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Abstract

In this paper we study the topological class of universal covering maps
from the plane to the sphere with two removed points; we call the elements
topological transcendental maps with two asymptotic values and we denote
the space by AV2. The space of meromorphic transcendental maps in AV2 is
denoted as M2, which are all meromorphic transcendental functions with con-
stant Schwarzian derivative. We follow the framework given in [Ji] to study
the characterization of a map in M2. We prove in this paper that for an
element f € AV2 with finite post-singular set, the following statements are
equivalent: (1) f is combinatorially equivalent to a meromorphic transcen-
dental map g in M2; (2) f has bounded geometry; (3) f has no Thurston
obstruction; (4) f has no Levy cycle; (5) The canonical Thurston obstruction
is empty.

1 Introduction

Thurston asked the question “when can we realize a given branched covering map
as a holomorphic map in such a way that the post-critical sets correspond?” and
answered it for post-critically finite degree d branched covers of the sphere [T, DH].
His theorem is that a postcritically finite degree d > 2 branched covering of the
sphere, with hyperbolic orbifold, is either combinatorially equivalent to a rational
map or there is a topological obstruction, now called a “Thurston obstruction”. The
rational map is unique up to conjugation by a Mdbius transformation.
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Thurston’s theorem is proved by defining an appropriate Teichmiiller space of
rational maps and a holomorphic self map of this space. Iteration of this map
converges if and only if no Thurston obstruction exists. This method does not
naturally extend to transcendental maps because the proof uses the finiteness of
both the degree and the post-critical set in a crucial way. Hubbard, Schleicher,
and Shishikura [HSS] generalized Thurston’s theorem to a special infinite degree
family they call “exponential type” maps. In that paper, the authors study the
limiting behavior of quadratic differentials associated to the exponential functions
with finite post-singular set. They use a Levy cycle condition (a special case of
Thurston’s topological condition) to characterize when it is possible to realize a
given exponential type map with finite post-singular set as an exponential map
by combinatorial equivalence. The main purpose of this paper is to use a different
approach based on the framework expounded in [Ji] (see also [JZ, CJ]) to understand
the characterization problem for a generalization of this family of infinite degree
maps.

In this paper we define a class of maps called topological transcendental maps
with two asymptotic values which we denote by A)V2. The elements in this class are
universal covering maps from the plane to the sphere with two removed points. A
meromorphic transcendental map ¢ in AV2 is a meromorphic function with constant
Schwarzian derivative and we denote the space of all meromorphic functions with
constant Schwarzian derivative by M2. Our main result in this paper gives a full
characterization of an f € AV2 combinatorially equivalent to a map g € M2.

Theorem 1 (Main Theorem). Suppose f € AV2 is a post-singularly finite map.
Then the following statements are equivalent:

(1) f in AV2 is combinatorially equivalent to a unique map g in M2 (up to au-
tomorphisms of the Riemann sphere);

(2) f has bounded geometry;

(3) f has no Thurston obstruction;

(4) f has no Levy cycle;

(5) [ has no canonical Thurston onstruction.

Our techniques involve adapting the Thurston iteration scheme to our situation.
We work with a fixed normalization. There are two important parts to the proof of
the main theorem. The first part is to prove that the bounded geometry condition
implies the iterates remain in a compact subset of the Teichmiiller space. This
analysis depends on defining a topological condition that constrains the iterates.
The second part is to use the compactness of the iterates to prove that the iteration



scheme converges in the Teichmiiller space. This part of the proof involves an
analysis of quadratic differentials associated to our functions.

The paper is organized as follows. In §2 we review the properties of meromorphic
functions with two asymptotic values that constitute the space M. In §3, we define
the family A)V2 that consists of topological maps modeled on maps in M and show
that My C AV2. In §4 we define combinatorial equivalence between maps in AV2
and in §5 define the Teichmiiller space Ty for a map f € AV2. In §6, we introduce
the induced map o from the Teichmiiller space T into itself; this is the map that
defines the Thurston iteration scheme. In §7, we define the concept of bounded
geometry and in §8 we prove the necessity of the bounded geometry condition in
the main theorem. In §9, we give the proof of the sufficiency assuming the iterates
remain in a compact subset of T%. In §10.1, we define a topological property of the
post-singularly finite map f in AV2 in terms of the winding number of a certain
closed curve. We prove that the winding number is unchanged during iteration of
the map o and so provides a topological constraint on the iterates. Finally, in
§10.2, we show how the bounded geometry condition together with this topological
constraint implies the functions remain in a compact subset of T under the iteration
to complete the proof of the main theorem.
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2 The Space M,

In this section we define the space of meromorphic functions M,. It is the model
for the more general space of topological functions A)V2 that we define in the next
section. We need some standard notation and definitions:

C is the complex plane, C is the Riemann sphere and C* is complex plane punctured
at the origin.

Definition 1. Given a meromorphic function g, the point v is a logarithmic sin-
gularity for the map g~! if there is a neighborhood U, and a component V of
g (U, \ {v}) such that the map g : V — U, \ {v} is a holomorphic universal
covering map. The point v is also called an asymptotic value for g and V s called
an asymptotic tract for g. A point may be an asymptotic value for more than one
asymptotic tract. An asymptotic value may be an omitted value.



Definition 2. Given a meromorphic function g, the point v is an algebraic singu-
larity for the map g~! if there is a neighborhood U, such that for every component V;
of g~ Y(U,) the map g : V; — U, is a degree dy; branched covering map and dy, > 1
for finitely many components Vi,...V,,. For these components, if ¢; € V; satisfies
g(ci) = v then ¢'(¢;) = 0; that is ¢; is a critical point of g fori =1,...,n and v is
a critical value.

Note that by a theorem of Hurwitz, if a meromorphic function is not a homeomor-
phism, it must have at least two singular points (i.e., critical points and asymptoti-
cal values) and, by the big Picard theorem, no transcendental meromorphic function
g:C— C can omit more than two values.

The space M consists of meromorphic functions whose only singular values are
its omitted values. More precisely,

Definition 3. The space My consists of meromorphic functions g : C — C with
exactly two asymptotic values and no critical values.

2.1 Examples

Examples of functions in My are the exponential functions ae®? and the tangent
functions atanif3z = iatanh §z where «, 3 are complex constants.

The asymptotic values for the exponential functions above are {0, c0}; the half
plane RGz < 0 is an asymptotic tract for 0 and the half plane RGz > 0 is an
asymptotic tract for infinity. The asymptotic values for the tangent functions above
are {«i, —«ai} and the asymptotic tract for ai is the half plane 3z > 0 while the
asymptotic tract for —ai is the half plane S5z < 0.

2.2 Nevanlinna’s Theorem

To find the form of the most general function in My we use a special case of a
theorem of Nevanlinna [N].

Theorem 2 (Nevanlinna). Every meromorphic function g with exactly p asymptotic
values and no critical values has the property that its Schwarzian deriwative is a
polynomial of degree p — 2. That is

/" , 1 7 9 B

S(9) = () =3 (7) = w2 izt an, 1
Conversely, for every polynomial P(z) of degree p—2, the solution to the Schwarzian
differential equation S(g) = P(z) is a meromorphic function with p asymptotic
values and no critical values.



It is easy to check that S(ae®) = —132 and S(atan £z) = —132,
To find all functions in Mo, let 5 € C be constant and consider the Schwarzian
differential equation

S(g) = —3/2 (2)
and the related second order linear differential equation
1 2
w” + ES(g)w =’ — Tu= 0. (3)

It is straightforward to check that if wq,ws are linearly independent solutions to
equation (3), then gg = wq/w; is a solution to equation (2).

Normalizing so that w;(0) = 1,w}(0) = —1,wy(0) = 1,w5(0) = 1 and solving
equation (3), we have w; = €_§Z,'U]2 — %% as linearly independent solutions and
gs(2) = €% as the solution to equation (2). An arbitrary solution to equation (2)
then has the form

AU}2 + B/lUl

2Tl ABC.DeC,AD - BC =1 4
Ow2—|—Dw1’ b b b E b) ()

and its asymptotic values are {A/C, B/D}.
Remark 1. The asymptotic values are distinct and omitted.

Remark 2. If B = C = 0,AD = 1,A = \/a we obtain the exponential family
{ae®} with asymptotic values at 0 and co. IfA=—-B=,/%, C =D = L we

" 2a
obtain the tangent family {a tan %z} whose asymptotic values {xai} are symmetric
with respect to the origin.

Remark 3. Note that in the solutions of S(g) = —3%/2 what appears is €°, not
B; this creates an ambiguity about which branches of the logarithm of €® correspond
to the solution of equation (2). In section 9.2.2 we address this ambiguity in our
situation. We show that the topological map we start with determines a topological
constraint which in turn, defines the appropriate branch of the logarithm for each of
the iterates in our iteration scheme.

Remark 4. One of the basic features of the Schwarzian derivative is that it satisfies
the following cocycle relation: if f, g are meromorphic functions then

S(go f(2) = S(g(f)f'(2)* + S(f(2))-

In particular, if T is a Mdébius transformation, S(T'(z)) = 0 and S(T o g(z)) =
S((g(2)) so that post-composing by T doesn’t change the Schwarzian.



In our dynamical problems the point at infinity plays a special role and the
dynamics are invariant under post-composition by an affine map. Thus, we may
assume that all the solutions have one asymptotic value at 0 and that they take the
value 1 at 0.

Since this is true for gg(z) = €%, any solution with this normalization has the

form !

= agp(z)
90 = (e D)+ 2 )

where « is an arbitrary value in C*. The second asymptotic value is A = —45. It

takes values in C \ {0,1}. The point at infinity is an essential singularity for all
these functions.

The parameter space P for these functions is the two complex dimensional space
P={a,peC}.

The parameters define a natural complex structure for the space My. The subspace
of entire functions in M is the one dimensional subspace of P defined by fixing
a =1 and varying [;

gs(2) = €.

The tangent family has symmetric asymptotic values. Renormalized, it forms an-
other one dimensional subspace of P. This is defined by fixing a = /2 and varying

B;
2eh:
V2 756 + 75
These functions have asymptotic values at {0,2} and ¢ 2 5(0) = 1.
27

Definition 4. For g, 3(z) € Mo, the set Q = {0, \} of asymptotic values is the set
of singular values. The post-singular set P, is defined by

P, = U Un=09™(2) U {oo}.

€

Note that we include the point at infinity separately in P, because whether or
not it is an asymptotic value, it is an essential singularity and its forward orbit is
not defined. The asymptotic values are in P, and, since 0 and \ are omitted and
9a,8(0) =1€ P,, #FP, > 3.

!Notice that g, 5 is obtained from gg by a Mébius transformation with determinant 1.



3 The Space AV2

We now want to consider the topological structure of functions in My and define
AV2 to be the set of maps with the same topology.

Definition 5. Let X be a simply connected open surface and let S* be the 2-sphere.
Let fop : X — S*\ {a,b} be an unbranched covering map; that is, a universal
covering map. If Y is also a simply connected open surface we say the pair (X, fib)
is equivalent to the pair (Y, ch,d) if and only if there is a homeomorphism h : X —Y
such that fgdoh = f;b An equivalence class of such classes is called a 2-asymptotic
value map and the space of these pairs is denoted by AV2.

Let (X, fap) be a representative of a map in .AV2. By abuse of notation, we will
often suppress the dependence on the equivalence class and identify X with S\ {co}
and refer to f,; as an element of AV2.

By definition f,; is a local homeomorphism and satisfies the following conditions:

For v = a or v = b, let U, C X be a neighborhood of v whose boundary is a
simple closed curve that separates a from b and contains v in its interior.

L[ L (U, \ {v}) is connected and simply connected.

2. The restriction fo4 : f,y(Uy \ {v}) — (U, \ {v}) is a regular covering of a
punctured topological disk whose degree is infinite.

3. f71(9U,) is an open curve extending to infinity in both directions.

In analogy with meromorphic functions we say

Definition 6. v is called a logarithmic singularity of f, bl or, equivalently, an asymp-
totic value of f,,. The domain 'V, = fa_bl(UU \ {v}) is called an asymptotic tract for
v.

Definition 7. Qf = {a,b} is the set of singular values of f, .

Endow 52 with the standard complex structure so that it is identified with C. By
the classical uniformization theorem, for any pair (X, f, ), thereisamap 7 : C — X
such that g, = fap © ™ is meromorphic. It is called the meromorphic function
associated to fqp.

By Nevanlinna’s theorem S(g(z)) is constant and moreover,

Proposition 1. If g(z) € My with Q, = {a,b} then g(z) = gap(2) € AV2 and,
conversely, if gop € AV2 is meromorphic then gq, € Ma.



Proof. Any g(z) € M, is a universal cover g : C — C\ 2, and so belongs to AV2.
Conversely, if g, € AV2, it is meromorphic and its only singular values are the
omitted values {a, b}; it is thus in Ms. O

We define the post-singular set for functions in AV2 just as we did for functions

in MQ.

Definition 8. For f = f,;, € AV2, the post-singular set Py is defined by

Py = () U {o0}

n>0

Note that under the identification of S? with the Riemann sphere and X with the
complex plane, S? \ X is the point at infinity and it has no forward orbit although
it may be an asymptotic value. We therefore include it in Pj.

Post-composition of f,; with an affine transformation 7" results in another map
in AV2. In what follows, therefore, we will always assume a = 0 and the second
asymptotic value, A, depending on T" and b, is determined by the condition f(0) = 1.

We will be concerned only with functions in AV2 such that Py is finite. Such
functions are called post-singularly finite.

4 Combinatorial Equivalence

In this section we define combinatorial equivalence for functions in A4)2. Choosing
representatives (X, f, ) of the AV2-equivalence classes, we may assume X is always
S2\ {oc} and {0,b} are the singular points for all the functions so we will omit the
subscripts denoting the omitted points in the definitions below.

Definition 9. Suppose (X, f1), (X, f2) are representatives of two post-singularly fi-
nite functions in AV2, chosen as above. We say that they are combinatorially
equivalent if there are two homeomorphisms ¢ and 1 of S* onto itself fizing {0,000}
such that ¢ o fa = fi ot on X and ¢~ o4 is isotopic to the identity of S* rel Py, .

The commutative diagram for the above definition is

XY x

)

52— 52



5 Teichmiiller Space T%.

Let M = {u € L®(C) | ||ptlloe < 1} be the unit ball in the space of all measur-
able functions on the Riemann sphere. Each element ;1 € M is called a Beltrami
coefficient. For each Beltrami coefficient i, the Beltrami equation,

Wy = JW,

has a unique quasiconformal solution w* which maps C to itself and fixes 0,1, c0.
Moreover, w* depends holomorphically on pu.

Let f be a post-singularly finite function in AV2 with singular set Q; = {0, A}
and postsingular set P;. By definition, we have #(€) = 2 and #(Pf) > 2. Since
post-composition by an affine map is in the equivalence class of f we may always
choose a representative such that {f(0) = 1} C Py; we assume we have always made
this choice. It follows that A # 1 so we always have {0,1, A\, 00} C P.

The Teichmiiller space T'(Py) is defined as follows. Given Beltrami differentials
w,v € M we say that p and v are equivalent, and denote this by p ~ v, if w* and
w” fix 0,1,00 and (w*)~! o w" is isotopic to the identity map of C rel P;. We set
Ty = T(P;) = M/ ~= {[u]}.

There is an obvious isomorphism between Ty and the classical Teichmiiller space
Teich(R) of Riemann surfaces with basepoint R = C\ Pj. It follows that T is
a finite-dimensional complex manifold so that the Teichmiiller distance dy and the
Kobayashi distance dx on T coincide. It also follows that there are always locally
quasiconformal maps in the equivalence class of f; we always assume we have chosen
one such as our representative.

6 Induced Holomorphic Map oy.

For any post-singularly finite f in AV2, there is an induced map o = o from T}
into itself given by:

o([u]) = [f"nl,
where
O O R (116 N YN 4
i) = fle) = (L SN = W= )

Because o is a holomorphic map we have

Lemma 1. For any two points T and 7' in 1Y,

dr (U(T), 0'(7'/)> <dp(r, 7).



The next lemma follows directly from the definitions.

Lemma 2. A post-singularly finite f in AV2 is combinatorially equivalent to a
meromorphic map in My if and only if o has a fized point in Ty.

Remark 5. If #(Ps) = 3, then Ty consists of a single point. This point is trivially
a fized point for o so the main theorem holds. We therefore assume that #(Py) > 4
in the rest of the paper.

7 Bounded Geometry.

Let the base point of T be the hyperbolic Riemann surface R = @\Pf equipped with
the standard complex structure [0] € Ty. For 7 in T}, denote by R, the hyperbolic
Riemann surface R equipped with the complex structure 7.

A simple closed curve v C R is called non-peripheral if each component of C \
contains at least two points of P;. Let v be a non-peripheral simple closed curve
in R. For any 7 = [u] € Ty, let I.(y) be the hyperbolic length of the unique closed
geodesic homotopic to v in R,.

For any 7y € T}, let 7,, = 0"(1p), n > 1.

Definition 10 (Hyperbolic version). We say f has bounded geometry if there is
a constant a > 0 and a point 19 € Ty such that I, (v) > a for alln > 0 and all
non-peripheral simple closed curves v in R.

The iteration sequence 7, = ofTo = (1] determines a sequence of subsets of C
P, =w'"(Pf), n=0,1,2---.
Since all the maps w*" fix 0, 1, 0o, it follows that 0,1,00 € P,.

Definition 11 (Spherical Version). We say f has bounded geometry if there is a
constant b > 0 and a point 7o € T}y such that

dsp(pm Qn) Z b

for allm >0 and p,,q, € P,, where

[z = 7]

VT E NN

dsp(2,2")

18 the spherical distance on C.

10



Note that dg,(z,00) = \/EW Away from infinity the spherical metric and

Euclidean metrics are equivalent. Precisely, in any bounded K C C, there is a
constant C' > 0 which depends only on K such that

C (2, y) < |z —y| < Cdyy(z,y) Yo,y € K.

The following simple lemma justifies using the term “bounded geometry” in both
of the definitions above for f.

Lemma 3. Consider the hyperbolic Riemann surface C \ X equipped with the
standard complex structure where X s a finite subset such that 0,1,00 € X. Let
m = #(X) > 3. Let a > 0 be a constant. If every simple closed geodesic in C \ S
has hyperbolic length greater than a, then there is a constant b = b(a,m) > 0 such

that the spherical distance between any two distinct points in S is bounded below by
b.

Proof. If m = 3 there are no non-peripheral simple closed curves so in the following
argument we always assume that m > 4. Let X = {x, -+ , 2,1} and z,, = 0o and
let | - | denote the Euclidean metric on C.

Suppose 0 = |z1| < -+ < |zp-1|. Let M = |zp,_1]. Then |xo| < 1, and we have

H ’$i+1| _ |$m—1’ > M.

2<i<m—2 i [2]
Hence
max {’xlﬂ‘} > M-
2<i<m—2 U |
Let

Ai={zeC ‘ 25| < 2 < |zis |}
and let mod(4;) = 5= log |J"|x—+|1' be its modulus. Then for some integer 2 < iy < my—2
if follows that low 1

0
mod (4;,) > e
27(m — 3)
Denote the minimum length of closed curves v in A;,, measured with respect to
the hyperbolic metric on A;y, by ||7][4,,. Because A;, is a round annulus, the core
curve realizes this minimum and we can compute its hyperbolic length as [|v|

AiO -

modﬂ—(AiO) :
Since A;, C C \ S, the hyperbolic density on A;, is smaller than the hyperbolic
density on C\ S. Therefore, if [, (7v) denotes the length of the shortest geodesic in

11



the homotopy class of v with respect to the hyperbolic metric on C \ S, we have

lr,(7) < |7l a,,- This implies that
log M
T > mod (A;) > e
() 2n(m —3)
Thus ) )
log M < 21%(m — 3) < 27 (m—3).
L, a
This implies that
27r2(m—3)

MSMQZE a

Thus the spherical distance between oo and any finite point in X has a positive
lower bound M, which depends only on a and m.

Next we show that the spherical distance between any two finite points in X
has a positive lower bound dependent only on a and m. By the equivalence of the
spherical and Euclidean metrics in a bounded set in the plane, it suffices to prove
that |z — y| is greater than a constant b for any two finite points in X.

First consider Jy(z) = 1/z which preserves hyperbolic length with 0,1,00 €
Jo(X). The above argument implies that 1/|z;| < My for any 2 < i < m — 1. This
implies that |z;| > 1/M, for any 2 < ¢ < m — 1. Similarly, for any z; € X for
2 <i<m-—1, consider J;(z) = z/(z — ;) which again preserves hyperbolic length.
The above argument implies that |z;/|z; — z;| < My for any 2 < j # i < m — 1.
This in turn implies that |z; — x;| > 1/Mg for any 2 < j # ¢ < m — 1 which proves
the lemma. ]

8 The Canonical Thurston Obstruction.

If f has no bounded geometry, then for any 7y € Ty, we have a sequence {n;}2; of
positive integers and a sequence of non-peripheral simple closed curves in R such
that

L, (Vn;) = 0 as @ — oc.

Now we consider the set
Fe={yCR|l,(y) = 0asn— oo}

where 7 is a non-peripheral simple curve.

Definition 12. If T, # (), we called it the canonical Thurston obstruction. Other-
wise, we say f has no canonical Thurston obstruction.

12



9 The proof of (1) <= (2) in Theorem 1.

9.1 Proof of (1) = (2).

If f is combinatorially equivalent to g € M2, then o; has a unique fixed point 7,
so that 7, = 1 for all n. The complex structure on C \ Py defined by 7 induces a
hyperbolic metric on it. The shortest geodesic in this metric gives a lower bound on
the lengths of all geodesics so that f satisfies the hyperbolic definition of bounded
geometry.

9.2 Proof of (1) < (2).

9.2.1 Proof assuming compactness.

The proof of of our main theorem (Theorem 1) is more complicated and needs
some preparatory material. There are two parts: one is a compactness argument
and the other is a fixed point argument. From a conceptual point of view, the
compactness of the iterates is very natural and simple. From a technical point of
view, however, it is not at all obvious. Once one has compactness, the proof of the
fixed point argument is quite standard (see [Ji]) and works for much more general
cases. We postpone the compactness proof to the next two sections and here give
the fixed point argument.

Given f € AV2 and given any 79 = [uo] € T, let 7, = 0"(10) = [us] be the
sequence generated by o. Let w” be the normalized quasiconformal map with
Beltrami coefficient p,,. Then

Gn = w"™ o f o (w')"t € M2

since it preserves po and hence is holomorphic. Thus iterating o, the “Thurston
iteration”, determines a sequence {g, 22, of maps in M2 and a sequence of subsets
Py, = wh(Py). Note that Py, is not, in general, the post-singular set P, of g,. If
it were, we would have a fixed point of o.

Suppose f is a post-singularly finite map in AV2. For any 7 = [p] € Ty, w”
denotes a representative normalized quasiconformal map fixing 0, 1, oo with Beltrami
differential p; let T; and T denote the respective tangent space and cotangent space
of Ty at 7. Then T coincides with the space Q,, of integrable meromorphic quadratic
differentials ¢ = ¢(z)dz? on C. Integrability means that the norm of ¢, defined as

lgll = / 6(2)[dzdz

is finite. The finiteness implies that ¢ may only have poles at points of w*(Pf) and
that these poles are simple.

13



Set 7 = o(7) = []. By abuse of notation, we write f~(Py) for f~*(P;\ {co})U
{oo}. We have the following commutative diagram:

C\ FH(Py) 25 C\wi(fN(Py))
lf lg,u,ﬂ
C\Pf w_u> @\w“(Pf)

By the definition of o, i = f*u so that the map g = g,z = w" o f o (W)~ defined
on C is meromorphic. By remark 1, g(z) is in My and in particular, ¢'(z) # 0.

Let 0, = do : T, — 17 and o* : T — T* be the respective tangent and
co-tangent maps of 0. Let n be a tangent vector at 7 so that n = o,n is the
corresponding tangent vector at 7. These tangent vectors can be pulled back to
vectors &, € at the origin in T+ by maps

n=(w")"¢ and 7= (w")¢

This results in the following commutative diagram,

_ o (whyr x

n — £

Tf 19
(wh)*

n — 3

Now suppose ¢ is a co-tangent vector in 77 and let ¢ = 0*¢ be the corresponding
co-tangent vector in 77*. Then g = gg(w)duﬂ is an integrable quadratic differential on
C whose only poles can be simple and occur at the points in wh(Py); q = ¢(2)dz? is
an integrable quadratic differential on C whose only poles can be simple and occur at
the points in w*(Py). This implies that ¢ = 0.§ is also the push-forward integrable
quadratic differential

q = g.G = ¢(2)dz
of ¢ by g. This follows from the fact that w” takes the tesselation of fundamental
domains for f to a tesselation of fundamental domains for g and on each fundamental
domain g is a is a homeomorphism onto C \ {0, A} since 0, \ are the two asymptotic
values of g. The coefficient ¢(z) of ¢ is therefore given by the standard transfer
operator L

. o (w)duw’
o(2) = (LP)(2) = — 7
(2) = (L¢)(2) g%;z (o (w) 2 (7)
Since ¢'(w) # 0, equation (7) implies the poles of ¢ occur only at the images of

the poles of ¢; the integrability implies these poles can only be simple. Therefore,
as a meromorphic quadratic differential defined on C, ¢ satisfies

gl < [lqll. (8)

14



By formula (7) we have )
<q,{>=<¢q,{>

which, together with inequality (8), implies

€l < llel)

This gives another proof that ¢ is weakly contracting. We can, however, prove
strong contraction.

Lemma 4.
lall < Ilgl|
and )
1€M< €ll-
Proof. Suppose there is a ¢ such that ||¢|| = ||¢|| and that Z is the set of poles of

G. Then, since g has no critical points, the poles of ¢ must be contained in g(Z).
Using a change of variables on each fundamental domain we obtain the equaiities

Z = H(w)| dwdw = —¢(w) 2dz
J1oazaz = [ 16w dvan = [ | S e

The triangle inequality then implies that at every point z the argument of %
is the same; that is, for each pair w,w’ with g(w) = g(w') = z, there is a positive

real number a, such that

dw) _dw)
(g'(w))* (g (w))*
Thus, by formula (7) we see that ||g|| = ||¢|| implies ¢(z) = oo giving us a contra-
diction. ]

Remark 6. What we have shown is that ||q|| = ||G]| implies
9+4 = ¢(g(w)) = ag(w)
and therefore all the pre-images of all the poles are poles. That is,
g g(Z)) cZzuQ,.

But this is a contradiction because g~*(g(Z)) is an infinite set and Z U, is a finite
set.

As an immediate corollary we have strong contraction.
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Corollary 1. For any two points T and 7' in Ty,

dr (0(7’), 0(7“)) < dp(r, 7).
Furthermore,

Proposition 2. If o has a fived point in T, then this fized point must be unique.
This is equivalent to saying that a post-singularly finite f in AV2 is combinatorially
equivalent to at most one map g € M2.

We can now finish the proof of the sufficiency under the assumptions that f has
bounded geometry and that the meromorphic maps defined by

gn = w0 fo (whtt)~! (9)

remain inside a compact subset of M2.

Note that if Py = {0,1,00}, then f is a universal covering map of C* and
is therefore combinatorially equivalent to €2"*. Thus in the following argument,
we assume that #(Py) > 4. Then, given our normalization conventions and the
bounded geometry hypothesis we see that the functions g,, n = 0,1, ... satisfy the
following conditions:

1) m = #(wh(Py)) > 4 is fixed.
2) 0,1,00,g,(1) € w'(Py).
3) {0.1,00} € g (wh (Py)).

)

4) there is a b > 0 such that dg,(pn, ¢,) > b for any p,, ¢, € w*(Py).

Any integrable quadratic differential ¢, € T has, at worst, simple poles in the
finite set P41 5 = w" ! (Py). Since T} is a finite dimensional linear space, there is
a quadratic differential ¢, mas € 5 With ||gnmaz|| = 1 such that

0 < ap = HSU“p ||(gn)*Q7lH = H(gn>*Qn,maxH < 1.
gn||=1

Moreover, by the bounded geometry condition, the possible simple poles of {g maz 122,
lie in a compact set and hence these quadratic differentials lie in a compact subset of
the space of quadratic differentials on C with, at worst, simples poles at m = #(Py)
points.

Let

Qr, = SUp Qy,.
n>0
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Let {n;} be a sequence of integers such that the subsequence a,, — a,, as i — 0.
By our assumption of compactness, {gn,}°, has a convergent subsequence, (for
which we use the same notation) that converges to a holomorphic map g € M2.
Taking a further subsequence if necessary, we obtain a convergent sequence of sets
P, s = w'i(Pr) with limit set X. By bounded geometry, #(X) = #(P) and
dsp(x,y) > b for any x,y € X. Thus we can find a subsequence {gn,; maz} converging
to an integrable quadratic differential g of norm 1 whose only poles lie in X and are
simple. Now by lemma 4,
an, = [lgxq|| < 1.

Thus we have proved that there is an 0 < a,, < 1, depending only on b and f
and 7 such that
low]l < o™l < az,.

Let [y be a curve connecting 79 and 7y in Ty and set [,, = 0‘?([0) for n > 1. Then
[ =92 ol is a curve in Ty connecting all the points {7, }2° . For each point 7 € lo,
we have az, < 1. Taking the maximum gives a uniform a < 1 for all points in /.
Since o is holomorphic, a is an upper bound for all points in [. Therefore,

dT(Tn—i-la Tn) S a dT(Tna 7—n—l)

for all n > 1. Hence, {7,,}5°, is a convergent sequence with a unique limit point 7.,
in Ty and 7 is a fixed point of o.

9.2.2 Compactness.

The final step in the proof of (1) < (2) is to show the compactness assumption
is valid. In the case of rational maps where the map is a branched covering of
finite degree, the bounded geometry condition guarantees compactness, in the case
of f € AV2, however, because the map is a branched covering of infinite degree, we
need a further discussion of the topological properties of post-singular maps. We
will show that for these maps there is a topologicial constraint that, together with
bounded geometry condition guarantees compactness under the iteration process.
The point is that this constraint and the bounded geometry condition together
control the size of the fundamental domains so that they are neither too small nor
too big.

A topological constraint. We start with f € AV2; recall Q; = {0, A} is the set of
asymptotic values of f and that we have normalized so that f(0) = 1. Suppose that
this f is post-singularly finite; that is, P; is finite so that the orbits {c; = f*(0)}32,
and {c, = fF(\)}22, are both finite, and thus, preperiodic. Note that neither
can be periodic because the asymptotic values are omitted. Consider the orbit of 0.
Preperiodicity means there are integers k; > 0 and [ > 1 such that f!(cp,11) = cr 41
That is,

{Ck1+1’ s 7Ck1+l}
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is a periodic orbit of period [. Set ky = ki + 1.

Let v be a continuous curve connecting cx, to g, in R? which is disjoint from Py,
except at its endpoints. Because f(cg,) = f(ck,) = k41, the image curve § = f(7)
is a closed curve. We can choose v once and for all such that ¢ separates 0 and A;
that is, so that ¢ is a non-trivial curve closed curve in C \ {0, A\}. The fundamental
group m(C \ {0,A}) = Z so the homotopy class n = [6] in the fundamental group
is an integer which essentially counts the number of fundamental domains between
ck, and cg, and defines a “distance” between the fundamental domains. The integer
7 depends only on the choice of v and since 7 is fixed, so is 7.

We now show that 7 is an invariant of the Thurston iteration procedure and is
thus a topological constraint on the iterates.

Lemma 5. Given 19 = [po] € Ty, let 7, = 0™(79) = [un] be the sequence generated
by o. Let wH™ be the normalized quasiconformal map with Beltrami coefficient .,
Let Ypiq = whi(y), 0, = wh(8) and A, = w'(X). Then [6,] € T (C\{0,\,}) =1
for all n.

Proof. The iteration defines the map
Gn = w"" o f o (w')t € AV2

which is holomorphic since it preserves py.
The continuous curve

Tnt1 = W (y

oes from c¢p, p41 = W't (g, ) 10 Chymy1 = WP (¢, ). The image curve
1,n+ 1 2,1+ 2

On = gn(ns1) = w (F((w' )7 (1)) = " (£ (7)) = w(9)

is a closed curve through the point ¢k, 1., = W (Cy41)-
From our normalization, it follows that

gn(z) = gOnuﬁn(z) = (Oé _ L)eﬂﬂz _'_ L ‘ (1O>

and 0 is an omitted value for g,. Since A\, = w*"()), it is also omitted for g, and

A= —" P, (11)
Because ) )
whn: C\ {0,A} — C\{0,\,}
is a normalized homeomorphism, it preserves homotopy classes and n = [d,] €
m(C\ {0, \,}) = Z. Thus the homotopy class of d,, in the space C\ {0, A\, } is the
same throughout the iteration. O
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Bounded geometry implies compactness. By hypothesis f has bounded geom-
etry and by the normalization of f, Q2 = {0, A}, f(0) = 1 so that {0,1,\, 00} C P.
Moreover the iterates

gn = w0 f o (w)™!

belong to M.
Recall that P, = w""(Pf) and because w’" fixes {0,1,00} for all n > 0,
{0,1,00} C P,. By equation (10),

(1) = (F(0)) = P G € P

so that
{07 17)\nygn(1)700} - Pn

If #(Pf) = 3, then A = oo and f(1) = 1. In this case, A = A\, = 00, ¢,(1) =1 for
all n > 0 and #(P,) = 3 so that g,(z) = ¢’**. The homotopy class of 4, is always 7,
which is its winding number about the origin in the complex analytic sense. Thus
B, = 2min for all n and g, = €2, which is the fixed under Thurston iteration and
trivially lies in a compact subset in M2.

From now on we assume that #(Py) > 4. We first prove the compactness of the
iterates in the case that A = co. By normalization, A\, = oo and

gn(2) = P*
for all n > 0.

Because f has bounded geometry, g,(1) # 1 has a definite spherical distance
from 1 and the sequence {|3,|} is bounded from below; that is, there is a constant
k > 0 such that

k <|B.|, ¥n>O0.

Now we use the topological constraint to prove that the sequence {|3,|} is also
bounded from above. We have g, (2) = (,9,(2) and the homotopy class of J,, is the
winding number about the origin in the complex analytic sense, thus

1 dw 1 9gn(2)

"o b w T i), e

B

= %(Ckg,nJrl - Ck1,n+1)~

dz

Both ¢k, nt1, Chynt1 € Pry1, so bounded geometry implies the constant & > 0 above
can be chosen so that
|Chynt1 — Chynt1| = k.
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Combining this with the formula for n we get

n n
|Bnl < <.
277—’0162 n+l = Ck17n+1‘ 2mk

and thus deduce that {g,(z) = ¢’**} forms a compact subset in M2.
Now let us prove compactness of the iterates when A\ # oco. In this case, since

(6%
=1 €hm

n an

has a definite spherical distance from 0, 1, and oo, bounded geometry implies there
are two constants 0 < £ < K < oo such that

kE<|anl|, |on—1 <K, Vn>D0.

In this case, we have that g,(1) # 1 too. Since g,(1) € P,;1, bounded geometry
implies that the constant £ can be chosen such that

k <|Bal, ¥n>0.

Again we use the topological constraint to prove that {|3,|} is also bounded from

above. Let
oz

(an—3-)2+ o
so that g,(z) = M,(e®**). The map M, : C\ {0,00} — C\ {0, \,} is a homeomor-

phism so it induces an isomorphism from the fundamental group m(C\ {0, 00}) to
the fundamental group m(C \ {0, \,}). Thus, 7 is the homotopy class [d,] where
O0n = 1((5n).

Note that 4, is the image of Yn41 under g,(z) = €. Since g is a closed curve
in C\ {0, 00}, 1 is the winding number of 4, about the origin in the complex analytic
sense, and we can compute

~/
1 d_w 1 9nl2) ;. _ Ba

n=5_- : = - (Chant1 = Crant1)-
21 w27 ), Gn(2) 21 !

M, () =

As above, ¢k, nt1, Chymt1 € Pot1, and by bounded geometry there is a constant £ > 0
such that

|Ck2,n+1 - Ckl,n+1| Z ka
so that

8] < L <L
27| Chy 1 — Chymt1| — 27k
This inequality proves that {g,(2) = ga, ,(2)} forms a compact subset in M2.
Finally, we have shown that in all cases the sequence {g,} is a compact subset
in M2. This combined with the proof in subsection 9.2.1 completes the proof of
(1) <= (2) in Theorem 1.
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10 The Thurston Obstruction

Consider a simple closed curve v € C \ P. If v separates the asymptotic values 0
and A, then f~!(y) contains a single component which is an open curve with both
its endpoints at oo and f. If v does not separate 0 and ), then f~!(v) consists of
an infinite number of simple closed curves in C \ P; and f is a homeomorphism on
each component.

Definition 13. A simple closed curve v C C \ Py is called non-peripheral if every
component of C\ v contains at least two different points of Py; it is peripheral if
one of the components of C\ Py contains one or no points of Py.

Since Pf\{oo} is a finite set, it is contained in finitely many fundamental domains
for f. Let D; be the closure of the union of these fundamental domains together
with together with their adjacent domains and all the domains that lie inbetween so
that Dy is a connected set containing a finite number fundamental domains. This
number depends on f and the deployment of the points of Pf. If v is non-peripheral
and does not separate 0 and \, every closed component § of f~!(v) is contained in
one or two fundamental domains and each non-peripheral ¢ must be contained in
Dy. It follows that there are only finitely many non-peripheral closed components
in f~1(v); this number depends only on the number of fundamental domains in Dy
and the number of points in P.

Definition 14. A multi-curve

F:{/yl)"' 7771}

1s a set of pairwise disjoint, non-homotopic, and non-peripheral curves on C \ Ps.

Definition 15. A multi-curve T' is called f-stable if for any v € T', every non-
peripheral component of f~'(v) is homotopic to some element of T in C\ P;.

Let RY be the real vector space generated by a multi-curve I'. We define the
Thurston linear transformation,

fr: RN —R"

as follows: for any v; € T, consider all the components of f~!(~;) homotopic to 7;
in C\ E, and denote them by 7; ;.. Let a;; be the number of elements in the set

{7ija}- Then
fr() = ai.

Let Ar be the matrix of the linear transformation of fr so that a;; is the ij"-entry
of Ar. There may be infinitely many different multi-curves, however,
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Lemma 6. There are only finitely many possible matrices corresponding to Thurston
transformations. The number depends on the number ny of fundamental domains
in Dy and the number p of points in Pj.

Proof. Any multi-curve in C \ Py consists of at most p — 3 simple closed curves so
the matrix Ar has at most (p— 3)? entries. Each entry is of the form #{a | 7ija} <
ns(p — 3) so that the number of distinct matrices is ns(p — 3)3. O

Remark 7. Note if v belongs to an f-stable multi-curve, the degree of the map
[y = f(v) is bounded by ny.

Proposition 3. If T is an f-stable multi-curve, then the linear transformation fr
commutes with iteration; that is,

(f")r = (fr)".

Proof. To show that the iteration is well defined we need to show that we don’t
get any new non-peripheral cuves. To see this, suppose 7 is peripheral so that
one component of its complement in C \ (Py) is either a disk or a punctured disk.
Denote this component by Q. If Q is a disk, then every component of f~() is
also a disk in C \ Pr. If Q is a punctured disk and if the puncture is 0 or A, then
f7H) is a disk with co as a boundary point. If the puncture is any other point in
E, then f~1(Q) consists of infinitely many components, each either contained in a
single fundamental domain or overlapping two adjacent fundamental domains. Each
component is either a disk or a punctured disk. Thus any component of f~!(v) is
peripheral.

Now let Br be the matrix of the linear transformation f2 and denote its k;j'"-
entry by by;. Then

1
Zdeg f2|7k{zga}ﬁ) Zdeg f|7k{Lga}5)deg<f|'W]a)

4,3 i,
1
= akz
i’za ; deg(f\%,i,g) deg(fly,.) Z Z Flri)
= Z ki Qij
It follows that (f?)r = (fr)?. Inductively, we have (f*)r = (fr)". O

Remark 8. Proposition 3 is not true for a multi-curve I' which is not f-stable. The
computation in the proof of Proposition 3 shows, however, that (f™)r > (fr)" for
any I
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The spectral radius of Ar, denoted by either Ar or A(Ar), is the maximum of the
absolute values of all its eigenvalues. Since the entries of Ar are all non-negative
numbers, the Perron-Frobenius Theorem guarantees that A(Ar) is positive and an
eigenvalue for Ar whose corresponding eigenvector has non-negative coefficients.

Definition 16. An f-stable multi-curve I' is called a Thurston obstruction if the
leading eigenvalue A\(Ar) > 1.

Suppose I' is a not necessarily f-stable multi-curve. We can rearrange A = Ar
into the form

A 0 - 0
A= [Andn 0
Asl As?"' Ass

where all the blocks A;; are either irreducible or 0. Moreover,
A(A) = sup;A(Ajy)-

Let I'; denote the subset of curves in I' corresponding to the j-th block in the
decomposition above so that A;; = Ar,; I'; is called an irreducible component of T'.
It may not be f-stable. Let

I =y;Ty

where the union runs over all j such that A\(A4;;) > 1.

Definition 17. Suppose I' is an f-stable multi-curve and let v € I'. If there exists
a v €T and an integer k > 0 such that v is homotopic to a component f=%()
then the least such integer k is called the depth of v with respect to I'. The set of
all curves in T with finite depth is denoted by 'y and the set ' \ Ty is denoted by
INo.

Lemma 7. If T is a Thurston obstruction, then Iy is also a Thurston obstruction.
In particular after applying a permutation,

Ar, 0
A — =)
: < * AFO)
where A\(Ar) <1 and AM(Ar) = A(Ar,) > 1.

Proof. We claim that IV C I'y. To see this, take v € TI'y; then there exists an
integer £ and an element +' € I” such that v is homotopic to a component of
f7*(+"). Tt follows that any non-peripheral component 5 of f~!(y) is homotopic to
a component of f~**1(~'). Moreover since I' is f-stable, there exists an element
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~v; € I' which is homotopic to 7. It follows that any non-peripheral component of
f~Y(~) is homotopic to some 7; € I" whose depth with respect to I' is at most k + 1,
and therefore ~; € T'y.

Now because IV C T'g, it follows that

)\(AFOO) <1 and )\(AFO) = )\(AF) >1
and Ar must be of the specified form. n

Since there are only finitely many possible Thurston matrices we have

Proposition 4. There is a positive integer My depending on the number p of points
in Py and the number ny of fundamental domains in Dy such that for any f-stable

multi-curve T in C \ Py, the depth of any v € Ty is less than or equal to M.

Proposition 5. Given an irreducible multi-curve I' in C \ Py (not necessarily f-
stable) with A(fr) > 1, let v be the unique positive eigenvector of Ar corresponding
to A(fr) > 1 with biggest coordinate 1. Then there exists a number 0 < § < 1,
depending only on p and n, such that the smallest coordinate of v is bounded below

by (3.

Proof. Since there are only finitely many possible matrices for all the multi-curves,
there are finitely many positive eigenvectors v with the biggest coordinate 1 cor-
responding to the maximal positive eigenvalues of the matrices. The eigenspace
corresponding to the positive maximal eigenvalue of an irreducible non-negative
matrix is one dimensional and is generated by a vector v all of whose entries are
positive. Normalizing v so that its biggest coordinate is 1, determines the small-
est coordinate and since there are only finitely many such vectors, there is a lower
bound ( on the smallest coordinate. O

11 Proof of (3) <= (4)

Suppose I' = {~;}, is a Thurston obstruction. Then we have a vector

V= ibi%a b; >0, ibi # 0,
i—1 i=1

such that Arv = Av. Suppose b; # 0. This implies that there is a least j such that
a1;b; # 0. Thus f~*(v1) has a non-peripheral component 7' homotopic to ~; such
that f : v — 71 is a homeomorphism. Up to homotopy, we may just as well assume
7" = ~; and relabel so that j = 2. By exactly the same argument, there is a 7; for v,
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which we can take as 3. Since I' contains a finite number of elements, eventually,
we get a set of curves forming a cycle

{717727"' 77771}7 ’ITLSTZ,

such that Yii1 (mod m) i & component of f~'(7;) and f : Yit1 (moam) — i IS &
homeomorphism. Such a cycle is called a Levy cycle. Thus we have shown that every
Thurston obstruction contains a Levy cycle and every Levy cycle can be expanded
to a Thurston obstruction. This completes the proof of the implication (3) <= (4)
of Theorem 1.

12 Proof of (1) = (3)

A holomorphic map can have no Thurston obstruction or Levy cycle. This can be
proved by using the Frame Mapping Theorem in Teichmiiller space (see Jenkins [Jen]
and Strebel [Str]). The argument is given in detail in [DH, Theorem 4.1].

13 Proof of (2) < (3)

Much of the material in this section is adapted from [DH].

~

Any 7 = [p] € Ty represents a complex structure on C which makes C\ Py into
a hyperbolic Riemann surface R, that is Teichmiiller equivalent to C \ w*(Fy). For
any simple closed curve v on C\ P, let

1(y,7) (12)
be the hyperbolic length of the unique simple closed geodesic homotopic to w* ()
in C\ w"(Py).

Remark 9. The definition of l(~,T) does not depend on p € .

Define
w(y, ) = —logl(y,T). (13)

The next lemma is proved in [DH].

Lemma 8. The function Ty — R given by 7 +— w(7,7) is Lipschitz, with Lipschitz
constant 2.

Represent the fundamental group of R, as a subgroup of PSL(2,R) so that a
lift of the simple closed geodesic homotopic to w#(7) is the imaginary axis. The
cyclic subgroup keeping the imaginary axis fixed is generated by z +— €7 and
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a fundamental domain for this subgroup is conformally equivalent to an annulus

A(~, ) with modulus
T 1
d(A = :
mod(A(1.7) = § - 7o
Moreover, it is standard (see [DH] for example) that if [(+, 7) is less than a universal
constant I* = log 3 + 2v/2, R, contains an embedded annulus a(7y, 7) whose modulus

m(l) is a continuous and decreasing function of [ = I(y, 7) and satisfies

(14)

T T
T T
5] <m(l) < 5

It is also standard that simple closed geodesics whose lengths are less than this
constant are disjoint and that there are disjoint annuli with these as core curves.
We shall always tacitly assume that the core curves of the annuli we work with have
length less than this constant.

Rewriting, we have

mod(A(vy, 7)) — 1 < mod(a(vy, 7)) < mod(A(v, 7)) (15)

Before proceeding further, we define two concepts , state their properties and a
technical lemma.

Definition 18. Let k be a real number. A sequence {a, }5°, of real numbers is called
k-quasi-nondecreasing if for all ny < ny we have a,, — a,, > k. A sequence is called
quasi-nondecreasing if it is k-quasi-nondecreasing for some K.

It is easy to check the following propositions and lemma.

Proposition 6. Suppose {a,}5°, and {b,}32, are two sequences. If {a,}>2, is
k-quasi-nondecreasing and |a, — by,| < r for all n, then {b,} is (K — 2r)-quasi-
nondecreasing.

Proposition 7. Suppose {a,} is quasi-nondecreasing and unbounded. Then a, —
+00 as n — +00.

Lemma 9. [ft>1, thenlog(t+ 1) — 1 < logt.
Now, note that if w(y, 1) > log %, then
1 <mod(A(y,7)) — L.

Taking logarithms of all the terms in inequality (15), applying Lemma 9 and Equa-
tion (14), yields

log(7/2) — 1+ w(y,7) < logmod(a(vy, 7)) < log(m/2) + w(~, 7). (16)
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It follows that if w(y,7) > log 2,2
|logmod(a(vy, 7)) —w(vy,7)| < logm/2. (17)
Given a multi-curve I', denote the vectors of moduli (mod(A(v,7))) and (mod(a(~,7)))
by mod(A(I", 7)) and mod(a(I", 7)) respectively. Define
mod(A(T, 7)) = minyer{mod(A(y,7))}

and
mod(a(T", 7)) = min,er{mod(a(~, 7))}

Lemma 10. Let § be the constant in Proposition 5. Let I" be an irreducible multi-
curve I' such that Aa. > 1. If o € Ty and 7, = 0}(7), n > 1, then

(i) mod(A(T',7,)) > Bmod(a(l', 7)), and
(ii) mod(a(l',7,)) = Bmod(a(T', 7)) — 1.

Proof. Given n, denote the matrix corresponding to the linear transformation f* :
RI' — RY by B. It is easy to see that B > AR
Let v be the unique positive eigenvector with |v| = 1 corresponding to the
eigenvalue )\ 4.. Let 1 denote the vector all of whose coordinates are 1. Then, given
To € Tf,
mod(a(T', 7)) > mod(a(I", 79))1 > mod(a(l, p))v.

For any n > 1 and 7, = 0}(70), let 47; , be the components of f~"(v;) homotopic

to i, and A7, , be the component f~"(a(v;,70)), whose core curve is v, j . and set
o =deg ", . Then

mn

mOd(a(’Y;Lj,aa Tn)) - mOd(CL(’)/j, TO))/d'L,j,aJ

The annuli a(v}};,,, 7) are disjoint and homotopic to the the curve ;. These can
be lifted to the covering space of the annulus A(+;, 7,) where, using the Grotzsch
inequality we obtain

Z mod(a(fyija, 7)) < mod(A(;, 7).

Consequently, we have
mod(A(T", 7,,)) > mod(a(T', 7,)) > Bmod(a(T, 7))
> Afmod(a(l', 79)) > Apr mod(a(I', 79))v
> mod(a(l', 79))v > fmod(a(l", 79))1
Hence for all v € T', we have mod(A(~, 7,)) > S mod(a(l’, 7))
The second conclusion follows from the first and inequality (15). O]

2The constants chosen in this section are not necessarily the best possible. For example, any
constant greater than 1 would do here.
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Lemma 11. Ifa, b>0,0<3<1, and e® > pe® — 1, then a — b > log 3 — 1.
Proof. If fe® —1 > 1, then by Lemma 9, we have
log(Be’ — 1) > log(Be?) — 1 >1log B+ b — 1.

Hence by the assumption e® > 8¢ — 1, we have a — b > log 3 — 1.
If Be® — 1 < 1, then b < log 2 — log 3. Since a > 0,

a—b>0—b=—-b>logf —log2>logpl—1.

For 7 € Ty and a multi-curve I', define

w(l',7) = min erw(y,7) and w(l,7)= malgiw(% 7).
e

Lemma 12. Let I' be an irreducible multi-curve such that the Aa. > 1. Suppose
w(l',70) > log(6/3) +log 7 for some 7o € Ty. Then setting 7, = 0’}(7o), the sequence
{w(T,7,)}, is (log 8 — 1 — 2log 7)-quasi-nondecreasing.

Proof. For w(T',75) > log(6/5) 4+ logm > log 2, by (16), we have
log mod(a(T', 7)) > log(6/8) or mod(a(T, 7)) > 6/8

and in particular, Smod(a(I", 7p)) — 1 > 4.
Applying Lemma 10, it follows that

mod(a(I', 7,,)) > 4 (18)

for all n and therefore that the elements of the sequence y, = logmod(a(T,7,))
are all positive. Choose arbitrary integers ny > ny > 0, and set a = yp,, b = yp,
and n = ny — n; so that by Lemma 10, e* > B3¢ — 1. Lemma 11, then implies
a—b>log — 1, so that the sequence {y,} is (log # — 1)-quasi-nondecreasing.

The hypothesis w(T", 79) > log(6/3) + log m and inequalities (15) and (16), yield
mod(A(I', 7)) > 4 and then that w(I',7,) > log(4/7). Since mod(a(v,7,)) is con-
tinuous and decreasing with respect to [(y, 7,,), the minima are attained for the same
~v € I' as n varies. That is,

mod(a(l’, 7,)) = mod(a(y, 7)) and  w(l', ) = w(y,7)
and therefore, by inequality (17)
|y — w(I', 7,)| < logm.
Thus w(I', 7,) is (log 8 — 1 — 2log 7)-quasi-nondecreasing,. O
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Lemma 13. Let k > 1 be an integer, and set D = dr(79,71). If 71,72 are non-
peripheral simple closed curves in C\ Py such that some component of f~*(y) is
homotopic to 7y, then

w(y2,70) > w(y1,70) — k(logns + 2D).

Proof. Consider Y = f~%(R,) C R,,. Then f* : v — 7 is a covering map of
degree at most n. This implies that Iy (y2) < d*I(y1, 7). Since the inclusion map
Y < Ry, is length-decreasing, it follows that I(vy, 7¢) < n/jl(71, 70) and therefor that
w(v2, Tx) > w(y1,70) — klogny. Since dp(7;, 7i41) < dr(79,71) = D and since the
map 7y — w(, 7o) is a Lipschitz function with constant 2, we get

w(y2,70) > w(ye, Tk) — 2kD > w(y1,70) — k(2D + logny).

Recall that p is the number of points in P;.

Lemma 14. Suppose I' is an irreducible multi-curve. Then for all v;, v; € I', and
all T € Tf,
lw(y, 7) —w(v;,7)| < (p—3)(logns +2D).

Proof. Since T' is irreducible, there is an integer ¢ < |I'| < p — 3 such that ; is
homotopic to a preimage of f~9(v;). By Lemma 13,

w(vi,7) 2 w(y;,7) = (p— 3)(logny + 2D).
The lemma follows by symmetry. ]

Let
A = —loglog(3 +2V2). (19)

In the next proposition, 3 is the constant in Proposition 5 and My is the constant
in Proposition 4.

Proposition 8. Given an f-stable multi-curve T, suppose again that w(T',19) >
log(6/06) +logm. Write I' =T"UT", where I is the union of the irreducible compo-
nents I'; of I' for which A(Ar;) > 1. Then

(1) for all v € T', {w(7, ) }n>0 S K-quasi-nondecreasing, with k = logf — 1 —
2logm —2(p — 3)(logns + 2D);

(2) for all v € I and alln > 0,
w(v,7,) > wl’, 7,) — My(logny + 2D).
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(8) There exists a constant Ju, such that if w(I',10) > Ja, then for every v € T
andn >0, w(y,m,) > A

Proof. For (1), let I'; be an irreducible component of I' for which A ar, = 1. By
hypothesis, w(I', 75) > log(6/3) + logm so we can apply Lemma 12 to deduce that
{w(T;,7,)} is (log f — 1 — 2log 7)-quasi-nondecreasing.

Applying Lemma 14 and Property 6 to I'; we have that for each v € I';, the
sequence {w(vy,7,)} is k = (logf — 1 — 2logm — 2(p — 3)(logns + 2D))-quasi-
nondecreasing.

For (2), note that by Lemma 13 and (1), we have that for all v € T, and all
i >0,

w(y,7) 2 min{w(y', 7a)} — My(logny +2D).

For (3) set Ju = max{x + 2M(logns + 2D),log(6/3) +logm}. Now by (1) and
(2) of this lemma, if for any v € T" and all n > 0, w(T", 79) > Ja, then w(I',79) > J4
and w(v,,) > A. O

For 7 € T}, let

L, ={w(~v,7) | 7is a closed curve in C \ Pr},

and set
w(T) = sup L,.

For any 7, there are only finitely many non-trivial closed curves ~ in @\ P; whose
hyperbolic length I(, 7) is shorter than * = log(3+2+v/2); it follows that [A, co)\ L,
is a set of finitely many intervals. For any J > 0, let (a,b) be the leftmost interval
in [A,00) \ L, of length J, and set

Lyr={y€C\ Py | wly,7) > b} (20)
where 4 runs over all simple closed curves in C \ Ps.
Given 7 = [u] € Ty, let 7' = o¢(7) = [1'] and D = d(7,7'). Set f, = whf(w")~}
and let P, = w"(Py), Py = w” (Pf), and P" = f71(P,).
Lemma 15. We have
(1) If J > logns + 2D and if Uy, # 0, then Ty, is f-stable.

(2) Any simple closed geodesic on C \ P! of length less than nye~® is homotopic
to a component of f- (wt(y)) for some~y €T ..
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Proof. (1) Since b > —logl*, e7® < I*, and all the curves in I, are pairwise disjoint.
If y €Ty, and 7 is a component of f~!(v) such that f :+ — 7 is a map of degree
do < ny, then

/

lavpr (W (7)) = dal (7, 7).
Because P C P/, it follows that

(Y, ) < gy pr (@' (7)) = dal(y,7) < mygl(y, 7).

This in turn implies that
w(',7") > w(y,7) —logny.
By the assumption w(y,7) > b and by Lemma 8, we have
w',7) > w,7) = 2D > w(y,7) —logny —2D >b—J >a

and therefore that 7 must be in I' ;. This implies that I';, is f-stable.

(2) For any v € I';,, and any non-peripheral component w* (7') of f=(w"(7)),
(1) implies Iz, pr(7') < nse’.

On the other hand, if o/ C C \ P” is a simple closed geodesic of length < e,
then o = f.(a/) is a geodesic in C \ P, of length nye™. Since nje™® < 2lx, «
must be simple. Then v = (w*)~!(«) is a simple closed curve in C \ P such that
[(7,7) < nye™? or equivalently w(vy,7) > b —logns. Now b —a = J > logn; so
v e FJJ—. ]

Lemma 16. Let X be Riemann surface, P C X be a finite set, with §P = p > 0.
Set X' = X \ P, and choose L < log(3 + 2v/2). Let «y be simple closed geodesic on
X, and vy, -+, 7. be the closed geodesics of X' homotopic to v in X and of length
< L. Setl=1Ix(7), Il =1lx/(v}). Then

(1) s <p+1;
(2) for alli, I, >1;
(3) 1)l =2/r—(p+1)/L <> . 1/l; <1/l+ (p+1)/m.
See [DH] for a proof.
Lemma 17. There is a constant C' > 0 depending only on p and d such that for
any f-stable multi-curve I' with \r < 1/2. Then for any 7 € Ty, if w(I',7) > C,

then
w(l,o4(7)) <w(T, 7).
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Proof. Suppose
T'={y, "}
Let
R* ={v=am -+ +am}
with the supremum norm

|v| = max |a;].
1<i<n

Then
4] = sup |Av]

[v|=1

be the corresponding norm for any matrix A : RY — RY.
For any 7 = [u], let 7/ = 04(7) =[] and P, = w"(P;) and P, = w" (Py). We
have the following commuting diagram

(€, Py) 5 (C, Py
Al f lg
(€. Py) 2 (C,P))

where ¢ is a rational map. Let P” = g~!(P;). Define v;,v, € R! by

1 1
1y1,7) 1(y1,7")

v, = : and vy = :
_1 1
I(yn,T) U(vn,T)

Let B > 0 be a constant such that L = de™? < log(3 4 2v/2. For any v; €T, let
7ij.a be the components of f~'(v;) homotopic to ;. If w(I',7) > B, then for any
v; € I', by Lemma 15, it follows that the hyperbolic length of all the components
of g7 (a;) in C\ P” is less than L = de™ 3, where o; is the simple closed geodesic
homotopic to v; in C\ P..

Since g : C\ P” — C\ P, is a covering, we have

1

2 T (07 (31720)

= [Ar?h]zw

By Lemma 16, for each i, we have

So



If

1  pd
> 2(—+ —
|?)1| ( [)7
we claim |vq| < |vy|. If not,
| |>_—1| | —1| |>_—1| | —1 _d
(% v1| + =|v v+ —+ .
2 T ol 2T g L

It is a contraction to (21). The contradiction implies that if we choose
1 d
C = max{logZ(— + p—),B},
™ L
then for any 7 € T, if w(I',7) > C, then
w(l,o4(7)) <w(l, 7).
O

In the rest of this section, we will use max{—loglog(3 + 2v/2), C} to replace the
constant A in (19), that is, we consider

A = max{—loglog(3 4+ 2v/2), C}. (22)

Recall the definition of I';, in (20) for a 7 € T}.

Since there is only finite many possible matrices for the all possible f-stable
multi-curves I' and there is no Thurston obstruction, there is a number m > 1,
depending on d and p, such that A\(A}") < 1/2 for any I

We prove the theorem by contradiction. Suppose f has no bounded geometry.
Take a 79 € T, let 7, = 0?(7'0). Since f has no bounded geometry, it follows that
there exists a sequence of non-peripheral curves v,, € C\ Py, such that

W(Vn;, ;) — 0, as  j — oo. (23)

Let D = dy(70,71). Let J > C+2mD. Let I',, =T';,, . By (23), we know there
exists an n such that T';, # (). From the definition of T',,, we have that w(T',,, 7,,) >
C +2mD. Let C(J) be an increasing function of J. Then we have infinitely many
n such that

w(ly, ) > C(J).
Let ny be the smallest such integer. Since o is contracting, then by using Lemma 8,

we have that
wW(Chy, Tg—m) = C.

Lemma 17 implies that
WLy Thy) < W, Trg—m) < C(J),
which is a contradiction. This contradiction implies that f must have bounded

geometry. This completes the proof of (2) <= (3) in Theorem 1.
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13.1 Proof of (2) <= (5) in Theorem 1.

We first prove (2) = (5). It is relatively easy. Since f has bounded geometry, there
are a constant a > 0 and a 7y € Ty such that [(v, 7,,) > a for all simple closed curves
in C \ Ps. By the Lipschitz property (Lemma 8) of the map 7 — —logl(~,7), for
any 7, € Ty, let d = dr (70, 7)). Then dr(7,, 7)) < dr (70, 75) < d. This implies that

|log 1(y,7) — log (v, 1) < 2d7 (7, 7,) < 2d.

Thus [(v, 7)) can not tend to zero as n goes to co.
Now we prove (2) <= (5). Since A(Ar,) < 1, we have a & > 0 such that
AMAE ) <1/2.

Proposition 9. Let 79 € Ty and 7, = 0¥(7) for n > 0. There exists a constant
C(J) > 0 depending on p, d, €9, D = dr(79,71) and J > m(logd+2D+1) such that
if w(tg) > C(J), then T =T, # 0 is a stable multi-curve. Moreover, if I's, # (),
then

w(loo, 1) < WL, 70)-

Lemma 18. Let J > m(logd + 2D + 1). Suppose wto) < C(J) and suppose
I' =Ty, #0 for somem > 0. Let E(J) = C(J)+2mD. IfT'« # 0, then for all
n,

w(loo, ) < E(J).
Moreover, if w(v,7,,) > E(J), then v € T.

Proof. We prove the first inequality by contradiction. Suppose there is an n > 0
such that w(lw,7,) > C(J) + 2mD. Suppose ng is the first integer having this
property. Then we have w(I'w, Zpy—m) = C(J). Then by Proposition 9 and the fact
that ng is the first integer such that w(Tw, 7o) > C(J) + 2mD, we have

W(Looy Tng) < W(Logy Tng—m) < C(J) + 2mD.

This is a contradiction.
If w(v,7,) > E(J) >C(J) > A+ (p—3)J, then v € I';,, = I since there are

at most p — 3 simple closed curves in C \ Py such that w(vy,7,) > A. But v ¢ '
because of the first conclusion and the assumption. Therefore, v € I'y. O

We prove it by contradiction. Suppose f has no bounded geometry, that is
there exist an 7y € T such that there exists v, and 7, with w(v, 7,,) — co. Let
D = d']'(To,Tl).

We can find a Jy > C+2mD such that w(ry) < C(Jp). Without lost of generality,
we assume Jy = J4 + |A|, where J4 is the number in Proposition 8. Since C'(J) is
increasing with J, then w(ry) < C(J) for all J > J.
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Fix J > Jy. We have some n such that I', = I';, # 0. Then w(T'y,7,) >
C +2mD. Write
Iy =T UlLp.

If I'y oo # 0, similar to the proof of Lemma 17, there exists an integer m depending
on p and d such that
U)(Fn,oo, Tm) < w(rn,ooa TO)'

Furthermore, we claim that for all n > m,
W(Choo, ) < C(J) 4+ 2mD.

The claim implies that if w(vy, %) > C(J) + 2mD, then w(y,7,) > A+ (p — 3)J,
then v € Iy, 0.

We prove the claim by contradiction. Suppose there is an n > 0 such that
Wl o0, ) > C(J) 4+ 2mD. Suppose ng is the first integer having this property.
From the definition of I',,, we know that w(I',,) > C + 2mD. Thus, w(l'y, ) >
C +2mD and w(l'y, 00, Tny —m) > C by Lemma 8. But, similar to the proof of
Lemma 17,

W(Chg 00, Tng) < W(LT g 00, Tng — m) < C(J) +2mD.

This is a contradiction. The contradiction implies the claim. This further implies
that I',,, o # 0 for k large. Thus I',,, is a Thurston obstruction.
Define
FJ = UTLZ”OFJ,Tn,O and g = UJZJOFJ.

Then G is a multi-curve.

Since w(vyx, Tn,) — 00, given any fixed J > Jy, w(yk, 7)) > C(J) + 2mD for
infinitely many k, Hence 7, € I'; C G infinitely often. Since G is finite, for some
v € G, we have 7, =  for infinitely many k. Hence the set

'y ={y | w(v,7,) is unbounded} C G

is nonempty.

We first claim that I', = G = N>, ;. We prove this claim as follows.

The inclusion N>y C I', is clear. To see the other inclusion, let v € I',,.
Given J > Jy, there exists some n such that w(vy, 7,) > C(J)+2mD. By Lemma 18,
v e Fjﬂ-n,o CI'y. Then v € ﬂ]ZJOFJ.

Next we claim that I'y, = I';, for some J. > Jy. We give a proof of this claim
by using contradiction as follows: Otherwise, since I', = N> 'y, for all J > Jy,
there exists a v; € 'y and v; ¢ T',. Since G is finite, there exists a 7, such that
v = 7y € I'; for infinitely many J, while v ¢ T',. This is a contradiction, since
v € T'; for infinitely many J implies that the sequence {w(v,7,)} is unbounded.
The contradiction proves the claim.
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Now we have that I', = Up>p,1' .50 for some J. > Jy. For every n such that
I' =T, ., 0 is nonempty, then I' = I UT". Applying Proposition 8, we know that if
v € T”, then the sequence {w(v',7,)} is both unbounded and quasi-nondecreasing,
so w(v',1,) — o00. (2) of Proposition 8 implies that w(y,7,) — oo for all v € T.
This implies that I'j_, o C I'c and thus I', = I'...

Finally we claim that for some n = n, we have I'. = I'j . . This last claim
implies that I'. is a Thurston obstruction. We prove this last claim as follows:

Since I'y, = I'c = U,I'j. .0, the inclusion I'; ;. o C I': C G holds for all n.
Since there are finitely many elements in G, there exists an n. so large that for all
v € I'. and all n > n. we have w(vy,7,) > C(J.) +2mD. By Lemma 18, we have
v e FJC,TnC,U' ThUS, FC = chmc’o.

Finally, I'. depends only on f and not on the initial point 7, since for any -, the
map 7 — w(7, 7) is Lipschitz with the Lipschitz constant two and o is contracting.
The theorem follows.

Corollary 2. For any 7 € Ty, there is a number L = L(7) > 0, such that for any
simple closed curve v & I, then I(7y,0%(7)) > L for all n.

Proof. Suppose 7, = 0?(7’). Let v be an arbitrary non-peripheral, essential, simple
closed curve. If w(v,7,) > C(J.) +2mD for some n, then v € I';_, 0. The proof of
the above theorem show that v € I'.. Thus if v ¢ I, w(v,7,) < C(J.) + 2mD for
all n. Let L = e=¢Ue)=2mD_Then I(v,7,) > L for all n if y ¢ I.. O

14 Proof of (3) = (5) in Theorem 1.

Suppose ', # (. First we prove that I'. is a multi-curve. For any 7,7, € I, there
is a 7o and n > 0 such that I(y;, 7,,) < log(3 + 2v/2) for i = 1,2, where 7, = o’ (7).
By the collar lemma, +; and 7, are disjoint. Moreover, it follows that ['. contains
at most p — 3 simple closed non-peripheral curves.

Next we prove I'. is f-stable. For any v € I'., let 7/ be a non-peripheral simple
closed curve in f~!(v). Then f :+ — 7 is a covering map of degree d’' < d = deg f.
For any 75 € Ty and any n > 0, let 7, = 0%(70) = [1tn]. Let 71 = [ftn41]. Then

go = w" o f o (whn ) C\wh e (7 (Py)) — €\ wh (Py)

is a holomorphic covering. This implies that {(y, 7,,41) is less than the hyperbolic
length of 7/ measured in C \ whrt(fY(Py)) which is d'l(vy,7,) < dl(v,7,). Thus,
(7, Tns1) — 0 as n — 0o. so we have that ' € T'.. Therefore, T'. is f-stable.

Now we prove that A(Ar,) > 1 as follows. If the last inequality does not hold, we
have a m > 0 such that A(A7!) < 1/2. Let J > C'+2mD, we can take a 7 € Ty such
that w(I'c, 7,) > C + 2mD for all n, where D = dr(1,0/(7)). Let C(J) be large
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enough such that w(I'.,7) < C(J). By the definition of I';, it follows that there
exists an n such that w(I'., 7,,) > C(J). Let ng be first such integer. By Lemma 17,
Since oy is contracting, it follows that w(I'., T,—m) > C by Lemma 8. From the
fact that ng is the first integer n such that w(I'., 7,) > C(J), it follows that

w(Te, 7o) < WLy Tng—m) < C(J),

which contradicts the assumption that w(I'., 7,,,) > C(J). So we have that A\(Ar,) >
1. Therefore I'. is a Thurston obstruction. This completes the proof of (3) = (5)
in Theorem 1.
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