
Characterization of Meromorphic Functions with
Two Asymptotic Values ∗

Tao Chen, Yunping Jiang†, and Linda Keen‡

October 14, 2013

Abstract

In this paper we study the topological class of universal covering maps
from the plane to the sphere with two removed points; we call the elements
topological transcendental maps with two asymptotic values and we denote
the space by AV2. The space of meromorphic transcendental maps in AV2 is
denoted asM2, which are all meromorphic transcendental functions with con-
stant Schwarzian derivative. We follow the framework given in [Ji] to study
the characterization of a map in M2. We prove in this paper that for an
element f ∈ AV2 with finite post-singular set, the following statements are
equivalent: (1) f is combinatorially equivalent to a meromorphic transcen-
dental map g in M2; (2) f has bounded geometry; (3) f has no Thurston
obstruction; (4) f has no Levy cycle; (5) The canonical Thurston obstruction
is empty.

1 Introduction

Thurston asked the question “when can we realize a given branched covering map
as a holomorphic map in such a way that the post-critical sets correspond?” and
answered it for post-critically finite degree d branched covers of the sphere [T, DH].
His theorem is that a postcritically finite degree d ≥ 2 branched covering of the
sphere, with hyperbolic orbifold, is either combinatorially equivalent to a rational
map or there is a topological obstruction, now called a “Thurston obstruction”. The
rational map is unique up to conjugation by a Möbius transformation.
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Thurston’s theorem is proved by defining an appropriate Teichmüller space of
rational maps and a holomorphic self map of this space. Iteration of this map
converges if and only if no Thurston obstruction exists. This method does not
naturally extend to transcendental maps because the proof uses the finiteness of
both the degree and the post-critical set in a crucial way. Hubbard, Schleicher,
and Shishikura [HSS] generalized Thurston’s theorem to a special infinite degree
family they call “exponential type” maps. In that paper, the authors study the
limiting behavior of quadratic differentials associated to the exponential functions
with finite post-singular set. They use a Levy cycle condition (a special case of
Thurston’s topological condition) to characterize when it is possible to realize a
given exponential type map with finite post-singular set as an exponential map
by combinatorial equivalence. The main purpose of this paper is to use a different
approach based on the framework expounded in [Ji] (see also [JZ, CJ]) to understand
the characterization problem for a generalization of this family of infinite degree
maps.

In this paper we define a class of maps called topological transcendental maps
with two asymptotic values which we denote by AV2. The elements in this class are
universal covering maps from the plane to the sphere with two removed points. A
meromorphic transcendental map g in AV2 is a meromorphic function with constant
Schwarzian derivative and we denote the space of all meromorphic functions with
constant Schwarzian derivative by M2. Our main result in this paper gives a full
characterization of an f ∈ AV2 combinatorially equivalent to a map g ∈M2.

Theorem 1 (Main Theorem). Suppose f ∈ AV2 is a post-singularly finite map.
Then the following statements are equivalent:

(1) f in AV2 is combinatorially equivalent to a unique map g in M2 (up to au-
tomorphisms of the Riemann sphere);

(2) f has bounded geometry;

(3) f has no Thurston obstruction;

(4) f has no Levy cycle;

(5) f has no canonical Thurston onstruction.

Our techniques involve adapting the Thurston iteration scheme to our situation.
We work with a fixed normalization. There are two important parts to the proof of
the main theorem. The first part is to prove that the bounded geometry condition
implies the iterates remain in a compact subset of the Teichmüller space. This
analysis depends on defining a topological condition that constrains the iterates.
The second part is to use the compactness of the iterates to prove that the iteration
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scheme converges in the Teichmüller space. This part of the proof involves an
analysis of quadratic differentials associated to our functions.

The paper is organized as follows. In §2 we review the properties of meromorphic
functions with two asymptotic values that constitute the spaceM2. In §3, we define
the family AV2 that consists of topological maps modeled on maps inM2 and show
that M2 ⊂ AV2. In §4 we define combinatorial equivalence between maps in AV2
and in §5 define the Teichmüller space Tf for a map f ∈ AV2. In §6, we introduce
the induced map σf from the Teichmüller space Tf into itself; this is the map that
defines the Thurston iteration scheme. In §7, we define the concept of bounded
geometry and in §8 we prove the necessity of the bounded geometry condition in
the main theorem. In §9, we give the proof of the sufficiency assuming the iterates
remain in a compact subset of Tf . In §10.1, we define a topological property of the
post-singularly finite map f in AV2 in terms of the winding number of a certain
closed curve. We prove that the winding number is unchanged during iteration of
the map σf and so provides a topological constraint on the iterates. Finally, in
§10.2, we show how the bounded geometry condition together with this topological
constraint implies the functions remain in a compact subset of Tf under the iteration
to complete the proof of the main theorem.
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oration grant (#199837) from the Simons Foundation and the CUNY collaborative
incentive research grant (#1861). This research is also partially supported by the
collaboration grant (#11171121) from the NSF of China and a collaboration grant
from Academy of Mathematics and Systems Science and the Morningside Center of
Mathematics at the Chinese Academy of Sciences.

2 The Space M2

In this section we define the space of meromorphic functions M2. It is the model
for the more general space of topological functions AV2 that we define in the next
section. We need some standard notation and definitions:

C is the complex plane, Ĉ is the Riemann sphere and C∗ is complex plane punctured
at the origin.

Definition 1. Given a meromorphic function g, the point v is a logarithmic sin-
gularity for the map g−1 if there is a neighborhood Uv and a component V of
g−1(Uv \ {v}) such that the map g : V → Uv \ {v} is a holomorphic universal
covering map. The point v is also called an asymptotic value for g and V is called
an asymptotic tract for g. A point may be an asymptotic value for more than one
asymptotic tract. An asymptotic value may be an omitted value.
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Definition 2. Given a meromorphic function g, the point v is an algebraic singu-
larity for the map g−1 if there is a neighborhood Uv such that for every component Vi
of g−1(Uv) the map g : Vi → Uv is a degree dVi branched covering map and dVi > 1
for finitely many components V1, . . . Vn. For these components, if ci ∈ Vi satisfies
g(ci) = v then g′(ci) = 0; that is ci is a critical point of g for i = 1, . . . , n and v is
a critical value.

Note that by a theorem of Hurwitz, if a meromorphic function is not a homeomor-
phism, it must have at least two singular points (i.e., critical points and asymptoti-
cal values) and, by the big Picard theorem, no transcendental meromorphic function
g : C→ Ĉ can omit more than two values.

The spaceM2 consists of meromorphic functions whose only singular values are
its omitted values. More precisely,

Definition 3. The space M2 consists of meromorphic functions g : C → Ĉ with
exactly two asymptotic values and no critical values.

2.1 Examples

Examples of functions in M2 are the exponential functions αeβz and the tangent
functions α tan iβz = iα tanh βz where α, β are complex constants.

The asymptotic values for the exponential functions above are {0,∞}; the half
plane <βz < 0 is an asymptotic tract for 0 and the half plane <βz > 0 is an
asymptotic tract for infinity. The asymptotic values for the tangent functions above
are {αi,−αi} and the asymptotic tract for αi is the half plane =βz > 0 while the
asymptotic tract for −αi is the half plane =βz < 0.

2.2 Nevanlinna’s Theorem

To find the form of the most general function in M2 we use a special case of a
theorem of Nevanlinna [N].

Theorem 2 (Nevanlinna). Every meromorphic function g with exactly p asymptotic
values and no critical values has the property that its Schwarzian derivative is a
polynomial of degree p− 2. That is

S(g) =
(g′′
g′
)′ − 1

2

(g′′
g′
)2

= ap−2z
p−2 + . . . a1z + a0. (1)

Conversely, for every polynomial P (z) of degree p−2, the solution to the Schwarzian
differential equation S(g) = P (z) is a meromorphic function with p asymptotic
values and no critical values.
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It is easy to check that S(αeβz) = −1
2
β2 and S(α tan iβ

2
z) = −1

2
β2.

To find all functions in M2, let β ∈ C be constant and consider the Schwarzian
differential equation

S(g) = −β2/2 (2)

and the related second order linear differential equation

w′′ +
1

2
S(g)w = w′′ − β2

4
w = 0. (3)

It is straightforward to check that if w1, w2 are linearly independent solutions to
equation (3), then gβ = w2/w1 is a solution to equation (2).

Normalizing so that w1(0) = 1, w′1(0) = −1, w2(0) = 1, w′2(0) = 1 and solving

equation (3), we have w1 = e−
β
2
z, w2 = e

β
2
z as linearly independent solutions and

gβ(z) = eβz as the solution to equation (2). An arbitrary solution to equation (2)
then has the form

Aw2 +Bw1

Cw2 +Dw1

, A,B,C,D ∈ Ĉ, AD −BC = 1 (4)

and its asymptotic values are {A/C,B/D}.

Remark 1. The asymptotic values are distinct and omitted.

Remark 2. If B = C = 0, AD = 1, A =
√
α we obtain the exponential family

{αeβz} with asymptotic values at 0 and ∞. If A = −B =
√

αi
2
, C = D =

√
− i

2α
we

obtain the tangent family {α tan iβ
2
z} whose asymptotic values {±αi} are symmetric

with respect to the origin.

Remark 3. Note that in the solutions of S(g) = −β2/2 what appears is eβ, not
β; this creates an ambiguity about which branches of the logarithm of eβ correspond
to the solution of equation (2). In section 9.2.2 we address this ambiguity in our
situation. We show that the topological map we start with determines a topological
constraint which in turn, defines the appropriate branch of the logarithm for each of
the iterates in our iteration scheme.

Remark 4. One of the basic features of the Schwarzian derivative is that it satisfies
the following cocycle relation: if f, g are meromorphic functions then

S(g ◦ f(z)) = S(g(f))f ′(z)2 + S(f(z)).

In particular, if T is a Möbius transformation, S(T (z)) = 0 and S(T ◦ g(z)) =
S((g(z)) so that post-composing by T doesn’t change the Schwarzian.
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In our dynamical problems the point at infinity plays a special role and the
dynamics are invariant under post-composition by an affine map. Thus, we may
assume that all the solutions have one asymptotic value at 0 and that they take the
value 1 at 0.

Since this is true for gβ(z) = eβz, any solution with this normalization has the
form 1

gα,β(z) =
αgβ(z)

(α− 1
α

)gβ(z) + 1
α

(5)

where α is an arbitrary value in C∗. The second asymptotic value is λ = α
α− 1

α

. It

takes values in C \ {0, 1}. The point at infinity is an essential singularity for all
these functions.

The parameter space P for these functions is the two complex dimensional space

P = {α, β ∈ C∗}.

The parameters define a natural complex structure for the spaceM2. The subspace
of entire functions in M2 is the one dimensional subspace of P defined by fixing
α = 1 and varying β;

gβ(z) = eβz.

The tangent family has symmetric asymptotic values. Renormalized, it forms an-
other one dimensional subspace of P . This is defined by fixing α =

√
2 and varying

β;

g 1√
2
,β(z) = 1 + tanh

β

2
z =

√
2eβz

1√
2
eβz + 1√

2

.

These functions have asymptotic values at {0, 2} and g 1√
2
,β(0) = 1.

Definition 4. For gα,β(z) ∈M2, the set Ω = {0, λ} of asymptotic values is the set
of singular values. The post-singular set Pg is defined by

Pg =
⋃
x∈Ω

∪n≥0gn(x) ∪ {∞}.

Note that we include the point at infinity separately in Pg because whether or
not it is an asymptotic value, it is an essential singularity and its forward orbit is
not defined. The asymptotic values are in Pg and, since 0 and λ are omitted and
gα,β(0) = 1 ∈ Pg, #Pg ≥ 3.

1Notice that gα,β is obtained from gβ by a Möbius transformation with determinant 1.
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3 The Space AV2

We now want to consider the topological structure of functions in M2 and define
AV2 to be the set of maps with the same topology.

Definition 5. Let X be a simply connected open surface and let S2 be the 2-sphere.
Let fa,b : X → S2 \ {a, b} be an unbranched covering map; that is, a universal
covering map. If Y is also a simply connected open surface we say the pair (X, f 1

a,b)
is equivalent to the pair (Y, f 2

c,d) if and only if there is a homeomorphism h : X → Y
such that f 2

c,d ◦h = f 1
a,b. An equivalence class of such classes is called a 2-asymptotic

value map and the space of these pairs is denoted by AV2.

Let (X, fa,b) be a representative of a map in AV2. By abuse of notation, we will
often suppress the dependence on the equivalence class and identify X with S2\{∞}
and refer to fa,b as an element of AV2.

By definition fa,b is a local homeomorphism and satisfies the following conditions:
For v = a or v = b, let Uv ⊂ X be a neighborhood of v whose boundary is a

simple closed curve that separates a from b and contains v in its interior.

1. f−1
a,b (Uv \ {v}) is connected and simply connected.

2. The restriction fa,b : f−1
a,b (Uv \ {v}) → (Uv \ {v}) is a regular covering of a

punctured topological disk whose degree is infinite.

3. f−1(∂Uv) is an open curve extending to infinity in both directions.

In analogy with meromorphic functions we say

Definition 6. v is called a logarithmic singularity of f−1
a,b or, equivalently, an asymp-

totic value of fa,b. The domain Vv = f−1
a,b (Uv \ {v}) is called an asymptotic tract for

v.

Definition 7. Ωf = {a, b} is the set of singular values of fa,b.

Endow S2 with the standard complex structure so that it is identified with Ĉ. By
the classical uniformization theorem, for any pair (X, fa,b), there is a map π : C→ X
such that ga,b = fa,b ◦ π is meromorphic. It is called the meromorphic function
associated to fa,b.

By Nevanlinna’s theorem S(g(z)) is constant and moreover,

Proposition 1. If g(z) ∈ M2 with Ωg = {a, b} then g(z) = ga,b(z) ∈ AV2 and,
conversely, if ga,b ∈ AV2 is meromorphic then ga,b ∈M2.
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Proof. Any g(z) ∈ M2 is a universal cover g : C→ Ĉ \ Ωg and so belongs to AV2.
Conversely, if ga,b ∈ AV2, it is meromorphic and its only singular values are the
omitted values {a, b}; it is thus in M2.

We define the post-singular set for functions in AV2 just as we did for functions
in M2.

Definition 8. For f = fa,b ∈ AV2, the post-singular set Pf is defined by

Pf =
⋃
n≥0

fn(Ωf ) ∪ {∞}

Note that under the identification of S2 with the Riemann sphere and X with the
complex plane, S2 \X is the point at infinity and it has no forward orbit although
it may be an asymptotic value. We therefore include it in Pf .

Post-composition of fa,b with an affine transformation T results in another map
in AV2. In what follows, therefore, we will always assume a = 0 and the second
asymptotic value, λ, depending on T and b, is determined by the condition f(0) = 1.

We will be concerned only with functions in AV2 such that Pf is finite. Such
functions are called post-singularly finite.

4 Combinatorial Equivalence

In this section we define combinatorial equivalence for functions in AV2. Choosing
representatives (X, fa,b) of the AV2-equivalence classes, we may assume X is always
S2 \ {∞} and {0, b} are the singular points for all the functions so we will omit the
subscripts denoting the omitted points in the definitions below.

Definition 9. Suppose (X, f1), (X, f2) are representatives of two post-singularly fi-
nite functions in AV2, chosen as above. We say that they are combinatorially
equivalent if there are two homeomorphisms φ and ψ of S2 onto itself fixing {0,∞}
such that φ ◦ f2 = f1 ◦ ψ on X and φ−1 ◦ ψ is isotopic to the identity of S2 rel Pf1.

The commutative diagram for the above definition is

X
ψ //

f1

��

X

f2

��
S2

φ // S2
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5 Teichmüller Space Tf .

Let M = {µ ∈ L∞(Ĉ) | ‖µ‖∞ < 1} be the unit ball in the space of all measur-
able functions on the Riemann sphere. Each element µ ∈ M is called a Beltrami
coefficient. For each Beltrami coefficient µ, the Beltrami equation,

wz = µwz

has a unique quasiconformal solution wµ which maps Ĉ to itself and fixes 0, 1,∞.
Moreover, wµ depends holomorphically on µ.

Let f be a post-singularly finite function in AV2 with singular set Ωf = {0, λ}
and postsingular set Pf . By definition, we have #(Ωf ) = 2 and #(Pf ) > 2. Since
post-composition by an affine map is in the equivalence class of f we may always
choose a representative such that {f(0) = 1} ⊂ Pf ; we assume we have always made
this choice. It follows that λ 6= 1 so we always have {0, 1, λ,∞} ⊂ Pf .

The Teichmüller space T (Pf ) is defined as follows. Given Beltrami differentials
µ, ν ∈M we say that µ and ν are equivalent, and denote this by µ ∼ ν, if wµ and
wν fix 0, 1,∞ and (wµ)−1 ◦ wν is isotopic to the identity map of Ĉ rel Pf . We set
Tf = T (Pf ) = M/ ∼= {[µ]}.

There is an obvious isomorphism between Tf and the classical Teichmüller space

Teich(R) of Riemann surfaces with basepoint R = Ĉ \ Pf . It follows that Tf is
a finite-dimensional complex manifold so that the Teichmüller distance dT and the
Kobayashi distance dK on Tf coincide. It also follows that there are always locally
quasiconformal maps in the equivalence class of f ; we always assume we have chosen
one such as our representative.

6 Induced Holomorphic Map σf .

For any post-singularly finite f in AV2, there is an induced map σ = σf from Tf
into itself given by:

σ([µ]) = [f ∗µ],

where

µ̃(z) = f ∗µ(z) =
µf (z) + µ((f(z))θ(z)

1 + µf (z)µ(f(z))θ(z)
, µf =

fz̄
fz
, θ(z) =

fz
fz
. (6)

Because σ is a holomorphic map we have

Lemma 1. For any two points τ and τ ′ in Tf ,

dT

(
σ(τ), σ(τ ′)

)
≤ dT (τ, τ ′).
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The next lemma follows directly from the definitions.

Lemma 2. A post-singularly finite f in AV2 is combinatorially equivalent to a
meromorphic map in M2 if and only if σ has a fixed point in Tf .

Remark 5. If #(Pf ) = 3, then Tf consists of a single point. This point is trivially
a fixed point for σ so the main theorem holds. We therefore assume that #(Pf ) ≥ 4
in the rest of the paper.

7 Bounded Geometry.

Let the base point of Tf be the hyperbolic Riemann surface R = Ĉ\Pf equipped with
the standard complex structure [0] ∈ Tf . For τ in Tf , denote by Rτ the hyperbolic
Riemann surface R equipped with the complex structure τ .

A simple closed curve γ ⊂ R is called non-peripheral if each component of Ĉ \ γ
contains at least two points of Pf . Let γ be a non-peripheral simple closed curve
in R. For any τ = [µ] ∈ Tf , let lτ (γ) be the hyperbolic length of the unique closed
geodesic homotopic to γ in Rτ .

For any τ0 ∈ Tf , let τn = σn(τ0), n ≥ 1.

Definition 10 (Hyperbolic version). We say f has bounded geometry if there is
a constant a > 0 and a point τ0 ∈ Tf such that lτn(γ) ≥ a for all n ≥ 0 and all
non-peripheral simple closed curves γ in R.

The iteration sequence τn = σnf τ0 = [µn] determines a sequence of subsets of Ĉ

Pn = wµn(Pf ), n = 0, 1, 2, · · · .

Since all the maps wµn fix 0, 1,∞, it follows that 0, 1,∞ ∈ Pn.

Definition 11 (Spherical Version). We say f has bounded geometry if there is a
constant b > 0 and a point τ0 ∈ Tf such that

dsp(pn, qn) ≥ b

for all n ≥ 0 and pn, qn ∈ Pn, where

dsp(z, z
′) =

|z − z′|√
1 + |z|2

√
1 + |z′|2

is the spherical distance on Ĉ.
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Note that dsp(z,∞) = |z|√
1+|z|2

. Away from infinity the spherical metric and

Euclidean metrics are equivalent. Precisely, in any bounded K ⊂ C, there is a
constant C > 0 which depends only on K such that

C−1dsp(x, y) ≤ |x− y| ≤ Cdsp(x, y) ∀x, y ∈ K.

The following simple lemma justifies using the term “bounded geometry” in both
of the definitions above for f .

Lemma 3. Consider the hyperbolic Riemann surface Ĉ \ X equipped with the
standard complex structure where X is a finite subset such that 0, 1,∞ ∈ X. Let
m = #(X) ≥ 3. Let a > 0 be a constant. If every simple closed geodesic in Ĉ \ S
has hyperbolic length greater than a, then there is a constant b = b(a,m) > 0 such
that the spherical distance between any two distinct points in S is bounded below by
b.

Proof. If m = 3 there are no non-peripheral simple closed curves so in the following
argument we always assume that m ≥ 4. Let X = {x1, · · · , xm−1} and xm =∞ and
let | · | denote the Euclidean metric on C.

Suppose 0 = |x1| ≤ · · · ≤ |xm−1|. Let M = |xm−1|. Then |x2| ≤ 1, and we have∏
2≤i≤m−2

|xi+1|
|xi|

=
|xm−1|
|x2|

≥M.

Hence

max
2≤i≤m−2

{ |xi+1|
|xi|

}
≥M

1
m−3 .

Let
Ai = {z ∈ C

∣∣∣ |xi| < z < |xi+1|}

and let mod(Ai) = 1
2π

log
|xi+1|
|xi| be its modulus. Then for some integer 2 ≤ i0 ≤ m0−2

if follows that

mod (Ai0) ≥ logM

2π(m− 3)
.

Denote the minimum length of closed curves γ in Ai0 , measured with respect to
the hyperbolic metric on Ai0 , by ‖γ‖Ai0 . Because Ai0 is a round annulus, the core
curve realizes this minimum and we can compute its hyperbolic length as ‖γ‖Ai0 =

π
mod (Ai0 )

.

Since Ai0 ⊂ Ĉ \ S, the hyperbolic density on Ai0 is smaller than the hyperbolic
density on Ĉ \ S. Therefore, if lτn(γ) denotes the length of the shortest geodesic in
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the homotopy class of γ with respect to the hyperbolic metric on Ĉ \ S, we have
lτn(γ) ≤ ‖γ‖Ai0 . This implies that

π

lτn(γ)
≥ mod (Ai0) ≥ logM

2π(m− 3)
.

Thus

logM ≤ 2π2(m− 3)

lτn
≤ 2π2(m− 3)

a
.

This implies that

M ≤M0 = e
2π2(m−3)

a .

Thus the spherical distance between ∞ and any finite point in X has a positive
lower bound M0 which depends only on a and m.

Next we show that the spherical distance between any two finite points in X
has a positive lower bound dependent only on a and m. By the equivalence of the
spherical and Euclidean metrics in a bounded set in the plane, it suffices to prove
that |x− y| is greater than a constant b for any two finite points in X.

First consider J0(z) = 1/z which preserves hyperbolic length with 0, 1,∞ ∈
J0(X). The above argument implies that 1/|xi| ≤ M0 for any 2 ≤ i ≤ m− 1. This
implies that |xi| ≥ 1/M0 for any 2 ≤ i ≤ m − 1. Similarly, for any xi ∈ X for
2 ≤ i ≤ m− 1, consider Ji(z) = z/(z− xi) which again preserves hyperbolic length.
The above argument implies that |xj/|xj − xi| ≤ M0 for any 2 ≤ j 6= i ≤ m − 1.
This in turn implies that |xj − xi| ≥ 1/M2

0 for any 2 ≤ j 6= i ≤ m− 1 which proves
the lemma.

8 The Canonical Thurston Obstruction.

If f has no bounded geometry, then for any τ0 ∈ Tf , we have a sequence {ni}∞i=1 of
positive integers and a sequence of non-peripheral simple closed curves in R such
that

lτni (γni)→ 0 as i→∞.

Now we consider the set

Γc = {γ ⊂ R | lτn(γ)→ 0 as n→∞}

where γ is a non-peripheral simple curve.

Definition 12. If Γc 6= ∅, we called it the canonical Thurston obstruction. Other-
wise, we say f has no canonical Thurston obstruction.
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9 The proof of (1)⇐⇒ (2) in Theorem 1.

9.1 Proof of (1) =⇒ (2).

If f is combinatorially equivalent to g ∈ M2, then σf has a unique fixed point τ0

so that τn = τ0 for all n. The complex structure on Ĉ \ Pf defined by τ0 induces a
hyperbolic metric on it. The shortest geodesic in this metric gives a lower bound on
the lengths of all geodesics so that f satisfies the hyperbolic definition of bounded
geometry.

9.2 Proof of (1)⇐= (2).

9.2.1 Proof assuming compactness.

The proof of of our main theorem (Theorem 1) is more complicated and needs
some preparatory material. There are two parts: one is a compactness argument
and the other is a fixed point argument. From a conceptual point of view, the
compactness of the iterates is very natural and simple. From a technical point of
view, however, it is not at all obvious. Once one has compactness, the proof of the
fixed point argument is quite standard (see [Ji]) and works for much more general
cases. We postpone the compactness proof to the next two sections and here give
the fixed point argument.

Given f ∈ AV2 and given any τ0 = [µ0] ∈ Tf , let τn = σn(τ0) = [µn] be the
sequence generated by σ. Let wµn be the normalized quasiconformal map with
Beltrami coefficient µn. Then

gn = wµn ◦ f ◦ (wµn+1)−1 ∈M2

since it preserves µ0 and hence is holomorphic. Thus iterating σ, the “Thurston
iteration”, determines a sequence {gn}∞n=0 of maps inM2 and a sequence of subsets
Pf,n = wµn(Pf ). Note that Pf,n is not, in general, the post-singular set Pgn of gn. If
it were, we would have a fixed point of σ.

Suppose f is a post-singularly finite map in AV2. For any τ = [µ] ∈ Tf , w
µ

denotes a representative normalized quasiconformal map fixing 0, 1,∞ with Beltrami
differential µ; let Tτ and T ∗τ denote the respective tangent space and cotangent space
of Tf at τ . Then T ∗τ coincides with the spaceQµ of integrable meromorphic quadratic

differentials q = φ(z)dz2 on Ĉ. Integrability means that the norm of q, defined as

||q|| =
∫

Ĉ
|φ(z)|dzdz

is finite. The finiteness implies that q may only have poles at points of wµ(Pf ) and
that these poles are simple.
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Set τ̃ = σ(τ) = [µ̃]. By abuse of notation, we write f−1(Pf ) for f−1(Pf \ {∞})∪
{∞}. We have the following commutative diagram:

Ĉ \ f−1(Pf )
wµ̃−→ Ĉ \ wµ̃(f−1(Pf ))

↓ f ↓ gµ,µ̃
Ĉ \ Pf

wµ−→ Ĉ \ wµ(Pf ).

By the definition of σ, µ̃ = f ∗µ so that the map g = gµ,µ̃ = wµ ◦ f ◦ (wµ̃)−1 defined
on C is meromorphic. By remark 1, g(z) is in M2 and in particular, g′(z) 6= 0.

Let σ∗ = dσ : Tτ → Tτ̃ and σ∗ : T ∗τ̃ → T ∗τ be the respective tangent and
co-tangent maps of σ. Let η be a tangent vector at τ so that η̃ = σ∗η is the
corresponding tangent vector at τ̃ . These tangent vectors can be pulled back to
vectors ξ, ξ̃ at the origin in Tf by maps

η = (wµ)∗ξ and η̃ = (wµ̃)∗ξ̃.

This results in the following commutative diagram,

η̃
(wµ̃)∗←− ξ̃

↑ f ∗ ↑ g∗

η
(wµ)∗←− ξ

Now suppose q̃ is a co-tangent vector in T ∗τ̃ and let q = σ∗q̃ be the corresponding
co-tangent vector in T ∗τ . Then q̃ = φ̃(w)dw2 is an integrable quadratic differential on
Ĉ whose only poles can be simple and occur at the points in wµ̃(Pf ); q = φ(z)dz2 is

an integrable quadratic differential on Ĉ whose only poles can be simple and occur at
the points in wµ(Pf ). This implies that q = σ∗q̃ is also the push-forward integrable
quadratic differential

q = g∗q̃ = φ(z)dz2

of q̃ by g. This follows from the fact that wµ̃ takes the tesselation of fundamental
domains for f to a tesselation of fundamental domains for g and on each fundamental
domain g is a is a homeomorphism onto Ĉ \ {0, λ} since 0, λ are the two asymptotic
values of g. The coefficient φ(z) of q is therefore given by the standard transfer
operator L

φ(z) = (Lφ̃)(z) =
∑
g(w)=z

φ̃(w)dw2

(g′(w))2
. (7)

Since g′(w) 6= 0, equation (7) implies the poles of q occur only at the images of
the poles of q̃; the integrability implies these poles can only be simple. Therefore,
as a meromorphic quadratic differential defined on Ĉ, q satisfies

||q|| ≤ ||q̃||. (8)
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By formula (7) we have
< q̃, ξ̃ >=< q, ξ >

which, together with inequality (8), implies

‖ξ̃‖ ≤ ‖ξ‖.

This gives another proof that σ is weakly contracting. We can, however, prove
strong contraction.

Lemma 4.
||q|| < ||q̃||

and
‖ξ̃‖ < ‖ξ‖.

Proof. Suppose there is a q̃ such that ||q|| = ||q̃|| and that Z is the set of poles of
q̃. Then, since g has no critical points, the poles of q must be contained in g(Z).
Using a change of variables on each fundamental domain we obtain the equaiities∫

Ĉ
|φ(z)|dz dz =

∫
Ĉ
|φ̃(w)| dwdw =

∫
Ĉ

∣∣ φ̃(w)

(g′(w))2

∣∣ dzdz.
The triangle inequality then implies that at every point z the argument of φ̃(w)

(g′(w))2

is the same; that is, for each pair w,w′ with g(w) = g(w′) = z, there is a positive
real number az such that

φ̃(w)

(g′(w))2
= az

φ̃(w′)

(g′(w′))2
.

Thus, by formula (7) we see that ||q|| = ||q̃|| implies φ(z) = ∞ giving us a contra-
diction.

Remark 6. What we have shown is that ||q|| = ||q̃|| implies

g∗q = φ(g(w)) = aq̃(w)

and therefore all the pre-images of all the poles are poles. That is,

g−1(g(Z)) ⊂ Z ∪ Ωg.

But this is a contradiction because g−1(g(Z)) is an infinite set and Z ∪Ωg is a finite
set.

As an immediate corollary we have strong contraction.
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Corollary 1. For any two points τ and τ ′ in Tf ,

dT

(
σ(τ), σ(τ ′)

)
< dT (τ, τ ′).

Furthermore,

Proposition 2. If σ has a fixed point in Tf , then this fixed point must be unique.
This is equivalent to saying that a post-singularly finite f in AV2 is combinatorially
equivalent to at most one map g ∈M2.

We can now finish the proof of the sufficiency under the assumptions that f has
bounded geometry and that the meromorphic maps defined by

gn = wµn ◦ f ◦ (wµn+1)−1 (9)

remain inside a compact subset of M2.
Note that if Pf = {0, 1,∞}, then f is a universal covering map of C∗ and

is therefore combinatorially equivalent to e2πiz. Thus in the following argument,
we assume that #(Pf ) ≥ 4. Then, given our normalization conventions and the
bounded geometry hypothesis we see that the functions gn, n = 0, 1, . . . satisfy the
following conditions:

1) m = #(wµn(Pf )) ≥ 4 is fixed.

2) 0, 1,∞, gn(1) ∈ wµn(Pf ).

3) {0, 1,∞} ⊆ g−1
n (wµn(Pf )).

4) there is a b > 0 such that dsp(pn, qn) ≥ b for any pn, qn ∈ wµn(Pf ).

Any integrable quadratic differential qn ∈ T ∗τn has, at worst, simple poles in the
finite set Pn+1,f = wµn+1(Pf ). Since T ∗τn is a finite dimensional linear space, there is
a quadratic differential qn,max ∈ T ∗τn with ‖qn,max‖ = 1 such that

0 ≤ an = sup
||qn||=1

‖(gn)∗qn|| = ‖(gn)∗qn,max‖ < 1.

Moreover, by the bounded geometry condition, the possible simple poles of {qn,max}∞n=1

lie in a compact set and hence these quadratic differentials lie in a compact subset of
the space of quadratic differentials on Ĉ with, at worst, simples poles at m = #(Pf )
points.

Let
aτ0 = sup

n≥0
an.
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Let {ni} be a sequence of integers such that the subsequence ani → aτ0 as i → ∞.
By our assumption of compactness, {gni}∞i=0 has a convergent subsequence, (for
which we use the same notation) that converges to a holomorphic map g ∈ M2.
Taking a further subsequence if necessary, we obtain a convergent sequence of sets
Pni,f = wµni (Pf ) with limit set X. By bounded geometry, #(X) = #(Pf ) and
dsp(x, y) ≥ b for any x, y ∈ X. Thus we can find a subsequence {qni,max} converging
to an integrable quadratic differential q of norm 1 whose only poles lie in X and are
simple. Now by lemma 4,

aτ0 = ||g∗q|| < 1.

Thus we have proved that there is an 0 < aτ0 < 1, depending only on b and f
and τ0 such that

‖σ∗‖ ≤ ‖σ∗‖ ≤ aτ0 .

Let l0 be a curve connecting τ0 and τ1 in Tf and set ln = σnf (l0) for n ≥ 1. Then
l = ∪∞n=0ln is a curve in Tf connecting all the points {τn}∞n=0. For each point τ̃0 ∈ l0,
we have aτ̃0 < 1. Taking the maximum gives a uniform a < 1 for all points in l0.
Since σ is holomorphic, a is an upper bound for all points in l. Therefore,

dT (τn+1, τn) ≤ a dT (τn, τn−1)

for all n ≥ 1. Hence, {τn}∞n=0 is a convergent sequence with a unique limit point τ∞
in Tf and τ∞ is a fixed point of σ.

9.2.2 Compactness.

The final step in the proof of (1) ⇐ (2) is to show the compactness assumption
is valid. In the case of rational maps where the map is a branched covering of
finite degree, the bounded geometry condition guarantees compactness, in the case
of f ∈ AV2, however, because the map is a branched covering of infinite degree, we
need a further discussion of the topological properties of post-singular maps. We
will show that for these maps there is a topologicial constraint that, together with
bounded geometry condition guarantees compactness under the iteration process.
The point is that this constraint and the bounded geometry condition together
control the size of the fundamental domains so that they are neither too small nor
too big.
A topological constraint. We start with f ∈ AV2; recall Ωf = {0, λ} is the set of
asymptotic values of f and that we have normalized so that f(0) = 1. Suppose that
this f is post-singularly finite; that is, Pf is finite so that the orbits {ck = fk(0)}∞k=0

and {c′k = fk(λ)}∞k=0 are both finite, and thus, preperiodic. Note that neither
can be periodic because the asymptotic values are omitted. Consider the orbit of 0.
Preperiodicity means there are integers k1 ≥ 0 and l ≥ 1 such that f l(ck1+1) = ck1+1.
That is,

{ck1+1, . . . , ck1+l}
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is a periodic orbit of period l. Set k2 = k1 + l.
Let γ be a continuous curve connecting ck1 to ck2 in R2 which is disjoint from Pf ,

except at its endpoints. Because f(ck1) = f(ck2) = ck1+1, the image curve δ = f(γ)
is a closed curve. We can choose γ once and for all such that δ separates 0 and λ;
that is, so that δ is a non-trivial curve closed curve in Ĉ \ {0, λ}. The fundamental
group π1(Ĉ \ {0, λ}) = Z so the homotopy class η = [δ] in the fundamental group
is an integer which essentially counts the number of fundamental domains between
ck1 and ck2 and defines a “distance” between the fundamental domains. The integer
η depends only on the choice of γ and since γ is fixed, so is η.

We now show that η is an invariant of the Thurston iteration procedure and is
thus a topological constraint on the iterates.

Lemma 5. Given τ0 = [µ0] ∈ Tf , let τn = σn(τ0) = [µn] be the sequence generated
by σ. Let wµn be the normalized quasiconformal map with Beltrami coefficient µn
Let γn+1 = wµn+1(γ), δn = wµn(δ) and λn = wµn(λ). Then [δn] ∈ π1(Ĉ\{0, λn}) = η
for all n.

Proof. The iteration defines the map

gn = wµn ◦ f ◦ (wµn+1)−1 ∈ AV2

which is holomorphic since it preserves µ0.
The continuous curve

γn+1 = wµn+1(γ)

goes from ck1,n+1 = wµn+1(ck1) to ck2,n+1 = wµn+1(ck2). The image curve

δn = gn(γn+1) = wµn(f((wµn+1)−1(γn+1))) = wµn(f(γ)) = wµn(δ)

is a closed curve through the point ck1+1,n = wµn(ck1+1).
From our normalization, it follows that

gn(z) = gαn,βn(z) =
αne

βnz

(αn − 1
αn

)eβnz + 1
αn

. (10)

and 0 is an omitted value for gn. Since λn = wµn(λ), it is also omitted for gn and

λn =
αn

αn − 1
αn

∈ Pn. (11)

Because
wµn : Ĉ \ {0, λ} → Ĉ \ {0, λn}

is a normalized homeomorphism, it preserves homotopy classes and η = [δn] ∈
π1(Ĉ \ {0, λn}) = Z. Thus the homotopy class of δn in the space Ĉ \ {0, λn} is the
same throughout the iteration.
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Bounded geometry implies compactness. By hypothesis f has bounded geom-
etry and by the normalization of f , Ωf = {0, λ}, f(0) = 1 so that {0, 1, λ,∞} ⊂ Pf .
Moreover the iterates

gn = wµn ◦ f ◦ (wµn+1)−1

belong to M2.
Recall that Pn = wµn(Pf ) and because wµn fixes {0, 1,∞} for all n ≥ 0,

{0, 1,∞} ⊂ Pn. By equation (10),

gn(1) = wµn(f(1)) =
αne

βn

(αn − 1
αn

)eβn + 1
αn

∈ Pn.

so that
{0, 1, λn, gn(1),∞} ⊆ Pn.

If #(Pf ) = 3, then λ =∞ and f(1) = 1. In this case, λ = λn =∞, gn(1) = 1 for
all n ≥ 0 and #(Pn) = 3 so that gn(z) = eβnz. The homotopy class of δn is always η,
which is its winding number about the origin in the complex analytic sense. Thus
βn = 2πiη for all n and gn = e2πiηz, which is the fixed under Thurston iteration and
trivially lies in a compact subset in M2.

From now on we assume that #(Pf ) ≥ 4. We first prove the compactness of the
iterates in the case that λ =∞. By normalization, λn =∞ and

gn(z) = eβnz

for all n ≥ 0.
Because f has bounded geometry, gn(1) 6= 1 has a definite spherical distance

from 1 and the sequence {|βn|} is bounded from below; that is, there is a constant
k > 0 such that

k ≤ |βn|, ∀n > 0.

Now we use the topological constraint to prove that the sequence {|βn|} is also
bounded from above. We have g′n(z) = βngn(z) and the homotopy class of δn is the
winding number about the origin in the complex analytic sense, thus

η =
1

2πi

∮
δn

dw

w
=

1

2πi

∫
γn

g′n(z)

gn(z)
dz

=
βn
2πi

(ck2,n+1 − ck1,n+1).

Both ck2,n+1, ck1,n+1 ∈ Pn+1, so bounded geometry implies the constant k > 0 above
can be chosen so that

|ck2,n+1 − ck1,n+1| ≥ k.
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Combining this with the formula for η we get

|βn| ≤
η

2π|ck2,n+1 − ck1,n+1|
≤ η

2πk
.

and thus deduce that {gn(z) = eβnz} forms a compact subset in M2.
Now let us prove compactness of the iterates when λ 6=∞. In this case, since

λn =
αn

αn − 1
αn

∈ Pn+1

has a definite spherical distance from 0, 1, and ∞, bounded geometry implies there
are two constants 0 < k < K <∞ such that

k ≤ |αn|, |αn − 1| ≤ K, ∀ n ≥ 0.

In this case, we have that gn(1) 6= 1 too. Since gn(1) ∈ Pn+1, bounded geometry
implies that the constant k can be chosen such that

k ≤ |βn|, ∀n > 0.

Again we use the topological constraint to prove that {|βn|} is also bounded from
above. Let

Mn(z) =
αnz

(αn − 1
αn

)z + 1
αn

so that gn(z) = Mn(eβnz). The map Mn : Ĉ \ {0,∞} → Ĉ \ {0, λn} is a homeomor-
phism so it induces an isomorphism from the fundamental group π1(Ĉ \ {0,∞}) to
the fundamental group π1(Ĉ \ {0, λn}). Thus, η is the homotopy class [δ̃n] where
δ̃n = M−1

n (δn).

Note that δ̃n is the image of γn+1 under g̃n(z) = eβnz. Since δ̃n is a closed curve
in Ĉ\{0,∞}, η is the winding number of δ̃n about the origin in the complex analytic
sense, and we can compute

η =
1

2πi

∮
fδn
dw

w
=

1

2πi

∫
γn+1

g̃′n(z)

g̃n(z)
dz =

βn
2πi

(ck2,n+1 − ck1,n+1).

As above, ck2,n+1, ck1,n+1 ∈ Pn+1, and by bounded geometry there is a constant k > 0
such that

|ck2,n+1 − ck1,n+1| ≥ k,

so that
|βn| ≤

η

2π|ck2,n+1 − ck1,n+1|
≤ η

2πk
.

This inequality proves that {gn(z) = gαn,βn(z)} forms a compact subset in M2.
Finally, we have shown that in all cases the sequence {gn} is a compact subset

in M2. This combined with the proof in subsection 9.2.1 completes the proof of
(1)⇐= (2) in Theorem 1.
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10 The Thurston Obstruction

Consider a simple closed curve γ ∈ Ĉ \ Pf . If γ separates the asymptotic values 0
and λ, then f−1(γ) contains a single component which is an open curve with both
its endpoints at ∞ and f . If γ does not separate 0 and λ, then f−1(γ) consists of

an infinite number of simple closed curves in Ĉ \ Pf and f is a homeomorphism on
each component.

Definition 13. A simple closed curve γ ⊂ Ĉ \ Pf is called non-peripheral if every

component of Ĉ \ γ contains at least two different points of Pf ; it is peripheral if

one of the components of Ĉ \ Pf contains one or no points of Pf .

Since Pf\{∞} is a finite set, it is contained in finitely many fundamental domains
for f . Let Df be the closure of the union of these fundamental domains together
with together with their adjacent domains and all the domains that lie inbetween so
that Df is a connected set containing a finite number fundamental domains. This
number depends on f and the deployment of the points of Pf . If γ is non-peripheral
and does not separate 0 and λ, every closed component δ of f−1(γ) is contained in
one or two fundamental domains and each non-peripheral δ must be contained in
Df . It follows that there are only finitely many non-peripheral closed components
in f−1(γ); this number depends only on the number of fundamental domains in Df

and the number of points in Pf .

Definition 14. A multi-curve

Γ = {γ1, · · · , γn}

is a set of pairwise disjoint, non-homotopic, and non-peripheral curves on Ĉ \ Pf .

Definition 15. A multi-curve Γ is called f -stable if for any γ ∈ Γ, every non-
peripheral component of f−1(γ) is homotopic to some element of Γ in Ĉ \ Pf .

Let RΓ be the real vector space generated by a multi-curve Γ. We define the
Thurston linear transformation,

fΓ : RΓ → RΓ

as follows: for any γj ∈ Γ, consider all the components of f−1(γj) homotopic to γi
in Ĉ \ E, and denote them by γi,j,α. Let aij be the number of elements in the set
{γi,j,α}. Then

fΓ(γj) =
∑
i

aijγi.

Let AΓ be the matrix of the linear transformation of fΓ so that aij is the ijth-entry
of AΓ. There may be infinitely many different multi-curves, however,
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Lemma 6. There are only finitely many possible matrices corresponding to Thurston
transformations. The number depends on the number nf of fundamental domains
in Df and the number p of points in Pf .

Proof. Any multi-curve in Ĉ \ Pf consists of at most p − 3 simple closed curves so
the matrix AΓ has at most (p−3)2 entries. Each entry is of the form #{α | γi,j,α} ≤
nf (p− 3) so that the number of distinct matrices is nf (p− 3)3.

Remark 7. Note if γ belongs to an f -stable multi-curve, the degree of the map
f : γ 7→ f(γ) is bounded by nf .

Proposition 3. If Γ is an f -stable multi-curve, then the linear transformation fΓ

commutes with iteration; that is,

(fn)Γ = (fΓ)n.

Proof. To show that the iteration is well defined we need to show that we don’t
get any new non-peripheral cuves. To see this, suppose γ is peripheral so that
one component of its complement in Ĉ \ (Pf ) is either a disk or a punctured disk.
Denote this component by Ω. If Ω is a disk, then every component of f−1(Ω) is

also a disk in Ĉ \ Pf . If Ω is a punctured disk and if the puncture is 0 or λ, then
f−1(Ω) is a disk with ∞ as a boundary point. If the puncture is any other point in
E, then f−1(Ω) consists of infinitely many components, each either contained in a
single fundamental domain or overlapping two adjacent fundamental domains. Each
component is either a disk or a punctured disk. Thus any component of f−1(γ) is
peripheral.

Now let BΓ be the matrix of the linear transformation f 2
Γ and denote its kjth-

entry by bkj. Then

bkj =
∑
i,α,β

1

deg(f 2|γk,{i,j,α},β)
=
∑
i,α,β

1

deg(f |γk,{i,j,α},β)

1

deg(f |γi,j,α)

=
∑
i,α

∑
β

1

deg(f |γk,i,β)

1

deg(f |γi,j,α)
=
∑
i

∑
α

aki
1

deg(f |γi,j,α)

=
∑
i

akiaij

It follows that (f 2)Γ = (fΓ)2. Inductively, we have (fn)Γ = (fΓ)n.

Remark 8. Proposition 3 is not true for a multi-curve Γ which is not f -stable. The
computation in the proof of Proposition 3 shows, however, that (fn)Γ ≥ (fΓ)n for
any Γ.
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The spectral radius of AΓ, denoted by either λΓ or λ(AΓ), is the maximum of the
absolute values of all its eigenvalues. Since the entries of AΓ are all non-negative
numbers, the Perron-Frobenius Theorem guarantees that λ(AΓ) is positive and an
eigenvalue for AΓ whose corresponding eigenvector has non-negative coefficients.

Definition 16. An f -stable multi-curve Γ is called a Thurston obstruction if the
leading eigenvalue λ(AΓ) ≥ 1.

Suppose Γ is a not necessarily f -stable multi-curve. We can rearrange A = AΓ

into the form

A =


A11 0 · · · 0
A21 A22 · · · 0
· · · · · · · · · · · ·
As1 As2 · · · Ass


where all the blocks Ajj are either irreducible or 0. Moreover,

λ(A) = supjλ(Ajj).

Let Γj denote the subset of curves in Γ corresponding to the j-th block in the
decomposition above so that Ajj = AΓj ; Γj is called an irreducible component of Γ.
It may not be f -stable. Let

Γ′ = ∪jΓj
where the union runs over all j such that λ(Ajj) ≥ 1.

Definition 17. Suppose Γ is an f -stable multi-curve and let γ ∈ Γ. If there exists
a γ′ ∈ Γ′ and an integer k ≥ 0 such that γ is homotopic to a component f−k(γ′)
then the least such integer k is called the depth of γ with respect to Γ. The set of
all curves in Γ with finite depth is denoted by Γ0 and the set Γ \ Γ0 is denoted by
Γ∞.

Lemma 7. If Γ is a Thurston obstruction, then Γ0 is also a Thurston obstruction.
In particular after applying a permutation,

AΓ =

(
AΓ∞ 0
F AΓ0

)
where λ(AΓ∞) < 1 and λ(AΓ) = λ(AΓ0) ≥ 1.

Proof. We claim that Γ′ ⊂ Γ0. To see this, take γ ∈ Γ0; then there exists an
integer k and an element γ′ ∈ Γ′ such that γ is homotopic to a component of
f−k(γ′). It follows that any non-peripheral component γ̃ of f−1(γ) is homotopic to
a component of f−(k+1)(γ′). Moreover since Γ is f -stable, there exists an element
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γi ∈ Γ which is homotopic to γ̃. It follows that any non-peripheral component of
f−1(γ) is homotopic to some γi ∈ Γ whose depth with respect to Γ is at most k+ 1,
and therefore γi ∈ Γ0.

Now because Γ′ ⊂ Γ0, it follows that

λ(AΓ∞) < 1 and λ(AΓ0) = λ(AΓ) ≥ 1

and AΓ must be of the specified form.

Since there are only finitely many possible Thurston matrices we have

Proposition 4. There is a positive integer Mf depending on the number p of points
in Pf and the number nf of fundamental domains in Df such that for any f -stable

multi-curve Γ in Ĉ \ Pf , the depth of any γ ∈ Γ0 is less than or equal to Mf .

Proposition 5. Given an irreducible multi-curve Γ in Ĉ \ Pf (not necessarily f -
stable) with λ(fΓ) ≥ 1, let v be the unique positive eigenvector of AΓ corresponding
to λ(fΓ) ≥ 1 with biggest coordinate 1. Then there exists a number 0 < β ≤ 1,
depending only on p and n, such that the smallest coordinate of v is bounded below
by β.

Proof. Since there are only finitely many possible matrices for all the multi-curves,
there are finitely many positive eigenvectors v with the biggest coordinate 1 cor-
responding to the maximal positive eigenvalues of the matrices. The eigenspace
corresponding to the positive maximal eigenvalue of an irreducible non-negative
matrix is one dimensional and is generated by a vector v all of whose entries are
positive. Normalizing v so that its biggest coordinate is 1, determines the small-
est coordinate and since there are only finitely many such vectors, there is a lower
bound β on the smallest coordinate.

11 Proof of (3)⇐⇒ (4)

Suppose Γ = {γi}ni=1 is a Thurston obstruction. Then we have a vector

v =
n∑
i=1

biγi, bi ≥ 0,
n∑
i=1

bi 6= 0,

such that AΓv = λv. Suppose b1 6= 0. This implies that there is a least j such that
a1jbj 6= 0. Thus f−1(γ1) has a non-peripheral component γ′ homotopic to γj such
that f : γ′ → γ1 is a homeomorphism. Up to homotopy, we may just as well assume
γ′ = γj and relabel so that j = 2. By exactly the same argument, there is a γj for γ2
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which we can take as γ3. Since Γ contains a finite number of elements, eventually,
we get a set of curves forming a cycle

{γ1, γ2, · · · , γm}, m ≤ n,

such that γi+1 (mod m) is a component of f−1(γi) and f : γi+1 (mod m) → γi is a
homeomorphism. Such a cycle is called a Levy cycle. Thus we have shown that every
Thurston obstruction contains a Levy cycle and every Levy cycle can be expanded
to a Thurston obstruction. This completes the proof of the implication (3)⇐⇒ (4)
of Theorem 1.

12 Proof of (1) =⇒ (3)

A holomorphic map can have no Thurston obstruction or Levy cycle. This can be
proved by using the Frame Mapping Theorem in Teichmüller space (see Jenkins [Jen]
and Strebel [Str]). The argument is given in detail in [DH, Theorem 4.1].

13 Proof of (2)⇐= (3)

Much of the material in this section is adapted from [DH].

Any τ = [µ] ∈ Tf represents a complex structure on Ĉ which makes Ĉ \ Pf into

a hyperbolic Riemann surface Rτ that is Teichmüller equivalent to Ĉ \wµ(Pf ). For

any simple closed curve γ on Ĉ \ Pf , let

l(γ, τ) (12)

be the hyperbolic length of the unique simple closed geodesic homotopic to wµ(γ)

in Ĉ \ wµ(Pf ).

Remark 9. The definition of l(γ, τ) does not depend on µ ∈ τ .

Define
w(γ, τ) = − log l(γ, τ). (13)

The next lemma is proved in [DH].

Lemma 8. The function Tf → R given by τ 7→ w(γ, τ) is Lipschitz, with Lipschitz
constant 2.

Represent the fundamental group of Rτ as a subgroup of PSL(2,R) so that a
lift of the simple closed geodesic homotopic to wµ(γ) is the imaginary axis. The
cyclic subgroup keeping the imaginary axis fixed is generated by z 7→ el(γ,τ) and
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a fundamental domain for this subgroup is conformally equivalent to an annulus
A(γ, τ) with modulus

mod(A(γ, τ)) =
π

2
· 1

l(γ, τ)
. (14)

Moreover, it is standard (see [DH] for example) that if l(γ, τ) is less than a universal
constant l∗ = log 3 + 2

√
2, Rτ contains an embedded annulus a(γ, τ) whose modulus

m(l) is a continuous and decreasing function of l = l(γ, τ) and satisfies

π

2l
− 1 < m(l) <

π

2l
.

It is also standard that simple closed geodesics whose lengths are less than this
constant are disjoint and that there are disjoint annuli with these as core curves.
We shall always tacitly assume that the core curves of the annuli we work with have
length less than this constant.

Rewriting, we have

mod(A(γ, τ))− 1 < mod(a(γ, τ)) < mod(A(γ, τ)) (15)

Before proceeding further, we define two concepts , state their properties and a
technical lemma.

Definition 18. Let κ be a real number. A sequence {an}∞n=0 of real numbers is called
κ-quasi-nondecreasing if for all n1 < n2 we have an2 − an1 ≥ κ. A sequence is called
quasi-nondecreasing if it is κ-quasi-nondecreasing for some κ.

It is easy to check the following propositions and lemma.

Proposition 6. Suppose {an}∞n=0 and {bn}∞n=0 are two sequences. If {an}∞n=0 is
κ-quasi-nondecreasing and |an − bn| < r for all n, then {bn} is (κ − 2r)-quasi-
nondecreasing.

Proposition 7. Suppose {an} is quasi-nondecreasing and unbounded. Then an →
+∞ as n→ +∞.

Lemma 9. If t ≥ 1, then log(t+ 1)− 1 < log t.

Now, note that if w(γ, τ) ≥ log 4
π
, then

1 ≤ mod(A(γ, τ))− 1.

Taking logarithms of all the terms in inequality (15), applying Lemma 9 and Equa-
tion (14), yields

log(π/2)− 1 + w(γ, τ) < log mod(a(γ, τ)) < log(π/2) + w(γ, τ). (16)
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It follows that if w(γ, τ) ≥ log 4
π
,2

| log mod(a(γ, τ))− w(γ, τ)| < log π/2. (17)

Given a multi-curve Γ, denote the vectors of moduli (mod(A(γ, τ))) and (mod(a(γ, τ)))
by mod(A(Γ, τ)) and mod(a(Γ, τ)) respectively. Define

mod(A(Γ, τ)) = minγ∈Γ{mod(A(γ, τ))}

and
mod(a(Γ, τ)) = minγ∈Γ{mod(a(γ, τ))}.

Lemma 10. Let β be the constant in Proposition 5. Let Γ be an irreducible multi-
curve Γ such that λAΓ

> 1. If τ0 ∈ Tf and τn = σnf (τ0), n ≥ 1, then

(i) mod(A(Γ, τn)) ≥ βmod(a(Γ, τ0)), and

(ii) mod(a(Γ, τn)) ≥ βmod(a(Γ, τ0))− 1.

Proof. Given n, denote the matrix corresponding to the linear transformation fnΓ :
RΓ → RΓ by B. It is easy to see that B ≥ AnΓ.

Let v be the unique positive eigenvector with |v| = 1 corresponding to the
eigenvalue λAΓ

. Let 1 denote the vector all of whose coordinates are 1. Then, given
τ0 ∈ Tf ,

mod(a(Γ, τ0)) ≥ mod(a(Γ, τ0))1 ≥ mod(a(Γ, τ0))v.

For any n ≥ 1 and τn = σnf (τ0), let γni,j,α be the components of f−n(γj) homotopic
to γi, and Ani,j,α be the component f−n(a(γj, τ0)), whose core curve is γi,j,α and set
dni,j,α = degfn|γni,j,α . Then

mod(a(γni,j,α, τn)) = mod(a(γj, τ0))/dni,j,α,

The annuli a(γni,j,α, τn) are disjoint and homotopic to the the curve γi. These can
be lifted to the covering space of the annulus A(γi, τn) where, using the Grötzsch
inequality we obtain ∑

α,j

mod(a(γni,j,α, τn)) ≤ mod(A(γi, τn)).

Consequently, we have

mod(A(Γ, τn)) ≥ mod(a(Γ, τn)) ≥ Bmod(a(Γ, τ0))

≥ AnΓmod(a(Γ, τ0)) ≥ AnΓ mod(a(Γ, τ0))v

≥ mod(a(Γ, τ0))v ≥ βmod(a(Γ, τ0))1

Hence for all γ ∈ Γ, we have mod(A(γ, τn)) ≥ βmod(a(Γ, τ0)).
The second conclusion follows from the first and inequality (15).

2The constants chosen in this section are not necessarily the best possible. For example, any
constant greater than 1 would do here.
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Lemma 11. If a, b > 0, 0 < β ≤ 1, and ea ≥ βeb − 1, then a− b ≥ log β − 1.

Proof. If βeb − 1 ≥ 1, then by Lemma 9, we have

log(βeb − 1) ≥ log(βeb)− 1 ≥ log β + b− 1.

Hence by the assumption ea ≥ βeb − 1, we have a− b ≥ log β − 1.
If βeb − 1 < 1, then b < log 2− log β. Since a > 0,

a− b > 0− b = −b > log β − log 2 > log β − 1.

For τ ∈ Tf and a multi-curve Γ, define

w(Γ, τ) = minγ∈Γw(γ, τ) and w(Γ, τ) = max
γ∈Γ

w(γ, τ).

Lemma 12. Let Γ be an irreducible multi-curve such that the λAΓ
≥ 1. Suppose

w(Γ, τ0) ≥ log(6/β)+log π for some τ0 ∈ Tf . Then setting τn = σnf (τ0), the sequence
{w(Γ, τn)}, is (log β − 1− 2 log π)-quasi-nondecreasing.

Proof. For w(Γ, τ0) ≥ log(6/β) + log π > log 4
π
, by (16), we have

log mod(a(Γ, τ0)) ≥ log(6/β) or mod(a(Γ, τ0)) ≥ 6/β

and in particular, βmod(a(Γ, τ0))− 1 ≥ 4.
Applying Lemma 10, it follows that

mod(a(Γ, τn)) ≥ 4 (18)

for all n and therefore that the elements of the sequence yn = log mod(a(Γ, τn))
are all positive. Choose arbitrary integers n2 > n1 ≥ 0, and set a = yn2 , b = yn1

and n = n2 − n1 so that by Lemma 10, ea ≥ βeb − 1. Lemma 11, then implies
a− b ≥ log β − 1, so that the sequence {yn} is (log β − 1)-quasi-nondecreasing.

The hypothesis w(Γ, τ0) ≥ log(6/β) + log π and inequalities (15) and (16), yield
mod(A(Γ, τ0)) ≥ 4 and then that w(Γ, τn) ≥ log(4/π). Since mod(a(γ, τn)) is con-
tinuous and decreasing with respect to l(γ, τn), the minima are attained for the same
γ ∈ Γ as n varies. That is,

mod(a(Γ, τn)) = mod(a(γ, τn)) and w(Γ, τn) = w(γ, τn)

and therefore, by inequality (17)

|yn − w(Γ, τn)| < log π.

Thus w(Γ, τn) is (log β − 1− 2 log π)-quasi-nondecreasing.
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Lemma 13. Let k ≥ 1 be an integer, and set D = dT (τ0, τ1). If γ1, γ2 are non-

peripheral simple closed curves in Ĉ \ Pf such that some component of f−k(γ1) is
homotopic to γ2, then

w(γ2, τ0) ≥ w(γ1, τ0)− k(log nf + 2D).

Proof. Consider Y = f−k(Rτ0) ⊂ Rτk . Then fk : γ2 → γ1 is a covering map of
degree at most nkf . This implies that lY (γ2) ≤ dkl(γ1, τ0). Since the inclusion map

Y ↪→ Rτk is length-decreasing, it follows that l(γ2, τk) ≤ nkf l(γ1, τ0) and therefor that
w(γ2, τk) ≥ w(γ1, τ0) − k log nf . Since dT (τi, τi+1) ≤ dT (τ0, τ1) = D and since the
map γ 7→ w(γ, τ0) is a Lipschitz function with constant 2, we get

w(γ2, τ0) ≥ w(γ2, τk)− 2kD ≥ w(γ1, τ0)− k(2D + log nf ).

Recall that p is the number of points in Pf .

Lemma 14. Suppose Γ is an irreducible multi-curve. Then for all γi, γj ∈ Γ, and
all τ ∈ Tf ,

|w(γi, τ)− w(γj, τ)| ≤ (p− 3)(log nf + 2D).

Proof. Since Γ is irreducible, there is an integer q ≤ |Γ| ≤ p − 3 such that γi is
homotopic to a preimage of f−q(γj). By Lemma 13,

w(γi, τ) ≥ w(γj, τ)− (p− 3)(log nf + 2D).

The lemma follows by symmetry.

Let
A = − log log(3 + 2

√
2). (19)

In the next proposition, β is the constant in Proposition 5 and Mf is the constant
in Proposition 4.

Proposition 8. Given an f -stable multi-curve Γ, suppose again that w(Γ, τ0) ≥
log(6/β) + log π. Write Γ = Γ′ tΓ′′, where Γ′ is the union of the irreducible compo-
nents Γj of Γ for which λ(AΓj) ≥ 1. Then

(1) for all γ ∈ Γ′, {w(γ, τn)}n≥0 is κ-quasi-nondecreasing, with κ = log β − 1 −
2 log π − 2(p− 3)(log nf + 2D);

(2) for all γ ∈ Γ
′′

and all n ≥ 0,

w(γ, τn) ≥ w(Γ′, τn)−Mf (log nf + 2D).
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(3) There exists a constant JA, such that if w(Γ, τ0) ≥ JA, then for every γ ∈ Γ
and n ≥ 0, w(γ, τn) ≥ A

Proof. For (1), let Γj be an irreducible component of Γ for which λAΓj
≥ 1. By

hypothesis, w(Γ, τ0) ≥ log(6/β) + log π so we can apply Lemma 12 to deduce that
{w(Γj, τn)} is (log β − 1− 2 log π)-quasi-nondecreasing.

Applying Lemma 14 and Property 6 to Γj we have that for each γ ∈ Γj, the
sequence {w(γ, τn)} is κ = (log β − 1 − 2 log π − 2(p − 3)(log nf + 2D))-quasi-
nondecreasing.

For (2), note that by Lemma 13 and (1), we have that for all γ ∈ Γ
′′
, and all

i ≥ 0,
w(γ, τn) ≥ min

γ′∈Γ′
{w(γ′, τn)} −Mf (log nf + 2D).

For (3) set JA = max{κ+ 2Mf (log nf + 2D), log(6/β) + log π}. Now by (1) and
(2) of this lemma, if for any γ ∈ Γ and all n ≥ 0, w(Γ, τ0) ≥ JA, then w(Γ, τ0) ≥ JA
and w(γ, τn) ≥ A.

For τ ∈ Tf , let

Lτ = {w(γ, τ) | γ is a closed curve in Ĉ \ Pf},

and set
w(τ) = supLτ .

For any τ , there are only finitely many non-trivial closed curves γ in Ĉ\Pf whose
hyperbolic length l(γ, τ) is shorter than l∗ = log(3+2

√
2); it follows that [A,∞)\Lτ

is a set of finitely many intervals. For any J > 0, let (a, b) be the leftmost interval
in [A,∞) \ Lτ of length J , and set

ΓJ,τ = {γ ∈ Ĉ \ Pf | w(γ, τ) ≥ b} (20)

where γ runs over all simple closed curves in Ĉ \ Pf .
Given τ = [µ] ∈ Tf , let τ ′ = σf (τ) = [µ′] and D = d(τ, τ ′). Set fτ = wµf(wµ

′
)−1

and let Pτ = wµ(Pf ), Pτ ′ = wµ
′
(Pf ), and P ′′τ = f−1

τ (Pτ ).

Lemma 15. We have

(1) If J ≥ log nf + 2D and if ΓJ,τ 6= ∅, then ΓJ,τ is f -stable.

(2) Any simple closed geodesic on Ĉ \ P ′′τ of length less than nfe
−b is homotopic

to a component of f−1
τ (wµ(γ)) for some γ ∈ ΓJ,τ .
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Proof. (1) Since b > − log l∗, e−b < l∗, and all the curves in ΓJ,τ are pairwise disjoint.
If γ ∈ ΓJ,τ , and γ′ is a component of f−1(γ) such that f : γ′ → γ is a map of degree
dα ≤ nf , then

lbC\P ′′τ (wµ
′
(γ′)) = dαl(γ, τ).

Because Pτ ′ ⊂ P ′′ττ , it follows that

l(γ′, τ ′) < lbC\P ′′τ (wµ
′
(γ′)) = dαl(γ, τ) ≤ nf l(γ, τ).

This in turn implies that

w(γ′, τ ′) > w(γ, τ)− log nf .

By the assumption w(γ, τ) > b and by Lemma 8, we have

w(γ′, τ) > w(γ′, τ ′)− 2D > w(γ, τ)− log nf − 2D > b− J > a

and therefore that γ′ must be in ΓJ,τ . This implies that ΓJ,τ is f -stable.
(2) For any γ ∈ ΓJ,τ , and any non-peripheral component wµ

′
(γ′) of f−1

τ (wµ(γ)),
(1) implies lbC\P ′′(γ′) < nfe

−b.

On the other hand, if α′ ⊂ Ĉ \ P ′′τ is a simple closed geodesic of length < e−b,

then α = fτ (α
′) is a geodesic in Ĉ \ Pτ of length nfe

−b. Since nfe
−b < 2l∗, α

must be simple. Then γ = (wµ)−1(α) is a simple closed curve in Ĉ \ Pf such that
l(γ, τ) ≤ nfe

−b or equivalently w(γ, τ) > b − log nf . Now b − a = J ≥ log nf so
γ ∈ ΓJ,τ .

Lemma 16. Let X be Riemann surface, P ⊂ X be a finite set, with ]P = p > 0.
Set X ′ = X \ P , and choose L < log(3 + 2

√
2). Let γ be simple closed geodesic on

X, and γ′1, · · · , γ′s be the closed geodesics of X ′ homotopic to γ in X and of length
< L. Set l = lX(γ), l′i = lX′(γ

′
i). Then

(1) s ≤ p+ 1;

(2) for all i, l′i > l;

(3) 1/l − 2/π − (p+ 1)/L <
∑

i 1/l
′
i ≤ 1/l + (p+ 1)/π.

See [DH] for a proof.

Lemma 17. There is a constant C > 0 depending only on p and d such that for
any f -stable multi-curve Γ with λΓ < 1/2. Then for any τ ∈ Tf , if w(Γ, τ) ≥ C,
then

w(Γ, σf (τ)) < w(Γ, τ).
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Proof. Suppose
Γ = {γ1, · · · , γn}.

Let
RΓ = {v = a1γ1 + · · ·+ anγn}

with the supremum norm
|v| = max

1≤i≤n
|ai|.

Then
|A| = sup

|v|=1

|Av|

be the corresponding norm for any matrix A : RΓ → RΓ.
For any τ = [µ], let τ ′ = σf (τ) = [µ′] and Pτ = wµ(Pf ) and Pτ ′ = wµ

′
(Pf ). We

have the following commuting diagram

(Ĉ, Pf )
wµ
′

−→ (C, Pτ ′)
↓ f ↓ g

(Ĉ, Pf )
wµ−→ (C, Pτ )

where g is a rational map. Let P ′′ = g−1(Pτ ). Define v1,v2 ∈ RΓ by

v1 =


1

l(γ1,τ)
...
1

l(γn,τ)

 and v2 =


1

l(γ1,τ ′)
...
1

l(γn,τ ′)

 .

Let B > 0 be a constant such that L = de−B < log(3 + 2
√

2. For any γj ∈ Γ, let
γi,j,α be the components of f−1(γj) homotopic to γi. If w(Γ, τ) > B, then for any
γj ∈ Γ, by Lemma 15, it follows that the hyperbolic length of all the components

of g−1(αj) in Ĉ \ P ′′ is less than L = de−B, where αj is the simple closed geodesic

homotopic to γj in Ĉ \ Pτ .
Since g : Ĉ \ P ′′ → Ĉ \ Pτ is a covering, we have∑

j,α

1

lbC\P ′′(wµ′(γi,j,α))
= [AΓv1]i.

By Lemma 16, for each i, we have

1

l(γi, τ ′)
< [AΓv1]i +

1

π
+
pd

L
.

So

|v2| <
1

2
|v1|+

1

π
+
pd

L
. (21)
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If

|v1| > 2(
1

π
+
pd

L
),

we claim |v2| < |v1|. If not,

|v2| ≥
1

2
|v1|+

1

2
|v1| ≥

1

2
|v1|+

1

π
+
pdm

L
.

It is a contraction to (21). The contradiction implies that if we choose

C = max
{

log 2
( 1

π
+
pd

L

)
, B
}
,

then for any τ ∈ Tf , if w(Γ, τ) ≥ C, then

w(Γ, σf (τ)) < w(Γ, τ).

In the rest of this section, we will use max{− log log(3 + 2
√

2), C} to replace the
constant A in (19), that is, we consider

A = max{− log log(3 + 2
√

2), C}. (22)

Recall the definition of ΓJ,τ in (20) for a τ ∈ Tf .
Since there is only finite many possible matrices for the all possible f -stable

multi-curves Γ and there is no Thurston obstruction, there is a number m ≥ 1,
depending on d and p, such that λ(AmΓ ) < 1/2 for any Γ.

We prove the theorem by contradiction. Suppose f has no bounded geometry.
Take a τ0 ∈ Tf , let τn = σnf (τ0). Since f has no bounded geometry, it follows that
there exists a sequence of non-peripheral curves γnj ∈ C \ Pf , such that

w(γnj , τnj)→ 0, as j →∞. (23)

Let D = dT (τ0, τ1). Let J > C + 2mD. Let Γn = ΓJ,τn . By (23), we know there
exists an n such that Γn 6= ∅. From the definition of Γn, we have that w(Γn, τn) >
C + 2mD. Let C(J) be an increasing function of J . Then we have infinitely many
n such that

w(Γn, τn) ≥ C(J).

Let n0 be the smallest such integer. Since σf is contracting, then by using Lemma 8,
we have that

w(Γn0 , τn0−m) ≥ C.

Lemma 17 implies that

w(Γn0 , τn0) < w(Γ, τn0−m) < C(J),

which is a contradiction. This contradiction implies that f must have bounded
geometry. This completes the proof of (2)⇐= (3) in Theorem 1.
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13.1 Proof of (2)⇐⇒ (5) in Theorem 1.

We first prove (2) =⇒ (5). It is relatively easy. Since f has bounded geometry, there
are a constant a > 0 and a τ0 ∈ Tf such that l(γ, τn) ≥ a for all simple closed curves

in Ĉ \ Pf . By the Lipschitz property (Lemma 8) of the map τ → − log l(γ, τ), for
any τ ′0 ∈ Tf , let d = dT (τ0, τ

′
0). Then dT (τn, τ

′
n) ≤ dT (τ0, τ

′
0) ≤ d. This implies that

| log l(γ, τn)− log(γ, τ ′n)| ≤ 2dT (τn, τ
′
n) ≤ 2d.

Thus l(γ, τ ′n) can not tend to zero as n goes to ∞.
Now we prove (2) ⇐= (5). Since λ(AΓ∞) < 1, we have a k > 0 such that

λ(AkΓ∞) < 1/2.

Proposition 9. Let τ0 ∈ Tf and τn = σnf (τ0) for n > 0. There exists a constant
C(J) > 0 depending on p, d, ε0, D = dT (τ0, τ1) and J ≥ m(log d+2D+1) such that
if w(τ0) > C(J), then Γ = ΓJ,τ0 6= ∅ is a stable multi-curve. Moreover, if Γ∞ 6= ∅,
then

w(Γ∞, τk) ≤ w(Γ∞, τ0).

Lemma 18. Let J ≥ m(log d + 2D + 1). Suppose w(τ0) < C(J) and suppose
Γ = ΓJ,τm 6= ∅ for some m ≥ 0. Let E(J) = C(J) + 2mD. If Γ∞ 6= ∅, then for all
n,

w(Γ∞, τn) < E(J).

Moreover, if w(γ, τm) ≥ E(J), then γ ∈ Γ0.

Proof. We prove the first inequality by contradiction. Suppose there is an n > 0
such that w(Γ∞, τn) ≥ C(J) + 2mD. Suppose n0 is the first integer having this
property. Then we have w(Γ∞, xn0−m) ≥ C(J). Then by Proposition 9 and the fact
that n0 is the first integer such that w(Γ∞, τn0) ≥ C(J) + 2mD, we have

w(Γ∞, τn0) ≤ w(Γ∞, τn0−m) < C(J) + 2mD.

This is a contradiction.
If w(γ, τm) ≥ E(J) > C(J) ≥ A + (p − 3)J , then γ ∈ ΓJ,τk = Γ since there are

at most p − 3 simple closed curves in Ĉ \ Pf such that w(γ, τm) > A. But γ /∈ Γ∞
because of the first conclusion and the assumption. Therefore, γ ∈ Γ0.

We prove it by contradiction. Suppose f has no bounded geometry, that is
there exist an τ0 ∈ Tf such that there exists γk and τnk with w(γk, τnk) → ∞. Let
D = dT (τ0, τ1).

We can find a J0 > C+2mD such that w(τ0) < C(J0). Without lost of generality,
we assume J0 = JA + |A|, where JA is the number in Proposition 8. Since C(J) is
increasing with J , then w(τ0) < C(J) for all J ≥ J0.
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Fix J ≥ J0. We have some n such that Γn = ΓJ,τn 6= ∅. Then w(Γn, τn) >
C + 2mD. Write

Γn = Γn,∞ ∪ Γn,0.

If Γn,∞ 6= ∅, similar to the proof of Lemma 17, there exists an integer m depending
on p and d such that

w(Γn,∞, τm) < w(Γn,∞, τ0).

Furthermore, we claim that for all n ≥ m,

w(Γn,∞, τn) ≤ C(J) + 2mD.

The claim implies that if w(γ, τk) > C(J) + 2mD, then w(γ, τk) > A + (p − 3)J ,
then γ ∈ Γnk,0.

We prove the claim by contradiction. Suppose there is an n ≥ 0 such that
w(Γn,∞, τn) > C(J) + 2mD. Suppose n0 is the first integer having this property.
From the definition of Γn0 , we know that w(Γn0) > C + 2mD. Thus, w(Γn0,∞) >
C + 2mD and w(Γn0,∞, τn0 − m) > C by Lemma 8. But, similar to the proof of
Lemma 17,

w(Γn0,∞, τn0) ≤ w(Γn0,∞, τn0 −m) ≤ C(J) + 2mD.

This is a contradiction. The contradiction implies the claim. This further implies
that Γnk,0 6= ∅ for k large. Thus Γnk is a Thurston obstruction.

Define
ΓJ = ∪n≥n0ΓJ,τn,0 and G = ∪J≥J0ΓJ .

Then G is a multi-curve.
Since w(γk, τnk) → ∞, given any fixed J ≥ J0, w(γk, τnk) ≥ C(J) + 2mD for

infinitely many k, Hence γk ∈ ΓJ ⊂ G infinitely often. Since G is finite, for some
γ ∈ G, we have γk = γ for infinitely many k. Hence the set

Γu = {γ | w(γ, τn) is unbounded} ⊂ G

is nonempty.
We first claim that Γu = G = ∩J≥J0ΓJ . We prove this claim as follows.
The inclusion ∩J≥J0ΓJ ⊂ Γu is clear. To see the other inclusion, let γ ∈ Γu.

Given J ≥ J0, there exists some n such that w(γ, τn) > C(J)+2mD. By Lemma 18,
γ ∈ ΓJ,τn,0 ⊂ ΓJ . Then γ ∈ ∩J≥J0ΓJ .

Next we claim that Γu = ΓJc for some Jc ≥ J0. We give a proof of this claim
by using contradiction as follows: Otherwise, since Γu = ∩J≥J0ΓJ , for all J ≥ J0,
there exists a γJ ∈ ΓJ and γJ /∈ Γu. Since G is finite, there exists a γ, such that
γ = γJ ∈ ΓJ for infinitely many J , while γ /∈ Γu. This is a contradiction, since
γ ∈ ΓJ for infinitely many J implies that the sequence {w(γ, τn)} is unbounded.
The contradiction proves the claim.
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Now we have that Γu = ∪n≥n0ΓJc,τn,0 for some Jc ≥ J0. For every n such that
Γ = ΓJc,τn,0 is nonempty, then Γ = Γ′ tΓ′′. Applying Proposition 8, we know that if
γ′ ∈ Γ′, then the sequence {w(γ′, τn)} is both unbounded and quasi-nondecreasing,
so w(γ′, τn) → ∞. (2) of Proposition 8 implies that w(γ, τn) → ∞ for all γ ∈ Γ.
This implies that ΓJc,τn,0 ⊂ Γc and thus Γu = Γc.

Finally we claim that for some n = nc we have Γc = ΓJc,τnc ,0. This last claim
implies that Γc is a Thurston obstruction. We prove this last claim as follows:

Since Γu = Γc = ∪nΓJc,τn,0, the inclusion ΓJc,τn,0 ⊂ Γc ⊂ G holds for all n.
Since there are finitely many elements in G, there exists an nc so large that for all
γ ∈ Γc and all n ≥ nc we have w(γ, τn) > C(Jc) + 2mD. By Lemma 18, we have
γ ∈ ΓJc,τnc ,0. Thus, Γc = ΓJc,nc,0.

Finally, Γc depends only on f and not on the initial point τ0, since for any γ, the
map τ 7→ w(γ, τ) is Lipschitz with the Lipschitz constant two and σf is contracting.
The theorem follows.

Corollary 2. For any τ ∈ Tf , there is a number L = L(τ) > 0, such that for any
simple closed curve γ /∈ Γc, then l(γ, σnf (τ)) ≥ L for all n.

Proof. Suppose τn = σnf (τ). Let γ be an arbitrary non-peripheral, essential, simple
closed curve. If w(γ, τn) > C(Jc) + 2mD for some n, then γ ∈ ΓJc,τn,0. The proof of
the above theorem show that γ ∈ Γc. Thus if γ /∈ Γc, w(γ, τn) ≤ C(Jc) + 2mD for
all n. Let L = e−C(Jc)−2mD. Then l(γ, τn) ≥ L for all n if γ /∈ Γc.

14 Proof of (3) =⇒ (5) in Theorem 1.

Suppose Γc 6= ∅. First we prove that Γc is a multi-curve. For any γ1, γ2 ∈ Γc, there
is a τ0 and n > 0 such that l(γi, τn) ≤ log(3 + 2

√
2) for i = 1, 2, where τn = σnf (τ0).

By the collar lemma, γ1 and γ2 are disjoint. Moreover, it follows that Γc contains
at most p− 3 simple closed non-peripheral curves.

Next we prove Γc is f -stable. For any γ ∈ Γc, let γ′ be a non-peripheral simple
closed curve in f−1(γ). Then f : γ′ → γ is a covering map of degree d′ ≤ d = deg f .
For any τ0 ∈ Tf and any n > 0, let τn = σnf (τ0) = [µn]. Let τn+1 = [µn+1]. Then

gn = wµn ◦ f ◦ (wµn+1)−1 : Ĉ \ wµn+1(f−1(Pf ))→ Ĉ \ wµn(Pf )

is a holomorphic covering. This implies that l(γ′, τn+1) is less than the hyperbolic

length of γ′ measured in Ĉ \ wµn+1(f−1(Pf )) which is d′l(γ, τn) ≤ dl(γ, τn). Thus,
l(γ′, τn+1)→ 0 as n→∞. so we have that γ′ ∈ Γc. Therefore, Γc is f -stable.

Now we prove that λ(AΓc) ≥ 1 as follows. If the last inequality does not hold, we
have a m > 0 such that λ(AmΓc) < 1/2. Let J > C+2mD, we can take a τ ∈ Tf such
that w(Γc, τn) > C + 2mD for all n, where D = dT (τ, σf (τ)). Let C(J) be large
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enough such that w(Γc, τ) < C(J). By the definition of Γc, it follows that there
exists an n such that w(Γc, τn) > C(J). Let n0 be first such integer. By Lemma 17,
Since σf is contracting, it follows that w(Γc, τn0−m) ≥ C by Lemma 8. From the
fact that n0 is the first integer n such that w(Γc, τn) ≥ C(J), it follows that

w(Γc, τn0) < w(Γc, τn0−m) < C(J),

which contradicts the assumption that w(Γc, τn0) ≥ C(J). So we have that λ(AΓc) ≥
1. Therefore Γc is a Thurston obstruction. This completes the proof of (3) =⇒ (5)
in Theorem 1.

References

[CJ] T. Chen and Y. Jiang, Canonical Thurston obstructions for sub-hyperbolic
semi-rational branched coverings. Conformal Geometry and Dynamics, Volume
17, Pages 6-25 (January 23, 2013).

[DH] A. Douady and J. H. Hubbard, A proof of Thurston’s topological characteri-
zation of rational functions. Acta Math., Vol. 171, 1993, 263-297. MR1251582
(94j:58143)

[HSS] J. Hubbard, D. Schleicher, and M. Shishikura, Exponential Thurston maps
and limits of quadratic differentials. Journal of the American Mathematical
Society, Vol. 22 (2009), 77-117. MR2449055 (2010c:37100)

[Jen] J. A. Jenkins, On the existence of certain general extremal metrics. Ann. of
Math., 66 (1957), 440-453.

[Ji] Y. Jiang, A framework towards understanding the characterization of holomor-
phic maps (with an appendix by Tao Chen, Yunping Jiang, and Linda Keen).
Frontiers in Complex Dynamics: In Celebration of John Milnors 80th Birthday.
To appear.

[JZ] Y. Jiang and G. Zhang, Combinatorial characterization of sub-hyperbolic ra-
tional maps. Advances in Mathematics, 221 (2009), 1990-2018. 1990-2018.
MR2522834 (2010h:37095) .

[N] R. Nevanlinna, Analytic Functions, Springer 1970. MR0279280 (43 #5003)

[Str] K. Strebel, On Quadratic Differentials and Extremal Quasiconformal Map-
pings. Lecture Notes, University of Minnesota, 1967.

37



[T] W. Thurston, The combinatorics of iterated rational maps. Preprint, Princeton
University, Princeton, N.J. 1983.

Tao Chen, Department of Mathematics, CUNY Graduate School, New York, NY
10016. Email: chentaofdh@gmail.com

Yunping Jiang, Department of Mathematics, Queens College of CUNY, Flushing,
NY 11367 and Department of Mathematics, CUNY Graduate School, New York, NY
10016. Email: yunping.jiang@qc.cuny.edu

Linda Keen, Department of Mathematics and Computer Science, Lehman Col-
lege, CUNY, Bronx NY 10468 and Department of Mathematics, CUNY Graduate
School, New York, NY 10016. Email: LKeen@gc.cuny.edu

38


