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Abstract. Let F = 〈a, b〉 be a rank two free group, let G = 〈A,B〉 be a two

generator subgroup of PSL(2,R) and let ρ be a faithful representation of F

with ρ(a) = A and ρ(b) = B. If G is discrete and free, many results about
the primitive elements of G are proved using the geometry that G inherits

from PSL(2,R), the group of orientation preserving isometries of the hyper-

bolic plane. Some of these results can be lifted to F modulo the replacement
of a and/or b by their inverse and the interchange of a and b. In this paper

we lift these results and obtain results that are independent of any replace-

ment by inverses or interchange of generators and independent of the given
representation.

1. Introduction

Let F = 〈a, b〉 be a free group of rank two. An element of F is primitive if
it, along with another group element, generates the group. Nielsen [21] proved
that every primitive word was the result of a finite sequence of specific Nielsen
transformations but didn’t give explicit forms for them. Since free groups on two
generators come up very often in different mathematical contexts, the question of
what form primitive elements take, or equivalently, which words w(a, b) ∈ F are
primitive and which pairs of primitive elements generate the group comes up again
and again and has been addressed by many authors. (See the bibliography and
references cited there.)

Many results about primitive elements and/or pairs of elements that generate
a free two generator subgroup of PSL(2,R) are often stated up to replacing one
or both of the generators by their inverses and/or interchanging the generators.
Suppose ρ is a faithful non-elementary representation of F = 〈a, b〉 onto G ⊂
PSL(2,R). Even if G is a free group isomorphic to F , these results often cannot
be pulled back directly to statements about F . This is because the results depend
on the geometric properties of elements of a subgroup of PSL(2,R). For example,
considered as isometries on the upper-half plane, the elements have orientations
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and translation lengths. In particular, in previous work, [8, 10, 13], we used the
geometry to relate primitive elements and pairs of primitive elements that generate
the free group G with rational numbers and continued fractions. In this paper we
lift those results to F .

More specifically, in [8] we characterized the words in G corresponding to the
primitive elements topologically, in terms of winding, and geometrically in terms
of translation length. This winding, which we will explain later, is determined
by a sequence of integers F = [α0, . . . , αk]. We showed that this sequence is the
continued fraction expansion of the rational p/q associated to the conjugacy class
of the primitive.

In [13] an algorithm is given to decide, in finitely many steps, whether a given
pair of hyperbolics (A,B) ∈ PSL(2,R) with disjoint axes generate a discrete and
free group. It was shown there that if the representation were discrete and free,
then up to taking inverses as necessary, any pair of primitive words could be ob-
tained from (A,B) by applying a specific sequence of Nielsen transformations to
the generators. This sequence is described by an ordered set of integers, [β0, . . . βk]
and is used in computing the computational complexity of the algorithm [5, 15].
In [8] we showed that the sequence [β0, . . . βk] corresponds to unwinding, a process
dual to the winding. We also showed how the rationals associated to winding and
unwinding are related.

The arguments in [8, 13] use the geometry of the hyperbolic plane. In particu-
lar, they make strong use of the ability to orient geodesics and hence to distinguish
between a word in G = 〈A,B〉 and its inverse and between the pair (A,B) and the
pair (B,A). Our aim in this paper is to lift these results for the generators of the
representation groups to pairs of primitives that generate the free group. Therefore
in lifting statements from PSL(2,R) to F we need to carefully analyze the role of
geometric orientation and the relative lengths of geodesics in the algorithm of [13].

In this paper we concentrate in detail on the case where under the represen-
tation the generators are hyperbolic and their axes are disjoint. In section 7 we
discuss the other cases using our algorithmic approach. Some of the results proved
here are not new, but are given with new proofs.

We state our main results leaving the definitions of terms such as the F sequence
and notation such as W[α0,...,αk] for the introductory parts of later sections. Our
main result is that the results in [8] hold for abstract free groups:

Theorem 1.1. Up to conjugacy, every primitive word of the free group on
two generators, F = 〈a, b〉 can be written in the form W (a, b) where W (a, b) =
W[α0,...,αk] is formed by the sequence of Nielsen transformations determined by the
F-sequence [α0, . . . , αk] and is, up to inverse, uniquely associated with the rational
p/q whose continued fraction is the given F-sequence.

Theorem 1.2. A pair of primitives w, v generates F if and only if the corre-
sponding rationals, p/q, r/s satisfy |ps− qr| = 1.

Theorem 1.3. Corresponding to any discrete faithful representation ρ of F
there is a unique triple of primitive elements in F , {c, d, cd−1} such that any two
of the three are a primitive pair and any other primitive pair can be derived from c
and d using an F-sequence.

Theorem 1.4. The primitive exponents in the expanded form of the words
W (a, b) = W[α0,...,αk] ∈ F satisfy the formulas in theorem 3.1.
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Our paper is organized as follows: Section 2 defines F-sequences. Section 3
is concerned with the exponents in words and section 5 goes into detail about the
exponents in a primitive word and in a pair of primitive words that generate the
group. That section also states theorems from previous papers that apply to G
along with their extensions to F . In section 4 the geometry of primitive pairs is
developed giving definitions of coherently ordered pairs and winding and unwinding.
In section 6 all results stated for G are lifted to F and proofs are given in the case
of representations with disjoint axes. The final section 7 extends the results to
representations with parabolic elements and cases with intersecting axes.

2. F-sequences

The definitions in this section make sense for any two generator group whether
or not it is free. To simplify things, therefore, we continue to use the notation F to
denote an arbitrary two generator group.

Definition 1. An F−sequence is an ordered set of integers [α0, . . . αk] where
all the αi, i = 0, . . . , k have the same sign and all but α0 are required to be non-zero.
In addition, if k > 1, then ak > 1. For completeness we also include the empty
sequence, [∅].

Given an F-sequence we use it define a sequence of words and a sequence of
ordered pairs of word in a free group F = 〈a, b〉. The sequence of words and pairs
of words in the group so determined, of course, depends upon the fixed generators.
The same word will have a different F sequence for a different choice of generators.

Definition 2. F-words. Let a and b generate the group F and let F =
[α0, ..., αk] be an F−sequence. We define the ordered pairs of words (at, bt), t =
0, . . . , k inductively, replacing the pair (X,Y ) given at step t by the pair (Y −1, X−1Y at)
as follows: If the F-sequence is empty, we set

(a0, b0) = (a, b)

and stop. Otherwise we set
(a0, b0) = (a, b)

and
(a1, b1) = (b−1, a−1bα0).

Then for t = 1, . . . , k, we set

(at+1, bt+1) = (b−1
t , a−1

t bαtt ).

Note that at+1 = b−1
t and bt+1 = bt−1b

αt
t . We call the words (at, bt) the F-words

determined by the F-sequence.

We use the notation bt = W[α0,...αt](a, b). With this notation the first pair is

a0 = W[∅](a, b) and b0 = W[α0](a, b)

and the last pair is

ak+1 = (W[α0,...αk](a, b))
−1 and bk+1 = W[α0,...αk+1](a, b).

Recall the definition of a continued fraction expansion for a rational number
p/q. For p/q > 0 we have

p

q
= α0 +

1
α1 + 1

α2+
1

α3+···+ 1
ak

= [α0;α1, . . . , αk]
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where the αi are integers with αj > 0, j = 1 . . . k− 1, ak > 1 for k > 1 and a0 ≥ 0.
Note that the condition ak > 1 avoids the ambiguity coming from

[α0;α1, . . . , αk−1, 1] = [α0;α1, . . . , αk−1 + 1].

For p/q < 0 we let −p/q = [α0;α1, . . . , αk] and set
−p
q

= [−α0;−α1, . . .− αk].

This definition for negative numbers is not the standard definition of [14] but works
better in many applications including the one here. It gives more symmetry to the
picture.

To complete the picture, for n 6= 0, if p/q = 0/n, we assign it the continued
fraction [0] and if p/q = n/0 =∞ we assign it the continued fraction [∞] = [∅]. We
also define the level of the continued fraction: the level of [0] and the level of [∞]
is 0. Otherwise, the level of [α0;α1, . . . , αk] is

∑k
i=0 αi.

The notation for our F-sequences looks very much like the continued fraction
notation.

We justify this by identifying the rational p/q with continued fraction [α0, . . . , αk]
with the F−sequence [α0, . . . , αk]. In this way we associate the rational p/q to the
F-word W[α0,...αt](a, b) and set Wp/q = W[α0,...αt](a, b). We add the convention
W1/0 = a0 and W0/1 = b0. Note that because we defined the F words in terms of
bt, we have distinguished between bt and at+1 = b−1

t . We thus have W−1
p/q = at+1.

This is summarized by

Remark 2.1. These Wp/q are not necessarily the same as the Wp/q used in
the Keen-Series papers [16, 17], but are a variant corresponding to the algorithmic
words.

We also define the F-sequence pair to mean the ordered pair

(W−1
[α0,...,αt−1]

,W[α0,...,αt−1,αt]).

We will prove:

Theorem 2.1. Up to conjugacy, there is a one to one correspondence between a
pair consisting of a primitive element and its inverse, {W,W−1}, and the extended
rational numbers Q ∪ {∞}.

Remark 2.2. This whole discussion depends on the generators as an ordered
pair. Interchanging the order or replacing either generator by its inverse results in
a change in the words in the F-sequence as well a change in their identification
with rationals.

3. Word forms and primitive exponents

A word W (a, b) in F = 〈a, b〉 is an expression of the form

aη1bµ1 · · · aηkbµk

where the exponents are all integers and all are non-zero except perhaps the first,
η1 and the last µk. If the group is free, the expression is unique.

Definition 3. Given a word W (a, b) = aη1bµ1 · · · aηkbµk , the sequences of
integers {η1, . . . , ηk}, {µ1, . . . , µk}, are called the primitive exponent sequences and
the numbers ηi, µi are primitive exponents.
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In [8] and in [10], using different inductive techniques, we showed that up to
conjugacy, inverse and cyclic order the primitive exponent sequences for primitive
elements have special forms.

The first theorem shows that the special forms depend on whether p/q is posi-
tive or negative and whether its absolute value is greater or less than one.

Theorem 3.1. Up to conjugacy, every primitive element in F = 〈a, b〉 has one
of the following forms where all the integers ηi, µi are assumed strictly positive:
For p/q = 1/0

W (a, b) = a, W (a, b)−1 = a−1

For p/q = 0/1,
W (a, b) = b, W (a, b)−1 = b−1

For p/q = 1/1,
W (a, b) = a−1b, W (a, b)−1 = b−1a

For p/q = -1/1,
W (a, b) = ab, W (a, b)−1 = b−1a−1

For 0 < p/q < 1,

W (a, b) = a−1bµ1a−1bµ2 . . . a−1bµp

W (a, b)−1 = b−µpab−µp−1 . . . ab−µ1a

where
p∑
i=1

µi = q and |µi+1 − µi| ≤ 1.

For −1 < p/q < 0, the sign of the exponent of a changes

W (a, b) = abµ1abµ2 . . . abµp

W (a, b)−1 = b−µpa−1b−µp−1 . . . a−1b−µ1a−1

where
p∑

1=1

µi = q and |µi+1 − µi| ≤ 1.

For 1 < p/q <∞ the roles of a and b and of p and q are reversed

W (a, b) = a−η1ba−η2b . . . a−ηqb

W (a, b)−1 = b−1aηqb−1 . . . aη2b−1aη1

where
q∑

1=1

µi = p and |ηi+1 − ηi| ≤ 1.

Finally for −∞ < p/q < −1

W (a, b) = aη1baη2b . . . aηqb

W (a, b)−1 = b−1a−ηqb−1 . . . a−η2b−1a−η1

where
q∑

1=1

µi = p and |ηi+1 − ηi| ≤ 1.

Proof. The theorem is true for G ⊂ PSL(2,R) and is proved in [17]. The
proof for F is given in section 6 and 7. �
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Note that in every case the exponent of the generator b in the word W (a, b)
is positive; that is µi > 0. This implies that we don’t get both a word and its
inverse in this enumeration of the words W (a, b). Moreover, in every case one of
the exponent sequences is trivial in that it consists either of all 1’s or all −1’s. The
primitive exponents in the other non-trivial exponent sequence all have the same
sign and are either ±α0 or ±(α0 + 1) where α0 is the first entry in the continued
fraction of p/q. We also remark that the words W (a, b) have the property that their
word length is as small as possible.

In [8] we gave the specific relationship between the continued fraction for p/q
and the non-trivial primitive exponents of the word W (a, b), We stated the theorem
only for p/q > 1 and Wp/q. Using the above it is straightforward to write down the
rules for W−1

p/q and the other cases for p/q.
We note that we can also enumerate all primitive pairs (see section 4) and

in that enumeration each primitive element and its inverse appear. We extend
theorems from [8, 17, 19] from G to F . The proof that the result extends is given
in sections 6 and section 7. The statement of the extended result is

Theorem 3.2. Let F be a rank two free group with generators a and b. Given
p/q > 1 with continued fraction expansion [α0, . . . , αk], expand the F-words bt,
t = 0, . . . , k + 1, of the corresponding F-sequence Wp/q to obtain the primitive
exponent sequences {η1(t), η2(t), . . . , ηqt(t)} for the words

bt = Wpt/qt(a, b) = a−η1(t)ba−η2(t)b . . . a−ηqt (t)b.

Then the non-trivial primitive exponent sequence

{η1(k + 1), . . . , ηqt(k + 1)}
of Wpt/qt is related to the F-sequence as follows:

If t = 0, then η0 = 0 and η1(0) = α0.
If t = 1, then q1 = α1, η0(1) = 1 and ηi(1) = a0, i = 1, . . . , q1.
If t = 2 then q2 = α2α1 + 1, η0(2) = 0 and for i = 1, . . . , q2,

ηi(2) = a0 + 1 if i ≡ 1 mod q2 and ηi(t) = α0 otherwise.

For 2 < t ≤ k + 1,
• η0(t) = 0 if t is even and η0(t) = 1 if t is odd.
• For i = 1 . . . qt−2, ηi(t) = ηi(t− 2).
• For i = qt−2 +1 . . . qt, ηi(t) = α0 +1 if i ≡ 1+qk−1 mod qk and ηi(t) = α0

otherwise.
Moreover any word W (a, b) whose exponent sequences, up to cyclic permutation,

satisfy the above conditions is primitive and conjugate to some Wp/q.

Definition 4. A pair of elements that generates F is called a primitive pair
(but not every arbitrary pair of primitive elements form a primitive pair).

It is clear that if (W,V ) is a primitive pair, so is the inverse pair (V −1,W−1).
In addition, the pairs (W,V −1), (W−1, V ), (W−1, V −1) and their inverse pairs are
also primitive pairs. This leads us to define the following notion for words either
in G or in F .

Definition 5. The pair class {W,V } consists of the eight primitive pairs:
(W,V ), (W,V −1), (W−1, V ), (W−1, V −1) and their inverse pairs.
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An ordered pair of words (j, k) in a group is conjugate as a pair to another
ordered pair (s, t) if there is a single element of the group that conjugates j to s
and k to t. The rational numbers associated to any conjugate primitive pairs are
the same. Thus a pair class determines a pair of rational numbers.

In [8, 12] we proved

Theorem 3.3. A pair class of primitive elements {W (A,B), V (A,B)} in G
contains primitive pairs if and only if the corresponding rationals satisfy p/q, r/s
satisfy |ps− qr| = 1.

Therefore, combining this theorem with the proofs of sections 6 and 7 we have

Theorem 3.4. A pair class of primitive elements {W (a, b), V (a, b)} in F con-
tains primitive pairs if and only if the corresponding rationals {p/q, r/s} satisfy
|ps− qr| = 1.

The primitive elements (at, bt) formed from an F-sequence are primitive pairs.
These are ordered pairs. Note that the level of the continued fraction of at is never
greater than the level of the continued fraction of bt. Note further that none of the
pairs of the pair class (at, bt) appears as (at′ , bt′) for a different t′ in the F-sequence
construction because the level of at is never greater than the level of bt. Moreover,
from the construction we never have at = a−1

t′ or bt = a−1
t′ .

Thus, after lifting to F as in sections 6 and 7 we have

Theorem 3.5. Given a representation ρ : F → G ⊂ PSL(2,R) such that
A = ρ(a), B = ρ(b) are hyperbolics with disjoint axes, there is a distinguished set
of three primitive elements in F, c, d, cd−1 depending upon ρ(F ) = G such that any
pair of the three is a primitive pair and such that any primitive element in F is
conjugate to a unique word given by an F sequence.

4. Two generator subgroups of PSL(2,R)

We now turn to two generator subgroups of PSL(2,R) and the geometric ori-
entation of their elements.

The group PSL(2,R) consists of isometries in the hyperbolic metric on the
upper half plane H. It is conjugate in PSL(2,C) to the group of isometries of the
unit disk D with its hyperbolic metric. By abuse of notation, we identify these
groups and use whichever model is easier at the time. All of the results below are
independent of the model we use. An isometry is called hyperbolic if it has two
fixed points on the boundary of the half-plane or the disk. It leaves the hyperbolic
geodesic joining them invariant; this geodesic is called the axis of the element. One
of the fixed points is attracting and the other is repelling. This gives a natural
orientation to the axis since points are moved along the axis toward the attracting
fixed point. This natural orientation does not exist in the free group.

There is an analytic condition that determines whether or not the axes intersect.
Note that however A = ρ(A), B = ρ(B) are lifted to Ã, B̃ ∈ SL(2,R), the sign of
the trace of the multiplicative commutator tr[Ã, B̃] is the same; we therefore write
it as tr[A,B]. The axes of A and B are disjoint if and only if tr[A,B] > 2.

We now will use the orientation of the axis of an element of PSL(2,R) to
define the notion of a coherently oriented pair of elements or axes of a subgroup
G = 〈A,B〉. In section 6 we will lift this concept to the free group.
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4.1. Coherently Oriented Generators.

Definition 6. Let A and B be any pair of hyperbolic generators of the group
G acting as isometries on the unit disk or the upper half-plane. Assume that they
are given by representatives Ã, B̃ ∈ SL(2,R) with trÃ ≥ trB̃ > 2. Suppose the axes
of A and B are disjoint. Let L be the common perpendicular geodesic to these axes
oriented from the axis of A to the axis of B. We may assume that the attracting
fixed point of A is to the left of L, replacing A by A−1 if necessary. We say A and
B are coherently oriented if the attracting fixed point of B is also to the left of
L and incoherently oriented otherwise.

If (A,B) are coherently oriented, then (A,B−1) and (B,A) are both incoher-
ently oriented.

If G = 〈A,B〉 is discrete and free, and if the axes of A and B are disjoint,
the quotient Riemann surface D/G is a sphere with three holes; that is, a pair of
pants. The axes of all hyperbolic group elements project to closed geodesics on S.
The length of the geodesic on S is determined by the trace of the element. This is
another property that is lost when we lift to the free group, F .

4.2. Stopping generators . IfG is an arbitrary two-generator non-elementary
subgroup of PSL(2,R) with disjoint axes, the Gilman-Maskit algorithm [13] goes
through finitely many steps and at the last, or k + 1th step, it determines whether
or not the group is discrete and stops. We are concerned here with the case where
it stops and the output is that the group is discrete and free. At each step,
t = 0, . . . , k, the algorithm determines an integer αt and a new pair of genera-
tors (At+1, Bt+1); these integers form an F−sequence and the pairs, (At, Bt), of
algorithmic words are the F− words defined above in section 2. The final pair of
generators (C,D) = (Ak+1, Bk+1) are called the stopping generators. It is shown in
[8] that if the axes of the original generators are disjoint, the stopping generators
have the geometric property that their axes, together with the axis of A−1

k+1Bk+1,
project to the three shortest closed geodesics on the quotient Riemann surface which
is a three holed sphere. The projected geodesics are disjoint and the only simple
closed curves on the quotient. [8].

Lemma 4.1. If the pair (A,B) is coherently oriented, then either the pair (C,D)
is coherently oriented or one of the pairs (D,C−1) or (C,D−1) is.

Proof. We assume without loss of generality that the pair (A,B) is coherently
oriented because if it is not, one of the pairs (A,B−1) or (B,A−1) or B−1, A−1) is
coherently oriented and we can replace it with that one. We can analyze the steps
in the algorithm and the orientations of the intermediate generators carefully and
see that, if we start with a coherently oriented pair, at each step, up to the next to
last, t = k, the pair we arrive at, (B−1

t−1, Bt), is coherently oriented. We therefore
need to check whether the last pair,

(C,D) = (Ak+1, Bk+1) = (B−1
k , Bk+1)

is coherently oriented.
The stopping condition is that the last word Bk+1 have negative trace. We

know trBk−1 > trBk; we don’t know the relation of |trBk+1| to these traces. We
will have either

|trBk+1| > trBk−1 > trBk or
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trBk−1 > |trBk+1| > trBk or
trBk−1 > trBk > |trBk+1|.

In the first case (B−1
k−1, Bk) is coherently oriented. In the second case (B−1

k , Bk+1)
is incoherently oriented but (D,C−1) = (B−1

k+1, Bk) is coherently oriented. In the
third case, again (B−1

k , Bk+1) is incoherently oriented but this time (C,D−1) =
(B−1

k , B−1
k+1) is coherently oriented. �

We note, but do not use the fact that if (C0, D0) denotes the ordered “shortest”
pair of stopping generators with whatever orientation comes out, then at the last
step the coherently ordered stopping generators are either (C−1, D) or (D−1, C)
where C = C0 and D = D0. This comes from following the notation carefully to
see that the last pair, the first case in the proof of the above lemma, actually has
the stopping generators with k replacing k + 1.

4.3. Winding and Unwinding. In [8] we studied the relationship between
a given pair of generators for a free discrete two generator subgroup of PSL(2,R)
with disjoint axes and the stopping generators produced by the Gilman-Maskit al-
gorithm. We found we could interpret the algorithm as an unwinding process, a
process that at each step reduces the number of self-intersections of the correspond-
ing curves on the quotient surface. In effect, it unwinds the way in which stopping
generators have been wound around one another to obtain the original primitive
pair.

Here is an example where we denote the original given pair of generators by
(A,B) and the stopping generators by (C,D).

Example 1. We begin with the (unwinding) F−sequence [3, 2, 4] and obtain
the words

(A0, B0) = (A,B)

(A1, B1) = (B−1, A−1B3)

(A2, B2) = (B−3A,BA−1B3A−1B3)
and

(A3, B3) = (B−3AB−3AB−1, A−1B3 · (BA−1B3A−1B3)4) = (C,D).

Going backwards

(C0, D0) = (C,D)

(C1, D1) = (C−4
0 D−1

0 , C−1
0 ) = (B−3A,BA−1B3A−1B3)

(C2, D2) = (C−2
1 D−1

1 , C−1
1 ) =

((B−3A)−2 · (BA−1B3A−1B3)−1, A−1B3) = (B−1, A−1B3)

(C3, D3) = (C−3
2 D−1

2 , C−1
2 ) = (B3B−3A,B) = (A,B)

We can think of this as the (winding) sequence given by [−4,−2,−3] and write

A = W[−4,−2,−3](C,D) and B = W−1
[−4,−2](C,D).

Definition 7. Let q be a positive integer. A winding step labeled by the integer
−q will send the pair (U, V ) to the pair (U−qV −1, U−1) and an unwinding step
labeled by the integer q the will send the pair (M,N) to the pair (N−1,M−1Nq).
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Theorem 4.2. [8] If G = 〈A,B〉 is a non-elementary, discrete, free subgroup
of PSL(2,R) where A and B are hyperbolic isometries with disjoint axes, then
there exists an unwinding F-sequence [α0, ..., αk] such that the stopping generators
(C,D) are obtained from the pair (A,B) by applying this F-sequence. There is also
a winding F-sequence [β0, ..., βk] such that the pair (A,B) is the final pair in the
set of F-words obtained by applying the winding F-sequence to the pair (C,D).

The sequences are related by [β0, ..., βk] = [−αk, ...,−α0]

The theorem suggests the following definitions.

Definition 8. (1) We call the F-sequence [α0, α1, . . . , αk], determined by the
discreteness algorithm that finds the stopping generators when the group is discrete,
the unwinding F-sequence.

(2)We call the F-sequence [β0, β1, . . . , βk], that determines the original gener-
ators (A,B) from the stopping generators (C,D), the winding F−sequence.

This justifies our modifying the classical definition of continued fractions for
negative numbers. Note that the ambiguity in the definition of stopping generators
corresponds exactly to the ambiguity in the definition of a continued fraction.

5. Primitive exponents

If X and Y are both primitive elements and together they generate the group
they are termed a primitive pair or a pair of primitive associates and each is termed
a primitive associate of the other. A given primitive word, of course, has many
primitive associates.

It follows from Theorem 4.2 that up to conjugacy the stopping generators are
independent of the given set of generators. This immediately implies

Theorem 5.1. Every primitive word in the group G is the last word in a wind-
ing F-sequence and in particular, the forms of theorem 3.1 are correct.

Proof. If P is any primitive word in G, it has many primitive associates.
Let Q be any one of these. After replacing (P,Q) by the coherently oriented pair
if necessary, unwind according to the algorithm to find the stopping generators,
(C,D). This unwinding determines an F-sequence [α0, . . . , αk] which corresponds
to a rational p/q. As in example 1, the unwinding sequence, in turn, determines
another F-sequence, the winding sequence [β0, . . . , βk]. The F-words formed from
the winding sequence can be expanded into the form

Cn1Dm1 . . . CnkDmk , ni,mi ∈ Z, i = 1, . . . , k.

It is easy to see that, starting with coherently oriented generators (C,D), and an
F-sequence with non-negative entries, the exponents of C and D in the F-words
always have opposite signs. If α0 > 0, and p/q ≥ 1, we see that D1 = C−1Dα0

and, as we go through the F-words, the exponent of C will always have absolute
value 1. This agrees with the form of words for p/q > 1 in theorem 3.1. If, on the
other hand, α0 = 0, and 0 < p/q < 1, we see that (C1, D1) = (D−1, C−1) and the
roles of C and D−1 and D and C−1 are interchanged, which again agrees with the
corresponding form of theorem 3.1.

If we begin with an F-sequence with non-positive entries, the negative entries
always cause the exponents of C and D in the F-words to have the same sign.
Again, if α0 < 0, we see that D1 = C−1Dα0 and as we go through the F-words, the
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exponent of C will always have absolute value 1. Similarly, if α0 = 0 the exponent
of D will always have absolute value 1. Thus, here we also get agreement with the
corresponding forms of theorem 3.1.

In either case, as we step from t− 1 to t, we have Dt = C−1
t−1 so that the signs

of all the exponents change.
�

The non-trivial primitive exponents of the wordW (C,D) have the property that
two adjacent primitive exponents differ by at most 1. This follows from looking
closely at the F-words. There are formulas for writing the primitive exponents in
terms of the entries in the (F)−sequence that are derived in [8] and [10]. Using
theorem 3.1 and replacing G by F in theorem 3.2, we obtain the corresponding
formulas for F .

The identification of continued fractions for rationals to F-sequences, together
with Remark 2.2, immediately imply

Corollary 5.2. There is a one-to-one map, τ from pairs of rationals (p/q, r/s),
with |ps − rq| = 1 to conjugacy classes of coherently oriented primitive pairs de-
fined by τ : (p/q, r/s) 7→ (A,B) where p/q is the rational with continued fraction
expansion [α0;α1, . . . , αk] and r/s is the rational with continued fraction expansion
[α0, α1, . . . , αk−1].

Corollary 5.3. Up to replacing a primitive word in G by its inverse, there is
a one-to-one map from the set of conjugacy classes of primitive elements to the set
of all rationals.

In section 6 these will translate to corollaries 5.4 and 5.5 holding in the free
group F . Namely,

Corollary 5.4. There is a one-to-one map, τ from pairs of rationals (p/q, r/s),
with |ps − rq| = 1 to conjugacy classes of primitive pairs in F defined by τ :
(p/q, r/s) 7→ (c, d) where p/q is the rational with continued fraction expansion
[α0;α1, . . . , αk] and r/s is the rational with the continued fraction expansion
[α0, α1, . . . , αk−1].

Corollary 5.5. Up to replacing a primitive word in F by its inverse, there is
a one-to-one map from the set of conjugacy classes of primitive elements of F to
the set of all rationals.

6. Lifting to the free group

We can now achieve our goal which is to extend these results from a two-
generator non-elementary discrete free subgroup G of PSL(2,R) with disjoint axes
to the free group, F on two generators. To do this first we take a faithful representa-
tion ρ of F = 〈a, b〉 into PSL(2,R) such that ρ(a) = A, ρ(b) = B and let (C,D) be
a pair of coherently oriented stopping generators for the group G = 〈A,B〉. After
that we take a second faithful representation ρ′ of F = 〈a, b〉 into PSL(2,R) with
ρ′(F ) = G such that ρ′(a) = C, ρ′(b) = D where (C,D) is the pair of coherently
oriented stopping generators for the group G given by the first representation ρ.

We have
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Theorem 6.1. Given a free group F = 〈a, b〉 and a discrete faithful represen-
tation ρ of F into PSL(2,R) such that ρ(a) = A, ρ(b) = B where the axes of the
images of a and b are disjoint, there is a distinguished pair of primitive associates
c and d in F determined by the representation ρ such that, up to conjugacy, every
pair of primitive associates in F can be written in the form (W (c, d), V (c, d)) where

W (c, d) = W[α0,...,αk](c, d) and V (c, d) = W−1
[α0,...,αk−1]

(a, b)

and is thus associated to a pair of rationals (p/q, r/s) with |ps− qr| = 1.

Proof. Given the discrete faithful representation ρ of F into PSL(2,R), let
(C,D) be the stopping generators. Then A and B can be written as winding F
words in C and D. Let c = ρ−1(C) and d = ρ−1(D). Further assume that x ∈ F is
any primitive element. Let y be any one of the many primitive associates of x and
let ρ(x) = X and ρ(y) = Y . Unwind the pair (X,Y ) to obtain (up to conjugacy)
the stopping generators C and D and then wind to obtain the F−sequence for
(X,Y ) and (x, y). Note that we are speaking of a conjugacy that simultaneously
conjugates both elements of one ordered pair to the elements of the other ordered
pair. �

Theorem 6.2. Every pair of primitive associates in F = 〈a, b〉, the free group
on two generators, can be written in the form (W (a, b), V (a, b)) where

W (a, b) = W[α0,...,αk](a, b) and V (a, b) = W−1
[α0,...,αk−1]

(a, b)

and is thus associated to a pair of rationals p/q, r/s with |ps− qr| = 1.

Proof. Given any faithful representation ρ of F into PSL(2,R), let (C,D) be
the stopping generators. Replace ρ by ρ′ where ρ′(a) = C and ρ′(B) = D so that
a = ρ′−1(C) and b = ρ′−1(D).

�

Note that for a given group F and elements c,d,a and b, the F-sequences, the
rationals and the primitive exponents in theorems 6.1 and 6.2 will be different for
any given primitive word or primitive pair.

Combining these theorems yields proofs of corollary 5.4 and corollary 5.5.

7. The Geometries of Different Representations

In this section we turn our attention to representations ρ of F = 〈a, b〉 into
PSL(2,R) where G = ρ(F ) is discrete but either the generators are parabolic or
their axes intersect.

If a generator is parabolic, it has only one fixed point and no invariant geodesic.
We define its axis to be its fixed point. If one or both of the generators are parabolic
and their axes are disjoint, all of the discussion above holds. The quotient D/G is
still topologically a three holed sphere but the holes may have become punctures.
The projection of the axis is the puncture.

Recall that the algebraic condition that determines whether or not the axes
intersect depends on tr[A,B]. The axes of A and B intersect if and only if tr[A,B] <
2.

If tr[A,B] ≤ −2, G is free and discrete so no algorithm is needed to determine
uniqueness. The quotient D/G is a torus with a hole or puncture. When the trace
is between −2 and 2, the commutator is elliptic and the group is not free, but it
may be discrete.
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As noted in [9] (see section 8 of that paper), in the case tr[A,B] < −2, that
is, even when one already knows G is discrete, one can follow the methods of [7]
used to determine the discreteness, to find an algorithmic sequence of generators
and an ordered set of coherently oriented stopping generators C and D which have
the property that the axis of D projects to the unique shortest simple curve on
the surface and the axis of C projects to the unique shortest simple curve that
intersects C only once (assuming that C, D and CD−1 have different traces). Note
that in this case, neither of the generators can be parabolic, because if one is, the
generators share a fixed point and the group is not discrete.

One can then extend the proofs of theorems 3.1, 3.2, 3.5, 5.1, 6.1, 6.2, and
corollaries 5.4 and 5.5 to this case. We have now proved the results in their most
general form as they are stated in the introduction as theorems 1.1, 1.2, 1.3 and
1.4. We note that some, but not all, of the results are well known and have been
proved using other techniques. The techniques here give new proofs of such results.
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