many topological disks. A major work
in [Cheng-Jiang] is to overcome this di�culty. First, we proved the
following proposition in [Cheng-Jiang], which is useful in general.

Proposition 4. Suppose R1 is a Riemann surface, which is the Rie-
mann sphere minus a set E consisting of finite number of points and
finite number of disks, with complex structure ⌧1 = [µ1]. Suppose
�1, . . . , �n are non-peripheral non-homotopic simple closed curves on
R1 with l⌧1(�i) < " (" su�ciently small). Let R2 be a Riemann sur-
face with complex structure ⌧2 = [µ2] obtained from R1 by cutting
along �i and capping every hole by a puncture disk. If there exists
a constant K > 0 such that for every non-peripheral simple closed
curve � other than �1, . . . , �n, l⌧1(�) � K, then there exists a constant
eK = eK(K, ") > 0 such that for every non-peripheral simple closed
curve e� of R2, l⌧2(e�) � eK.

Secondly, for any initial conformal structure ⌧0 = [µ0]E on the Rie-
mann sphere, by using the decomposition and the extension, we have a
conformal structure e⌧0 = [eµ0] which is µ0 on P k

i and 0 on other places.
Then we have two iterated sequences {⌧n = �nf (⌧0)} and {e⌧n = �nef

(⌧0)}.
Compare these two iterated sequences and other three modified se-
quences of conformal structures (refer to [Cheng-Jiang, Proposition 5])
and then compare the geometry of punctured Riemann spheres with
infinitely many punctures with the geometry of punctured Riemann
spheres with finitely many punctures (refer to [Zhang-Jiang, Lemma
5.6] and [Cheng-Jiang, Lemma 5 and Proposition 4]). After we con-
structed these five di↵erent but related punctured Riemann spheres,



A FRAMEWORK 23

we then used some method and idea in [Douady-Hubbard, Selinger] to
complete the proof.

Remark 5.3. From Theorem 5.2, we know ef has bounded geometry as
defined for {e⌧n}. However, we are still interested in a direct proof of the
bounded geometry property for ef . With this direct proof, we can have
a proof of Theorem 5.2 using our framework in the previous section.

Remark 5.4. In the sub-hyperbolic semi-rational case, E defined in
Equation (2) has finitely many points and finitely many disks. The
Riemann surface bC\E is the Riemann sphere with finitely many points
and finitely many disks removed. The Teichmüller space T (E) is biholo-
morphically equivalent to the Teichmüller space T (bC \ E) of Riemann
surfaces with basepoint bC\E times the open unit ball M(E) of the com-
plex Banach space L1(E). It is an interesting problem to understand
how to study the augmented Teichmüller space and how to generalize the
result in [Masur] for this case. After that we could study a full version
of the result in [Selinger] in the sub-hyperbolic semi-rational case. One
possibility for us is to define T0(E) as follows. For each disk component
Di of E, consider a ring Ai attaching to it such that Di[Ai is a bigger
disk and such that {Di[Ai} and all point components of E are pairwise
disjoint. Let Ẽ = E[[iAi. Consider M0(C) = {µ 2 M(C) | µ|Ẽ = 0}.
Define T0(E) = {[µ]E | µ 2 M0(C)} as the space of all E-equivalence
classes of elements in M0(C). We would like to understand the aug-
mented Teichmüller space T 0(E). It is still an interesting project for
us.
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6. Transcendental

Tao Chen, Yunping Jiang, and Linda Keen

Dedicated to Professor John Milnor on his 80th birthday

We believe that the framework described in the above sections also
applies to the characterization problem for families of quasi-entire and
quasi-meromorphic functions with certain finiteness properties. At
present, we are interested in the characterization of meromorphic func-
tions with a finite number of asymptotic values but no critical points
and the characterization of general exponential functions of the form
P (z)eQ(z), where P (z) and Q(z) are two polynomials.

More precisely, in [Chen-Jiang-Keen;1], we define two model spaces
of maps we call AV2 and AV3. These are universal covering maps of
the two-sphere with two or three removed points that we model on the
space of meromorphic functions with two or three asymptotic values
and no critical points. We call the spaces of meromorphic functions
M2 and M3. Examples of elements in M2 are the tangent map � tan z
and the exponential map e�z. Nevanlinna [Nevanlinna], characterized
meromorphic maps with p asymptotic values and no critical values as
functions whose Schwarzian derivative is a polynomial of degree p� 2.
Thus, a meromorphic map in M2 has constant Schwarzian derivative
and a meromorphic map in M3 has a linear function as its Schwarzian
derivative. For a more detailed description, the reader is referred to
our paper [Chen-Jiang-Keen;1],

The bounded geometry and canonical obstruction conditions can also
be defined for post-singularly finite maps in AV2 and AV3. We are now
working on a proof of the following statement that characterizes post-
singularly finite maps in M2 and M3:

A post-singularly finite map in AV2 or in AV3 is combinatorially equiv-
alent to a post-singularly finite transcendental meromorphic function in



A FRAMEWORK 25

M2 or M3 if and only if it has bounded geometry. The realization is
unique up to conjugation by an a�ne map of the plane.

The proof follows the framework described in the previous sections.
The new ingredient here is the addition of a topological constraint
which we define in order to control the holomorphic maps obtained
by the Thurston iteration process and show they remain in a compact
subset of the parameter space.

In [Chen-Jiang-Keen;2], we study the characterization of entire post-
singularly finite (p, q)-exponential maps of the form E(z) = P (z)eQ(z)

with P and Q polynomials of degrees p � 0 and q � 0 respectively and
p+ q � 1. We use the notation Ep,q for this family. Again, we define a
model space T Ep,q of topological exponential maps of type p, q. These
are infinite degree branched coverings with a single finite asymptotic
value, normalized to be at the origin, and modeled on the functions
E(z) = P (z)eQ(z). For more detailed description, the reader is referred
to our paper [Chen-Jiang-Keen;2].

The bounded geometry and canonical obstruction conditions can also
be defined for post-singularly finite maps in T Ep,q. We are now working
on a proof of the following statement that characterizes post-singularly
finite maps in T Ep,q:

A post-singularly finite map in T Ep,q is combinatorially equivalent to
a post-singularly finite entire map of the form PeQ if and only if it has
bounded geometry.

Again the new ingredient is the addition of a topological constraint
which we need in order to control the holomorphic maps obtained by
the Thurston iteration process and show they remain in a compact
subset of the parameter space.

The framework described in the above sections can also be extended
to transcendental maps in another direction. We can define sub-hyperbolic
semi-holomorphic topological exponential maps and sub-hyperbolic semi-
holomorphic topological meromorphic maps with two asymptotic values
(recall Definition 3.1). Some results have straightforward extensions to
these maps and conjectures similar to those above also make sense in
this context.

Our framework for rational functions involved the proof of the equiv-
alence of statements (1)-(4) in the preceding sections. At present, for
a post-singularly finite and post-critically finite map or a general map
in AV2, AV3, or T Ep,q, it is premature for us to make any statement
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about the equivalence between (1) with f as a transcendental func-
tion, and (4), that f has no Thurston obstruction. It is also premature
for us to make any statement about the equivalence between (2) for
a transcendental f with bounded geometry, and (4). The reason is
the following: If E has infinitely many components, the definition of a
Thurston obstruction in Section 2 may not make sense because when
the degree of f is infinite, a non-peripheral closed curve � on bC \ E,
f�1(�) may contain infinitely many non-peripheral closed curves. If E
has finitely many components in the complex plane and1 is an isolated
component, one may be able to define a Thurston obstruction formally,
in a manner similar to that in Section 2, because even if the map f
has infinite degree, all but finitely many preimages of a non-peripheral
curve � on bC \ E are peripheral or null homotopic rel E. Even in this
case, however, if one would like to prove (4) ) (1) by following the
idea of the proof in [Douady-Hubbard], one needs first to find a new
proof of Lemma 5.2 in [Douady-Hubbard] which is the key to the proof
of Thurston’s Theorem (Theorem 3.1) and whose proof crucially de-
pends on the finiteness of the degree of f . Furthermore, in order to
prove (4) ) (2) by following the ideas in this framework, one needs
first to find a new proof of Theorem 7.1 in [Douady-Hubbard], which
only works for maps of finite degree, and which plays an important role
in our proof of (4) ) (2) in Theorems 4.1 and 4.2. Note that when a
Thurston obstruction can be appropriately defined, (1) ) (4) can be
proved just by following the proof in [Douady-Hubbard, Theorem 4.1]
and the proof of Theorem 3.3 in [McMullen]; (2) ) (4) is currently
being studied in [Chen-Jiang-Keen;1, Chen-Jiang-Keen;2].

In [Hubbard-Schleicher-Shishikura], the authors use a Levy cycle
condition rather than a Thurston obstruction to characterize the non-
existence of convergence. This is because, by the universal covering
property of the map, every Thurston obstruction necessarily contains
a Levy cycle. In fact, for general quasi-meromorphic and quasi-entire
functions, a ‘canonical Thurston obstruction’ is more natural than a
‘Levy cycle’. We are working on a characterization problem for f a
post-singularly finite function in either AV2, AV3 or T Ep,q in terms
of canonical Thurston obstructions. The delicate part of the problem
is the proof that (3) ) (2) (see Problem 4).
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