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Abstract. In the early 1980’s, computers made it possible to observe that in
complex dynamics, one often sees dynamical behavior reflected in parameter

space and vice versa. This duality was first exploited by Douady, Hubbard and

their students in early work on rational maps.
Here, we extend these ideas to transcendental functions.

In [16], it was shown that for the tangent family, {λ tan z}, the hyperbolic

components meet at a parameter λ∗ such that fnλ∗ (λ∗i) =∞ for some n. The
behavior there reflects the dynamic behavior of λ∗ tan z at infinity. In Part

1. we show that this duality extends to a more general class of transcendental

meromorphic functions {fλ} for which infinity is not an asymptotic value.
In particular, we show that in “dynamically natural” one-dimensional slices

of parameter space, there are “hyperbolic-like” components Ω with a unique

distinguished boundary point such that for λ ∈ Ω, the dynamics of fλ reflect
the behavior of fλ at infinity. Our main result is that every parameter point

λ in such a slice for which the iterate of the asymptotic value of fλ is a pole is

such a distinguished boundary point.
In the second part of the paper, we apply this result to the families λ tanp zq ,

p, q ∈ Z+, to prove that all hyperbolic components of period greater than 1 are
bounded.

Introduction. In the early 20th century, Fatou and Julia studied dynamical sys-
tems generated by holomorphic functions and, more particularly, rational functions.
With the growth of computing power in the 1980’s, it became possible to draw pic-
tures of these systems. These pictures, even in the simplest case of the family
{z2 + c} generated tremendous interest. Studying pictures of Julia sets of these
polynomials and of the Mandelbrot set, Douady, Hubbard and their students, us-
ing techniques developed from the theory of quasiconformal mappings, discovered,
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among other things, that the points c of the Mandelbrot set M for which an iterate
of c under z2 + c belongs to a periodic cycle play a key role in understanding the
structure of M . See e.g. [10, 19, 25]. If the cycle is attracting, c is a center of
a component of the Mandelbrot set in which the structures of the Julia sets are
all quasiconformally conjugate. The centers give a combinatorial description of the
Mandelbrot set. If the cycle is repelling, there is a natural map from the Julia set of
z2 + c to a neighborhood of c in the plane which shows that the dynamical behavior
is reflected in parameter space and vice versa.

Families of entire functions, like the exponential and sine families, whose pa-
rameter spaces are quite different, have also been studied to the same end. In the
exponential family exp z + c where the essential singularity is also an asymptotic
value, for example, all the hyperbolic components are unbounded. See [8, 22, 24].

The simultaneous presence of poles and essential singularities make transcenden-
tal meromorphic functions more difficult to analyze. The first such results were for
the tangent family, λ tan z in [16]. Such functions have two asymptotic values and
no critical values. In the quadratic family z2 + c, the orbit of the critical value c
determines the dynamical behavior. For the tangent family, the parameter λ also
determines the dynamical behavior, because that behavior is determined by the
orbits of the asymptotic values ±λi. The hyperbolic components of the parameter
space are enumerated in terms of a distinguished boundary point on the compo-
nent, a “virtual center”, so called because the multiplier of the attracting cycle
corresponding to the hyperbolic component goes to zero at that boundary point.
It was also proved that the virtual centers are in one to one correspondence with
those parameters for which some iterate of the asymptotic value λi is a pole. The
key idea here is that there is a duality between these particular parameters and the
dynamical plane near infinity.

In this paper we define a general class of transcendental meromorphic functions.
The main result is that families of this class exhibit the same duality as the tangent
family: that is, in a properly chosen one dimensional slice of the parameter space,
at every point where an iterate of the asymptotic value is a pole, hyperbolic-like
components meet in a way that reflects the dynamical behavior of the functions at
infinity.

To describe the classes of functions we concern ourselves with and to state our
theorems, we need some background. The dynamical plane of a meromorphic map
is divided into two sets: the Fatou or stable set on which the iterates are well defined
and form a normal family, and the Julia set, its complement. The Julia set can be
characterized as the closure of the set of repelling periodic points, or equivalently,
the closure of the set of pre-poles, points that map to infinity after finite iteration.
A good introduction to meromorphic dynamics can be found in [5].

We begin with a transcendental meromorphic function f : C → Ĉ with an es-
sential singularity at infinity. The points over which a meromorphic function f
is not a regular covering map are called singular values. Singular values may be:
critical values (images of zeroes of f ′, the critical points), asymptotic values (points
v = limt→∞ f(γ(t)) where γ(t) → ∞ as t → ∞) and accumulation points of the
previous types. If an asymptotic value is isolated, the local inverse there is holo-
morphically equivalent to the logarithm. The class of meromorphic functions with
finitely many singular values, called finite type functions, is particularly tractable:
all the asymptotic values of these functions are isolated; the Fatou domains of these
functions have a simple classification because there are no wandering domains (see
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Section 1 for definitions); the parameter spaces of such functions have natural em-
beddings into Teichmüller spaces of dimension n, where n is a simple function of the
number of singular values. See e.g. [14]. The focus in this paper is on the subclass
M∞ of functions of finite type for which infinity is the only essential singularity and
is not an asymptotic value. These necessarily have infinitely many poles and this
behavior at infinity has consequences for the dynamical and parameter spaces (see
e.g. [7, 1, 2, 3, 4]). In particular, it is very different from that for entire functions
or transcendental functions with finitely many poles. See e.g. [12, 22, 23, 24].

A general principle in dynamics is that each stable dynamical phenomenon is
“controlled” by a singular value. For example, each attracting or parabolic peri-
odic cycle always attracts a singular value; the boundary of each rotation domain
contains the accumulation set of the orbit of a singular value. This principle is an
important tool in studying parameter spaces. Dynamically natural one-dimensional
slices of parameter spaces families of functions in M∞ were defined in [13] using
this principle. See Definition 2.9 for the precise definition. The idea is that the slice
is compatible with the dynamics in the sense that all but one of the singular values
controls a stable phenomenon that persists throughout the slice. The remaining
singular value, called the “free singular value v = v(λ)”, can exhibit varying behav-
iors at points λ in the slice. For example, at some point λ0, v(λ0) may be attracted
by an attracting periodic cycle; if so, this will also be true for all other λ’s in an
open “hyperbolic-like” region of the slice where the functions are all quasiconfor-
mally conjugate on their Julia sets. If, however, in every neighborhood of λ0 the
orbits of v(λ) exhibit many different types of dynamical behavior then λ0 belongs
to the “bifurcation locus”. In this paper we study how the hyperbolic-like regions
fit together around the bifurcation locus in a dynamically natural slice.

The bifurcation locus of dynamically natural slices of families in M∞ contains
parameters distinguished by functional relations. In analogy with rational maps,
there are Misiurewicz points where v lands on a repelling periodic cycle. Another
type of distinguished parameter, not seen for rational maps, is a virtual cycle pa-
rameter, where an iterate of v is a pole. See [13]. As we will see, these are somewhat
analogous to the centers of hyperbolic components of rational maps where a critical
value lands on a super-attracting cycle.

Dynamically natural slices contain two different kinds of hyperbolic-like domains:
capture components, where the free asymptotic value is attracted to one of the fixed
dynamical phenomena such as an attracting cycle of fixed multiplier, and shell
components, where the free asymptotic value is the only singular value attracted to
an attracting cycle with a variable multiplier. In a shell component the period of
the attracting cycle is constant and the multiplier map is a well-defined universal
covering map onto the punctured disk. Properties of shell components for general
families in M∞ were studied in detail in [13]. In particular, it was proved that
the boundary of every shell component contains a special point, the virtual center
where the limit of the multiplier map is zero. One of the main results proved there
is

Theorem [FK]. For families in M∞, a virtual center on the boundary of a shell
component in a dynamically natural slice is a virtual cycle parameter and any virtual
cycle parameter on the boundary of a shell component is a virtual center.

In this paper, we concern ourselves with a special subclass inM∞. We start with
Nevanlinna functions, these are functions of finite type with one essential singularity
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at infinity, finitely many asymptotic values and no critical values. We let Nr be
the subclass of Nevanlinna functions with r asymptotic values, none of which is
infinity. We next form the family which we call Generalized Nevanlinna functions
by pre- and post-composing Nevanlinna functions with polynomials. If P and Q
are polynomials of respective degrees p and q and g ∈ Nr, we define the subfamily
Mp,q,r = {P ◦ g ◦ Q}. These are generalized Nevanlinna functions all of whose
asymptotic values are finite; note that infinity, however, is allowed to be a critical
value. The following proposition is proved in [13].

Proposition [FK]. If h is a meromorphic function topologically conjugate to a
function f = P ◦ g ◦ Q in Mp,q,r then h also belongs to Mp,q,r; that is there

is a function g̃ ∈ Nr and polynomials P̃ , Q̃ of degrees p, q respectively such that
h = P̃ ◦ g̃ ◦ Q̃.

In this paper we obtain the corollary,

Corollary [FK]. There is a natural embedding of Mp,q,r into Cp+q+r+3.

Theorem [FK] does not preclude the existence of virtual cycle parameters that
are not on the boundary of a shell component. For example, such a parameter
might be buried in the bifurcation locus. Our first new theorem says this cannot
happen for slices of Mp,q,r.

Theorem A. In a dynamically natural slice in Mp,q,r, every virtual cycle param-
eter lies on the boundary of a shell component.

Corollary A, which follows directly from Theorems [FK] and A, says that in
Mp,q,r the notions of virtual center and virtual cycle parameter are equivalent.

Corollary A. In a dynamically natural slice of Mp,q,r, every virtual cycle param-
eter is a virtual center and vice versa.

In [13] it was proved that for families in M∞, shell components of period 1
in dynamically natural slices where the parameter is an affine function of the free
asymptotic value are always unbounded and it was conjectured that those of period
greater than 1 are always bounded. This is in contrast to general families of entire
functions, where because infinity is asymptotic value, there are unbounded shell
components of arbitrary period. The conjecture was proved true in the tangent
family in [16]. In this paper we prove it for the generalization of the tangent family,
F = {λ tanp(zq)}. This is a subfamily of Mp,q,r.

Theorem B. Every shell component of period strictly greater than 1 in the λ plane
of the family F is bounded.

The paper is organized as follows. Part 1. is a discussion of the general family
Mp,q,r and dynamically natural slices of its parameter space. In Section 1 we give
a brief overview of the basic theory, set our notation and discuss the theorem of
Nevanlinna, Theorem 1.3, which we use to define the class of Nevanlinna functions.
Next, in Section 2, we define the class of generalized Nevanlinna functions, state
Proposition [FK] and prove Corollary [FK]. In Section 2.1 we first recall the classi-
fication of Fatou components in our context. We then define dynamically natural
slices of parameter spaces and their shell components. In Section 3, we define virtual
cycle parameters and virtual centers, state Theorem A and prove Theorem B.
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Part 2 is a discussion of the special symmetric subfamily F ⊂Mp,q,2. In Section 4
we classify the shell components of F by period and discuss the special properties
of the components of periods 1 and 2. Finally, in Section 5 we prove Theorem B.

The authors thank the referees for their careful reading and thoughtful comments.

Part 1. The family Mp,q,r

1. Basics and tools.

1.1. Meromorphic functions. In this paper, unless we specifically say otherwise,

we always assume that an entire or meromorphic map f : C→ Ĉ is transcendental
and so has infinite degree. If f has essential singularities in addition to one at
infinity, it is not defined at them. If we mean a map of finite degree we call it
polynomial or rational. We need the following definitions:

Definition 1.1. A point v ∈ Ĉ is called a singular value1 of f if, for some small
neighborhood of v, some branch of f−1 is not well defined. If c is a zero of f ′, it is a
critical point and its image v = f(c) is a critical value. The branch with f−1(v) = c
is not well defined so the critical value v is singular. A point is also singular if there
is a path γ(t) such that limt→∞ γ(t) = s where s is an essential singularity of f and
limt→∞ f(γ(t)) = v. The limit v is called an asymptotic value of f . Singular values
may be critical, asymptotic or accumulations of such points. We denote the set of
singular values of f by Sf .

If an asymptotic value v is isolated, and γ is an asymptotic path for v, we can
find a nested sequence {Dr,v}, of disks of radius r centered at v, with r → 0, and
a particular branch g of f−1 such that {Vr = g(Dr,v)} is a nested sequence of
neighborhoods containing γ and ∩g(Dr,v) = ∅. Then r can be chosen small enough
so that the map f : Vr → Dr,v \ {v} is a holomorphic universal covering map. In
this case Vr is called an asymptotic tract for the asymptotic value v and v is called
a logarithmic singular value. The number of distinct asymptotic tracts of a given
asymptotic value is called its multiplicity2.

Definition 1.2. (See e.g. [17]) A ray β = teiθ, t ∈ [t0,∞), is called a Julia ray
and θ is called a Julia direction for the meromorphic function f if for large t0, f
assumes all (but at most two) values infinitely often in any sector containing β.

An example to keep in mind is ez with asymptotic values at 0 and ∞. The
asymptotic tracts are the left and right half planes and the Julia directions are
θ = ±π/2. Another example is tan z with asymptotic values ±i, asymptotic tracts
the upper and lower half planes and Julia directions 0 and π.

In this paper, whenever we talk about the number of critical points and/or as-
ymptotic values, we tacitly assume that we count them with multiplicity.

Infinity is always both an asymptotic value and an essential singularity of an
entire function f .

We will only be interested in meromorphic functions with #Sf <∞ and a single
essential singularity at infinity. These are called functions of finite type. Note that
because all the asymptotic values of a finite type function are isolated, they are
logarithmic. Such functions may have infinity as a singular value or a critical value.

1In the literature these are sometimes called singularites of f−1, see e.g. [6] for a complete
discussion.

2Note this notion is not the same as multiplicity of a critical point.
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Their iterates, however, are not of finite type and have essential singularities at
pre-images of infinity.

1.1.1. Nevanlinna functions. Nevanlinna, in [20] and [21], characterized families of
meromorphic functions with finitely many asymptotic values, finitely many critical
points and a single essential singularity at infinity. (See [9, 16, 11] for further
discussion.)

Recall that the Schwarzian derivative of a function g is defined by

S(g) = (g′′/g′)′ − 1

2
(g′′/g′)2. (1)

Because Schwarzian derivatives satisfy the cocycle relation

S(f ◦ g)(z) = S(f)(g′(z))2 + S(g)(z)

and the Schwarzian derivative of a Möbius transformation is zero, solutions to equa-
tion (1) are determined only up to post-composition by a Möbius transformation.

Nevanlinna’s theorem says

Theorem 1.3 (Nevanlinna). ([21], Chap XI) Every meromorphic function g with
p < ∞ asymptotic values and q < ∞ critical points has the property that its
Schwarzian derivative is a rational function of degree p + q − 2. If q = 0, the
Schwarzian derivative is a polynomial P (z). In the opposite direction, for every
polynomial function P (z) of degree p−2, the solution to the Schwarzian differential
equation S(g) = P (z) is a meromorphic function with exactly p asymptotic values
and no critical points. The only essential singularity is at infinity.

Remark 1.1. The proof of the first part of this theorem involves the construction
of the function as a limit of holomorphic functions whose Schwarzians are rational of
bounded degree. By construction, the only essential singularity of the limit function
is at infinity. The proof of the second part of the theorem involves understanding
the asymptotic properties of solutions to the equation S(g) = P (z). In particular,
there are exactly p “truncated solutions” g0, . . . , gp−1 that, for any ε > 0, have
asymptotic developments of the form

log gk(z) ∼ (−1)k+1zp/2

defined in the sector | arg z − 2πk/p| < 3π/p − ε. Each gk is entire and tends to
zero as z tends to infinity along each ray of the sector | arg z − 2πk/p| < π/p and
tends to infinity in the adjacent sectors. The rays separating the sectors are the
Julia rays for g(z). It follows that the asymptotic values corresponding to adjacent
sectors cannot be equal. See [9, 15, 20] for details.

Definition 1.4. We denote the family of meromorphic functions with p < ∞
asymptotic values and no critical values by Ñp and call the functions Nevanlinna
functions. Note that for functions in this family infinity may be an asymptotic
value.

One immediate corollary of Theorem 1.3 is that Nevanlinna functions cannot
have exactly one asymptotic value. Moreover, since polynomials of degree p − 2
depend on their p− 1 coefficients and the solutions to the Schwarzian equation are
determined up to post-compostion by a Möbius transformations which depends on
four coefficents satisfying a relation, the most general solution depends on p + 2
parameters.
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Since infinity is an essential singularity, if it is also an asymptotic value, the
dynamics generated by the function are affected. Below we concern ourselves with
systems generated by functions none of whose asymptotic values is infinity. This
condition imposes a second relation on the coefficients of the Möbius transformation.

Therefore the space of Nevanlinna functions is a subspace of Ñp of dimension p+ 1;
we denote it by Np.

We state this as a corollary of Nevanlinna’s theorem.

Corollary 1.5. The family Np with p <∞ asymptotic values, none of which is at
infinity, and no critical values has a natural embedding into Cp+1.

A third immediate corollary of Nevanlinna’s theorem is that the family Np is
topologically closed. That is,

Corollary 1.6. If f is topologically conjugate to a meromorphic function g in Np,
and if f is meromorphic, then it is also in Np.

2. The family Mp,q,r. A family that is more general than Np is the family of
functions

Mp,q,r = {f = P ◦ g ◦Q | g ∈ Nr, P,Q polynomials of degrees p, q}.
Because P and Q are required to be polynomial, the functions in the family have

an essential singularity at infinity. Moreover, they have only finitely many singular
values. Infinity is an asymptotic value of f if it is an asymptotic value of g. This
family is topologically closed. The precise statement of this, proved in [13], is,

Proposition A ([13],Theorem 8.3). If h is topologically conjugate to a meromorphic
function f = P ◦g ◦Q in Mp,q,r, and if h is meromorphic, then it is also in Mp,q,r;

that is there is a function g̃ ∈ Nr and polynomials P̃ , Q̃ of degrees p, q respectively
such that h = P̃ ◦ g̃ ◦ Q̃.

The above proposition says that a function with the same dynamics as one in
Mp,q,r also belongs to this family. A corollary to the proposition is

Corollary A. The space of functions Mp,q,r has a natural embedding into
Cp+q+r+3.

Proof. The polynomials P and Q of degrees p and q are determined by their p +
q + 2 coefficients. By the discussion before Corollary 1.5 g is determined by r + 1
parameters. Therefore Mp,q,r has a natural embedding into Cp+q+r+3.

2.1. Dynamics of meromorphic functions. Let f : C→ Ĉ be a transcendental
meromorphic function with essential singularity at infinity and let fn denote the
nth iterate of f , that is fn(z) = f(fn−1(z)) for n ≥ 1. Then fn is well-defined,
except at the poles of f, f2, · · · , fn−1, which form a countable set. These points
have finite orbits that end at infinity.

The basic objects studied are the Fatou set and Julia set of the function f . The
Fatou set F (f) of f is defined by

F (f) = {z ∈ C | fn is defined and normal in a neighborhood of z},
and the Julia set by

J(f) = Ĉ \ F (f).

Note that the point at infinity is always in the Julia set. If f is a meromorphic
function with more than one pole, then the set of prepoles, P = ∪n≥1f

−n(∞) is
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infinite. By Montel’s theorem, fn is normal on Ĉ \ P. Since it is not normal on P,
J(f) = P, (see also [1]).

A point z is called a periodic point of p ≥ 1, if fp(z) = z and fk(z) 6= z for any
k < p. The multiplier of the cycle is defined to be µ = (fp)′(z). The periodic point
is attracting if 0 < |µ| < 1, super-attracting if µ = 0, parabolic if µ = e2πiθ, where θ
is rational number, and neutral if θ is not rational. It is repelling if |µ| > 1.

If D is a component of the Fatou set, then f(D) is either a component of the
Fatou set or a component missing one point. For the orbit of D under f , there are
only two cases:

• there exist integers m 6= n ≥ 0 such that fm(D) ⊂ fn(D), and D is called
eventually periodic;

• for all m 6= n, fn(D) ∩ fm(D) = ∅, and D is called a wandering domain.

Suppose that {D0, · · · , Dp−1} is a periodic cycle of Fatou components, then
either:

(a) The cycle is (super)attracting: each Di contains a point of a periodic cycle
with multiplier |µ| < 1 and all points in each domain Di are attracted to this
cycle. If µ = 0, the critical point itself belongs to the periodic cycle and the
domain is called super-attracting.

(b) The cycle is parabolic: the boundary of each Di contains a point of a periodic
cycle with multiplier µ = e2πiq/m, (q,m) = 1, m a divisor of p, and all points
in each domain Di are attracted to this cycle.

(c) The components of the cycle are Siegel disks: that is, each Di contains a point
of a periodic cycle with multiplier µ = e2πiθ, where θ is irrational and there
is a holomorphic homeomorphism mapping each Di to the unit disk ∆, and
conjugating the first return map fp on Di to an irrational rotation of ∆. The
preimages under this conjugacy of the circles |ξ| = r, r < 1, foliate the disks
Di with fp forward invariant leaves on which fp is injective.

(d) The components of the cycle are Herman rings: each Di is holomorphically
homeomorphic to a standard annulus and the first return map is conjugate to
an irrational rotation of the annulus by a holomorphic homeomorphism. The
preimages under this conjugacy of the circles |ξ| = r, 1 < r < R, foliate the
disks with fp forward invariant leaves on which fp is injective.

(e) Di is an essentially parabolic (Baker) domain: that is, the boundary of each
Di contains a point zi (possibly ∞) and fnp(z)→ zi for all z ∈ Di, but fp is
not holomorphic at zi. If p = 1, then z0 =∞.

Definition 2.1. Define the post-singular set of f as the closure of the orbits of the
singular values; that is,

PSf = ∪∞n=0f
n(Sf ).

For notational simplicity, if a pre-pole s is a singular value, ∪∞n=0f
n(s) is a finite

set and includes infinity.

Each non-repelling periodic cycle is associated to some singular point. In partic-
ular we have, see e.g. [19], chap 8-11 or [5], Sect.4.3,

Theorem 2.2. If {D0, · · · , Dp−1} is an attracting, superatttracting, parabolic or
Baker periodic cycle of Fatou components, then for some i = 0, 1, . . . , p − 1, Di

contains a singular value. If {D0, · · · , Dp−1} is a cycle of rotation domains (Siegel
disks or Herman rings) the boundary of each Di contains the ω-limit set of some
singular value.
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For a discussion of hyperbolicity for general meromorphic functions, see [26] and
the references therein. In this paper, we use the following definition of a hyperbolic
function in Mp,q,r. This definition is equivalent to what is called hyperbolic in the
spherical metric in [26].

Definition 2.3. An f ∈Mp,q,r is called hyperbolic if

PSf ∩ J(f) = ∅.

Note that if all the singular values of f are attracted to attracting or super-
attracting cycles then f is hyperbolic.

Singularly finite maps may have Baker domains but

Theorem 2.4. [4] If #Sf is finite, then there are no wandering domains in the
Fatou set.

2.2. Holomorphic families. In this paper, we are interested in the familyMp,q,r

of generalized Nevanlinna functions for which infinity is not an asymptotic value.
For each choice of triples (p, q, r) this is an example of a holomorphic family. Below
we state the general definitions and results we need.

Definition 2.5 (Holomorphic family). A holomorphic family of meromorphic maps

over a complex manifold X is a map F : X × C→ Ĉ, such that F(x, z) =: fx(z) is
meromorphic for all x ∈ X and x 7→ fx(z) is holomorphic for all z ∈ C.

Definition 2.6 (Holomorphic motion). A holomorphic motion of a set V ⊂ Ĉ over

a connected complex manifold with basepoint (X,x0) is a map φ : X × V → Ĉ
given by (x, v) 7→ φx(v) such that

(a) for each v ∈ V , φx(v) is holomorphic in x,
(b) for each x ∈ X, φx(v) is an injective function of v ∈ V , and,
(c) at x0, φx0

= Id.

A holomorphic motion of a set V respects the dynamics of the holomorphic family
F if φx(fx0

(v)) = fx(φx(v)) whenever both v and fx0
(v) belong to V .

The following equivalencies are proved for rational maps in [18] and extended to
the transcendental setting in [16].

Theorem 2.7. Let F be a holomorphic family of meromorphic maps with finitely
many singularities, over a complex manifold X, with base point x0. Then the fol-
lowing are equivalent.

(a) The number of attracting cycles of fx is locally constant in a neighborhood of
x0.

(b) There is a holomorphic motion of the Julia set of fx0
over a neighborhood of

x0 which respects the dynamics of F .
(c) If in addition, for i = 1, . . . , N , si(x) is are holomorphic maps parameterizing

the singular values of fx, then the functions x 7→ fnx (si(x)) form a normal
family on a neighborhood of x0.

Definition 2.8 (J−stability). A parameter x0 ∈ X is a J-stable parameter for the
family F if it satisfies any of the above conditions.

The set of J-stable points is thus the set where the dynamics do not change or
bifurcate. The set of non J-stable parameters, on the other hand, is precisely the
set where bifurcations do occur, and it is often called the bifurcation locus of the
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family F , and denoted by BX . In families of maps with more than one singular
value, however, it makes sense to consider subsets of the bifurcation locus where
only some of the singular values are bifurcating, in the sense that the families
{gin(x) := fnx (si(x))} are normal in a neighborhood of x0 for some values of i, but
not for all. We define

BX(si) = {x0 ∈ X | {gin(x)} is not normal in any neighborhood of x0.}

In this paper we investigate dynamically natural one dimensional slices of the
holomorphic family Mp,q,r. In these slices, roughly speaking, all the dynamic phe-
nomena but one are fixed and the last is determined by a “free asymptotic value”.
We will study the components of the complement of the bifurcation locus in these
slices. The parameters in them are J-stable.

Precisely, (see [13])

Definition 2.9. A one dimensional subset Λ ⊂ X is a dynamically natural slice
with respect to F if the following conditions are satisfied.

(a) Λ is biholomorphic to the complex plane punctured at points where the func-
tion is not in the family; for example, points where the number of singular
values is reduced. The removed points are called parameter singularities. By
abuse of notation we denote the image of Λ in C by Λ again, and denote the
variable in Λ by λ.

(b) The singular values are given by distinct holomorphic functions si(λ), i =
1, . . . , N − 1, and an asymptotic value vλ. For convenience we require that vλ
is an affine function of λ.3 We call vλ the free asymptotic value; we require
that BΛ(vλ) 6= ∅.

(c) The poles (if any) are given by distinct holomorphic functions pi(λ), λ ∈ Λ,
i ∈ Z.

(d) The critical values and some of the asymptotic values are attracted to an
attracting or parabolic cycle4 whose period and multiplier are constant for
all λ ∈ Λ. We call these dynamically fixed singular values. The remaining
singular values include vλ; if there is only one remaining value, it may have
arbitrary behavior. If there are several, they satisfy a functional relation that
persists throughout Λ so that the remaining dynamical behavior is controlled
by the behavior of vλ.

(e) Suppose vλ0
is attracted to Aλ0

, the basin of attraction of an attracting cycle
that does not attract any of the dynamically fixed singular values. Then the

slice Λ contains, up to affine conjugacy, all meromorphic maps g : C→ Ĉ that
are quasiconformally conjugate to fλ0

in C and conformally conjugate to fλ0

on C \ Aλ0
.

(f) Λ is maximal in the sense that if Λ′ = Λ ∪ {λ0} where λ0 is a parameter
singularity, then Λ′ does not satisfy at least one of the conditions above.

Examples of case (d) are discussed in Section 4.
In the components of the complement of the bifurcation locus in these slices vλ is

attracted to an attracting cycle ā of fixed period; this is the period of the component.
We distinguish two cases:

3This can always be arranged by a holomorphic change of coordinates in X.
4If the attracting cycle is parabolic, the functions in the slice are not hyperbolic but the results

hold. See [13] for further discussion.
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(i) ā does not attract one of the dynamically fixed singular values. We call
these Shell components and denote the individual components by Ω and the
collection by S.

(ii) ā attracts one of the dynamically fixed singular values in addition to attracting
vλ. We call these Capture components.

The properties of capture components are very different from those of the shell
components and we leave a discussion of them to future work.

3. Shell components. The properties of shell components are described in detail
in [13]. We summarize them here. We assume Fλ is the restriction of a holomorphic
family in Mp,q,r to a dynamically natural slice Λ and denote a function in Fλ by
fλ. We need the following definitions

Definition 3.1. Suppose that for some λ, vλ is a prepole of order k− 1. Then λ is
called a virtual cycle parameter of order k. Set a1 = vλ, and ai+1 = fλ(ai) where
i is taken mod k so that a0 = ∞. We call the set {a1, a2, . . . , ak−1, a0} a virtual
cycle.

This definition is justified by the following. Let γ(t) be an asymptotic path for
vλ = a1 and let h be the branch of the inverse of fk taking ∞ to the prepole a1,
Then

lim
t→∞

fk(h(γ(t)) = vλ = a1

so in this limiting sense, the points form a cycle.

Definition 3.2. Let Ω be a shell component in Λ and let

āλ = {a0, a1, . . . , ak−2, ak−1}

be the attracting cycle of period k that attracts vλ. Suppose that as n → ∞,
λn → λ∗ ∈ ∂Ω and the multiplier µλn = µ(āλn) = Πk−1

i=0 f
′(ani ) → 0. Then λ∗ is

called a virtual center of Ω.

Since the attracting basin of the cycle āλ must contain vλ, we will assume
throughout that the points in the cycle are labeled so that vλ and a1 are in the
same component of the immediate basin.

The next theorem collects the main results in [13] about shell components in a
dynamically natural slice Λ for a holomorphic family of transcendental functions
with finite singular set, none of whose asymptotic values is at infinity. Note that
Theorem A of the introduction is part (c) of the theorem. Let D∗ = {z : 0 < |z| <
1}. We have

Theorem 3.3. Let Ω be a shell component in Λ. Then

(a) The map µλ : Ω → D∗ is a universal covering map. It extends continuously
to ∂Ω and ∂Ω is piecewise analytic; either Ω is simply connected and µλ is
infinite to one or Ω is isomorphic a punctured disk and the puncture is a
parameter singularity.

(b) There is a unique virtual center on ∂Ω. If the period of the component is 1,
the virtual center is at infinity.

(c) Every (finite) virtual center of a shell component is a virtual cycle parameter
and any virtual cycle parameter on the boundary of a shell component is a
virtual center.
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Here we prove a stronger theorem for slices of the family Mp,q,r. Note that
because the functions are of the form f(z) = Q ◦ g ◦ P (z), and all the asymptotic
values are finite, if for some z, v = P (z) is an asymptotic value of g, then Q(v)
is an asymptotic value of f . There are p distinct asymptotic tracts corresponding
to each asymptotic tract of v so that there are pr distinct asymptotic tracts at
infinity separated by the Julia directions. The asymptotic values, tracts and Julia
directions depend holomorphically on the parameters. At each pole of f of order
k there are kqr pre-asymptotic tracts and the pull-backs of the rays in the Julia
directions separate them.

Theorem B. Let Λ be a dynamically natural slice for the meromorphic family
Mp,q,r consisting of meromorphic functions of the form fλ = Q ◦ g ◦P all of whose
asymptotic values are finite, and let λ∗ be a virtual center parameter of order k.
Then λ∗ is on the boundary of a shell component of order k in Λ. That is, in any
neighborhood of λ∗ there exists λ ∈ Λ such that fλ has an attracting cycle of period
k.

An immediate corollary to Theorem 3.3 and Theorem B is

Corollary B. In a dynamically natural slice of Mp,q,r, every virtual cycle param-
eter is a virtual center and vice versa.

Remark 3.1. The essence of the theorem is that the dynamic picture at the poles
is reflected in the parameter picture at the virtual center parameters.5 If infinity is
an asymptotic value, both the dynamics and parameter pictures are different.

Proof of Theorem B. Since λ∗ is a virtual center parameter of order k, fλ∗ has a
virtual cycle ā∗ = {a∗1 = vλ∗ , . . . , a

∗
k−1, a

∗
0 =∞}. For each j = 2, . . . , k−1, the cycle

uniquely determines a branch of the inverse of fλ∗ , f
−1
λ∗,j such that f−1

λ∗,j(a
∗
j ) = a∗j−1.

By abuse of notation, for readability, we drop the j and denote all of these branches
by f−1

λ∗ . Because we are in a dynamically natural slice of a holomorphic family, the

analytic continuations of the f−1
λ∗ , denoted by f−1

λ are well defined.
Note however, that in a neighborhood of the asymptotic value a∗1, the inverse

branch of fλ∗ is not uniquely determined. Since vλ∗ is part of a virtual cycle, a
punctured neighborhood U of vλ∗ has at least one pre-image that is in an asymptotic
tract. If the multiplicity of vλ∗ is one, then by definition there is a unique asymptotic
tract that is determined by the virtual cycle of fλ∗ ; we denote it by Aλ∗ and take as
f−1
λ∗ the branch that maps U to Aλ∗ . Then taking the analytic continuation of this

f−1
λ∗ we obtain Aλ as the analytic continuation of Aλ∗ . If the multiplicity of vλ∗ is

greater than one there will be a choice among the tracts corresponding to vλ∗ (and
hence the inverse branch f−1

λ∗ ). Similarly, if there is more than one asymptotic value
that varies with λ (and satisfies a functional relation with λ), we choose the tract
(or one of them if there is more than one) corresponding to the free asymptotic
value6. In the argument below, we take Aλ∗ , or choose one of the tracts as Aλ∗ ,
along with the corresponding branch fλ∗ . Since, in general, the asymptotic value is
not omitted, there may also be infinitely many inverse branches of the neighborhood
that are bounded. We don’t need to concern ourselves with them here.

Because we are in a dynamically natural slice we have the following holomorphic
functions:

5This is analogous to the situation for Misiurewicz points in the parameter plane for quadratic
polynomials.

6See the examples in Part 2.
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1. v(λ) = vλ is the free asymptotic value of fλ.
2. If p∗ = a∗k−1, then p(λ) = pλ is the holomorphic function defining the pole of
fλ such that p(λ∗) = p∗.

3. Note that for λ in a neighborhood V ⊂ Λ of λ∗, the affine function λ 7→ vλ
determines a corresponding punctured neighborhood U of v∗λ in the dynamic

plane of fλ∗ and vice versa. Define the map h : V → C by h(λ) = fk−2
λ (vλ) =

hλ. Then if V is small enough, both pλ and hλ are in Û ⊂ U , a small
neighborhood of p∗ in the dynamic plane of fλ∗ .

4. In the dynamic plane of fλ, set u(λ) = f
−(k−2)
λ (pλ) = uλ. Then uλ is the

preimage of the pole pλ in a neighborhood of the asymptotic value vλ.
5. Each uλ has infinitely many inverses in the asymptotic tract Aλ; denote these

by wλ,j , j ∈ Z.

The main ideas for the proof are first to use the relation between λ and the free
asymptotic value vλ to carefully choose and fix a λ close to λ∗ and then to construct
a domain T ⊂ Aλ such that fkλ (T ) ⊂ T . It will then follow from Schwarz’s lemma
that fkλ has an attracting fixed point in T .

S

Figure 1. The map gλ on parameter space. S is a sector inside all the
asymptotic tracts Aλ, λ ∈ V . Note that g(λ∗) = ∞.

Choosing λ: (See Figure 1.) The asymptotic tract Aλ∗ lies between two Julia
rays r∗1 , r

∗
2 and these span an angle θpr = 2π/pr. We choose a small enough neigh-

borhood V of λ∗ such that for each fλ, λ ∈ V , the Julia rays r1(λ), r2(λ) of fλ, lie
within δ = δ(V ) of r∗1 , r

∗
2 respectively. Each fλ has an asymptotic tract Aλ between

these rays and we can find a domain S ⊂ ∩λ∈VAλ which lies inside the sector in Ĉ
bounded by the rays r∗1 and r∗2 such that S is a sector in Ĉ with vertex at infinity
and angle θpr − 2δ.

As above, let U be a neighborhood of vλ∗ and let V be the corresponding neigh-
borhood in parameter space. For each λ ∈ V , vλ ∈ U and fk−1

λ (vλ) is defined.
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Define gλ : V → C by g(λ) = fk−1
λ (vλ). Since V contains λ∗ and gλ is holomorphic,

we can find R = RV such that g(λ) = |fk−1
λ (vλ)| > R. Set DR = {z ∈ C | |z| > R}

and let ŜV = g−1
λ (S ∩DR) be the “triangular” subset of V with vertex at λ∗. Note

that the number of such triangular sets is equal to the order of the pole. If it is one,
the set is unique. If it is greater than one, we choose one arbitrarily.

Figure 2. The dynamic plane for fλ. The region fnλ (T ) is contained
inside T .

Constructing T : (See Figure 2.) Now we work with a fixed λ ∈ ŜV and
we set U = fλ(Aλ). Since S ⊂ Aλ we have fλ(S) ⊆ U . In U we have vλ and

uλ = f
−(k−2)
λ (pλ). Let C be a circle with center vλ and radius |vλ − uλ| = ηλ.

Taking λ closer to λ∗ if necessary, we may assume C lies in a compact subset of U ;

that is the disk {z | |z − vλ| ≤ ηλ} ⊂ U . Now Ĉ = f−1
λ (C) ⊂ Aλ and fλ : Ĉ → C is

an infinite to one cover so Ĉ contains preimages wλ,j , j ∈ Z, of uλ.

We want to approximate the distance from a point on Ĉ to ∂Aλ. Let φ : Aλ → Hl
be a conformal homeomorphism from Aλ to the left half plane Hl and let ψ :
U \ {vλ} → D∗ be a conformal homeomorphism from U \ {vλ} to the punctured
unit disk D∗, respectively chosen such that fλ = ψ−1 ◦ exp ◦φ.

Because ψ is a homeomorphism, |ψ′(z)| is bounded above and below for z in a
closed disk containing C. Applying Koebe’s distortion theorem, there are positive
constants K1,K

′
1 such that for z ∈ C,

K1ηλ
(1 + ηλ)2

< |ψ−1(z)| < K ′1ηλ
(1− ηλ)2

.

We are assuming ηλ is small so we may assume it is less than 1/2. Thus we can
find closed annuli in D∗ and U containing ψ(C) and C respectively.

We then have, for appropriate positive constants, K2,K
′
2,

K2 + | log ηλ| < |Re logψ−1(z)| < K ′2 + | log ηλ|. (2)
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This says that the lift logψ−1(C) of the circle C lies in a vertical strip W of

bounded horizontal width in Hl. Let Ŵ denote φ−1(W ) ⊂ Aλ; it is the lift of the
annulus in U to Aλ.

The covering group Z for the exponential map acting on Hl pulls back to an
infinite cyclic group Γ generated by a map γ : z 7→ γ(z) that is the covering group
acting on Aλ under the map fλ so that

φ(γ(z)) = w + 2πi.

Thus

φ′(z)dz = dw and φ′(γ(z))γ′(z)dz = dw.

This says that
dw

dz
= φ′(z) = φ′(γ(z))γ′(z).

Because |φ′(z)| is bounded in the closure of a fundamental domain for Γ intersected

with Ŵ , it is bounded for all w in Ŵ . Now because φ is a conformal homeomor-
phism, it preserves the hyperbolic density so that

ρAλ(γ(z))|dγ(z)| = |dw|
|Rew|

ρAλ(γ(z))|γ′(z)dz| = |dw + 2πi|
|Re(w + 2πi|)

=
|dw|
|Rew|

.

Therefore the hyperbolic density in Aλ is invariant under the action of γ. Equa-
tion (2), says that |Rew| is comparable to | log ηλ| which gives us the estimate we
want; that is, there are positive constants K3,K

′
3 such that

min
ζ∈∂Aλ,y∈Ĉ

|y − ζ| ∼ K3 +K ′3| log ηλ|.

Note that because we have a group action on Aλ, there will be a ζ ∈ ∂Aλ and a

y ∈ Ĉ in each fundamental region. Now let T̃ be a triangular region in U with one
vertex at uλ, two sides spanning an angle of θ < θpr/m, where m is the order of the
pole pλ joining uλ to C, and third side an arc of the circle C; the sides are chosen

so that T̃ contains vλ in its interior. Next set T = f−1
λ (T̃ ). First note that T ⊂ Aλ

and f−1
λ (∂T̃ ) is a doubly infinite curve in Aλ that stays a bounded distance from Ĉ,

where the bound depends on ηλ and θ. The inverse images of sides of the triangle

form scallops “above” Ĉ (further inside Aλ).

Now look at fk−2
λ (T̃ ). This is a triangular shaped region contained in fk−2(U)

with a boundary point pλ; it contains fk−2
λ (vλ). Choose y ∈ Ĉ realizing the mini-

mum above so that f−1
λ (y) is contained in fk−2(U). Then, as pλ is a pole of order

m, we have

|f−1
λ (y)− pλ| ∼

K3

| log ηλ|
1
m

. (3)

Since the derivative of fλ∗ along the orbit of vλ∗ from vλ∗ to pλ∗ is bounded and
varies holomorphically with λ, the derivative of fλ along the orbits of vλ from vλ
to fk−2

λ (vλ) and uλ to pλ are also bounded for λ ∈ ŜV . Because vλ ∈ T̃ and ηλ is

small, when we map by fk−2
λ the images of vλ and points on C ∩ T̃ are comparably

close to the pole pλ. Specifically, for some positive constant K4, we have

|fk−2
λ (vλ)− pλ| ∼ K4ηλ <<

K3

| log ηλ|
1
m

.
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Comparing this with the estimate (3) it follows that

fk−1
λ (C ∩ T̃ ) ⊂ T and fk−1

λ (vλ) ∈ fkλ (T ).

Therefore because vλ is inside T̃ ,

fkλ (T ) ⊂ T

so that fkλ has a fixed point in T by the Schwarz lemma.

Part 2. The Extended Tangent Family λ tanp zq.

In this part of the paper we use the results above to prove that for family F =
{λ tanp zq}, every shell component of period n > 1 is bounded. A corollary is that
every capture component is bounded as well. The proof will follow from by studying
the period 1 and period 2 components.

4. The shell components of F . The family F = {fλ = λ tanp zq} is a subfamily
ofMp,q,2 = {P ◦g ◦Q} with P (z) = zp and Q(z) = zq and g in the one dimensional
slice of N2 consisting of functions that fix 0 and have symmetric asymptotic values.
The functions in F have one fixed critical point at 0 and have either one asymptotic
value with mulitplicity 2q or two asymptotic values with multiplicity q that are
opposite in sign. Specifically, the map tan z has two distinct asymptotic tracts
and two asymptotic values, ±i. Each of these tracts has q pre-images under Q−1.
If p is even, all 2q of the asymptotic tracts map onto punctured neighborhoods
of the single point ipλ = (−1)p/2λ which is the free asymptotic value vλ. If p is
odd, q of the asymptotic tracts map onto punctured neighborhoods of ipλ and the
other q tracts map onto punctured neighborhoods of (−i)pλ. In this case we choose
vλ = ipλ as the free asymptotic value. The other asymptotic value satisfies the
relation v′λ = −vλ.

The punctured plane λ 6= 0 is thus a dynamically natural slice inMp,q,2 and the
dynamics are determined by the forward orbit of vλ.

The full set of shell components in this slice is denoted by S = {Ω} and we divide
it into subsets depending on the period of the cycle as follows:

Definition 4.1. If pq is even

Sn = {Ωn| fλ has an attracting cycle of period n},

otherwise

Sn = {Ωn | fλ has one attracting cycle of period 2n or

Ω′n |fλ has two attracting cycles of period n}.

For readability we only include the subscript on Ω if the period is not obvious
from the context.

Figure 3 shows the parameter plane for the family fλ(z) = λ tan2 z3. The period 1
shell components are yellow, the period 2 shell components are cyan blue. The
capture components are green. The virtual centers are the black dots. They are
enlarged because of roundoff error.
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Figure 3. The parameter plane for λ tan2 z3.

4.1. Symmetries. Note that for any λ, fλ̄(z̄) = fλ(z). In addition, if ωk, k =
0, . . . , q − 1, are the qth roots of unity,

fωkλ(ωkz) = ωkλ tanp(ωkz)
q = ωkfλ(z).

It follows that if Ω ∈ Sn then both Ω and ωkΩ are also.
Suppose pq is even so that fλ has a single attracting cycle {z1, . . . , zn} of period

n with multiplier µ(λ). Then {−z1, . . . ,−zn} is a cycle for f−λ and µ(−λ) = µ(λ).
If pq is odd then

fλ(−z) = −fλ(z) = f−λ(z) and fλ̄(z) = fλ(z̄).

Assume that fλ has two cycles of period n. They must be symmetric: that is they
are {z1, . . . , zn} and {−z1, . . . ,−zn} and they have the same multiplier.

Now f−λ(z1) = −z2, f−λ(−z2) = z3, . . . , fm−λ(z1) = (−1)mzm+1, so that if n is
even, fn−λ(z1) = z1 and f−λ also has two cycles of period n. The set of periodic
points of f−λ is the same as that for fλ but they divide into different cycles for λ
and −λ; again, µ(−λ) = µ(λ). If, however, n is odd, fn−λ(z1) = −z1 and f−λ has a

single cycle of period 2n; it has multiplier µ2(λ). We summarize this discussion as
follows.

Proposition 4.2. If Ω is a hyperbolic component of the λ plane, then −Ω, Ω̄ and
ωkΩ, k = 0, q − 1 are all hyperbolic components. That is, the parameter plane is
symmetric with respect to reflection in the real and imaginary axes, rotation by π
and rotation by qth roots of unity.

If pq is even, µ(λ) = µ(−λ) for λ ∈ Ω, while if pq is odd there are two cases
depending on the parity of n: either n is even and there are two cycles for λ ∈ Ω,
each has multiplier µ(λ) and there is a single cycle of double the period for −λ ∈ −Ω
such that for this cycle, µ2(λ) = µ2(−λ) or n is odd and the statement holds with
the roles of λ and −λ reversed.
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4.2. Components of S1. In this section we will show that S1 consists of exactly
2q unbounded components arranged symmetrically around the origin. Let η+

k , k =

0, . . . , q − 1, be the roots of (η+
k )q = i and let η−k , k = 0, . . . , q − 1, be the roots of

(η−k )q = −i. If q is odd these are labeled so that η−k = −η+
k whereas if q is even

they are labeled so that η−k = η+
k . We denote the set of rays in the directions of

these vectors by R̃ = {`±k = si−pη±k , s > 0, k = 0, . . . , q − 1}.

Theorem 4.3. The set S1 consists of 2q unbounded components, Ω±k , k = 0, . . . , q−
1, such that each is symmetric about the ray `±k . Note that if λ ∈ `±k , then vλ = sη±k ,
s > 0.

Moreover, for λ ∈ `±k ∩ Ω±:

(i) When both p and q are even fλ has a single attracting fixed point zλ and
arg zλ = arg vλ;

(ii) When p is odd and q is even, again fλ has a single attracting fixed point zλ
and either arg zλ = arg vλ or arg(−vλ);

(iii) When pq is odd fλ either has two attracting fixed points, zλ and −zλ, or a
single attracting period two cycle {zλ,−zλ}. Moreover, if λ ∈ `+k , fλ has

two attracting fixed points, zλ on `+k and −zλ on `−k , which attract vλ and

−vλ respectively; if λ ∈ `−k , then fλ has one attracting cycle of period two,
{zλ,−zλ} which attracts both vλ and −vλ and we can label the points so that
arg zλ = arg vλ.

Proof. If fλ(z) ∈ S1 and has an attracting fixed point z = zλ, then using the relation

λ =
z

tanp zq
, (4)

we compute that the multiplier µ(z) is

µ(z) = λpqzq−1 tanp−1 zq sec2 zq = 2pq
zq

sin 2zq
.

Set u = 2zq, so that µ(z) = h(u) = pqu/ sinu. The locus |h(u)| = 1 in the
u = x + iy plane consists of two branches, one in the upper half plane and one
in the lower half plane. Call the unbounded regions defined by these curves U±

respectively. Each is symmetric with respect to both the real and imaginary axes.
Moreover the regions intersect the imaginary axis in the intervals u = ±irq, r > r0,
respectively, where h(±irq0) = 1. Inside these domains |h(u)| < 1. As |y| → ∞, the
branches are asymptotic to the curves

±e|y|

2pq
+ iy.

For each u in U± there are q corresponding z = zλ’s and these form 2q regions V ±k ,

k = 0, . . . , q − 1 in C. The rays in the directions η±k are axes of symmetry for the

V ±k . We give the argument for ηk = η+
k ; the argument for η−k follows similarly. That

is, we want to show that if z1 ∈ Vk, then z2 = η2
kz̄1 is also in Vk. Now if z1 ∈ Vk,

then zq1 ∈ U+ and so zq2 = −z̄q1 is also in U+. Taking appropriate qth-roots, the
symmetry follows.

From equation (4) the images Ω±k of the V ±k are in S. First, the symmetry of

each of the V ±k ’s translates into a symmetry of the corresponding Ω±k . Suppose
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z1, z2 = (η+
k )2z1 ∈ V +

k . If p is even we have

λ(z2) =
η+
k

2
z̄1

tanp(−z̄q1)
= η+

k

2
λ(z1)

which implies that the image of V +
k is symmetric about the lines in direction η+

k .

A similar statement holds for V −k about the lines in direction η−k . If, however, p is
odd,

λ(z2) =
η±k

2
z̄1

tanp(−z̄q1)
= −η±k

2
λ(z1)

so that the images of V ±k are symmetric about the rays in directions iη±k .

To see that there are 2q distinct domains Ω±k , assume that z is on a line of

symmetry for V ±k ; that is, z = sη±k , s > r0. By equation (4) we have

λ(iη±k ) =
sη±k

tanp(±isq)
=

sη±k
(±i)p tanhp(sq)

.

If pq is even, on the rays where z = sη+
k and z = sη−k the arguments of the

corresponding λ’s under the relation (4) are different, so that the images of V +
k and

V −k are different. Therefore there are 2q components in S1 corresponding to V ±k ;

these are denoted by Ω±k . Moreover, if z = sη+
k and p is even, then arg vλ = arg z.

If however p is odd and q is even, then if z = sη+
k , arg vλ = arg z but if z = sη−k ,

then arg vλ = arg z + π. In either case, both z and vλ are perpendicular to λ.
If pq is odd, then λ(z) is an even function,

z

tanp zq
=

−z
tanp(−z)q

,

so that both V ±k have the same image Ω+
k . This gives us q components in S. For λ in

Ω+
k , fλ has two fixed points z1 and z2 and they both have the same multiplier, µ(λ).

Moreover on the symmetry lines, z = sη±k , we have arg vλ = arg sη±k . Consider the

q components Ω−k = {λ | −λ ∈ Ω+
k }. As we saw in the discussion of Proposition 4.2,

when λ ∈ Ω−k , fλ has one attracting cycle with period 2 and multiplier µ2(λ) so
these components are also in S1 and there are 2q components in S1 in this case as
well.

The proof of Theorem B and the statement of Theorem 4.3 tell us something
about the structure of the parameter plane for the family Fλ in a neighborhood of
a virtual center. We have

Corollary 4.4. In the parameter plane of the family Fλ, there are 2pq shell compo-
nents of period k that meet at every virtual center parameter of order k > 1. That is,
the virtual center parameter is a common boundary point of these 2pq components.
Infinity is a common boundary component of 2q components.

Proof. In the proof of Theorem B we used that fact that the virtual center parameter
λ∗ corresponds to a particular prepole pλ∗ of fλ∗ and used one of the asymptotic
tracts at pλ∗ in our construction to find the shell component at λ∗. There are 2pq
tracts at each prepole; these correspond to the asymptotic values tied to vλ by the
functional relation. We could have used any one of these in the argument above to
obtain a shell component at the virtual center.
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4.3. Separating lines. In this section we discuss the rays in the λ plane spanned
by the roots of vqλ = 1 and their negatives.

Let ω±k , k = 0, . . . , q − 1 be the roots of ωqk = 1 and (ω−k )q = −1 respectively.
Since vλ = ipλ is the free asymptotic value, the rays in the λ plane we are interested
in are those spanned by i−pω±k . Denote them by ˜̀

k = i−prω±k , r > 0.

Lemma 4.5. For the family Fλ,

(i) If pq is even, none of the rays in the set

R̃′ = {i−prω±k , r > 0}qk=1

intersects any component of S; that is S ∩ R̃′ = ∅ for all k.
(ii) if pq is odd, at each virtual cycle parameter λ on the ray ˜̀

k, such that vλ is
a pre-pole of fλ of order n, n is odd and there are two components of Sn+1

intersecting the ray. In one of these components there are two periodic cycles
of order n+1 and in the other there is a single cycle of order 2(n+1) attracting
both asymptotic values.

Proof. Set λ = ri−pω±k for some real r so that vqλ is real. Notice that this implies
fλ(vλ) lies in the same line as λ. We have to look at the parities of p and q.

To prove (i), suppose first that p is even. Then λ and vλ are in the same line.
Moreover, since λq is real, it follows that λ, vλ, and all its images under fλ, lie
on the same line, although perhaps on opposite sides of the origin. Therefore this
line is invariant under fλ and the restriction of fλ to this line is conjugate to a
real-valued function fr(t) = r tanp tq.

Next suppose p is odd and q is even. Then λ and vλ are in perpendicular lines.
Since q is even, λq is real so (fλ(vλ))q is real, and f2

λ(vλ) is also on the line through
λ, as is the rest of its orbit. That is, fλ is invariant on the line through λ and the
orbit of vλ eventually lands on the line. Again the restriction of fλ to this line is
conjugate to a real-valued function fr(t) = r tanp tq.

We claim that in these cases, fλ cannot have an attracting cycle other than
the super-attracting fixed point 0. We consider the family of real valued functions
fr(t) = r tanp tq. On the interval (0, q

√
π/2), fr, f

′
r and f ′′r are all positive and fr

goes from 0 to infinity. Therefore there is one fixed point z0 inside this interval.
Because 0 is a superattracting fixed point, its basin contains the interval (0, z0). By
symmetry, about the imaginary axis if p is even and about the origin if p is odd, the
basin of 0 contains the interval I0 = (−z0, z0). Since f ′′r (t) > 0, f ′r(t) > 1 for t in

(z0,
q
√
π/2), and tan t has period π, |f ′r(t)| < 1 only in I, the union of the translates

of the interval I0.
We claim there are no other attracting periodic cycles in R̃′. If there were such

a cycle, {z1, . . . , zn}, its points would have to be outside I and its multiplier would
have to satisfy Πn

i=1|fr(zi)| < 1. This cannot happen since none of these factors
can be less than 1.

To prove (ii), we have both p and q odd. Then λq and (fλ(vλ))q are pure
imaginary. Therefore

f2
λ(vλ) = λ tanp(fλ(vλ))q = ±i tanhp(fλ(vλ)q

is in the line containing vλ. The orbit of vλ thus alternates between two perpendic-
ular lines. So if it approaches an attracting cycle, that cycle must have even period
and hence λ does not belong to S1.
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Suppose λ is on the ray spanned by ri−pωk, and is inside one of the components
Ωk intersecting it. The multiplier of the cycle is real and monotonic in Ωk. The
virtual center λ∗ of Ωk is therefore on the ray. By Corollary 4.4, there are 2pq
components at λ∗ and since pq is odd, as we move around λ∗, they alternate between
those with two cycles of period n + 1 and one cycle of period 2(n + 1) attracting
both asymptotic values. Again since pq is odd, there is one of each type intersecting
the ray.

4.4. Components of S2. By Theorem 3.3, each component in S is simply con-
nected and the multiplier map is a universal covering. Moreover, each component
has a virtual center on its boundary where the limit of the multiplier is zero, and
if this is finite, it is a virtual center parameter so that the asymptotic value is a
pre-pole. For completeness, we include a proof of the last statement for components
of Sn so that we can use it to characterize the virtual centers of S2.

Lemma 4.6. If the shell component Ω ∈ Sn, is bounded, then the virtual center λ∗

satisfies fn−1
λ∗ (vλ∗) =∞. That is, the asymptotic value is a pre-pole of order n and

the virtual center is a virtual cycle parameter.

Proof. Without loss of generality, we assume fλ has an attracting periodic cycle
of period n; the proof is similar if fλ has one attracting cycle of period 2n. Let
{z0, z1, · · · , zn−1} be the attracting cycle of fλ, and suppose z0 lies in an asymptotic
tract. The multiplier of the cycle is

n−1∏
i=0

f ′λ(zi) =

n−1∏
i=0

λpqzq−1
i tanp−1 zqi
cos2(zqi )

= (2pq)n
n−1∏
i=0

zqi
sin(2zqi )

If the multiplier tends to 0 as λ→ λ∗, then at least one of the factors zq/ sin(2zq)
tends to 0, which in turn implies that the imaginary part zq0 is unbounded. Since
z0 is in the asymptotic tract, it follows that as λ → λ∗, | Im zq0 | → ∞ and z1 =
λ tanp zq0 → vλ∗ . Because z0 = λ tanp zqn−1 and λ is bounded, it follows that zqn−1 →
kπ + π/2 as λ→ λ∗ and fn−1

λ∗ (vλ∗) =∞.

Lemma 4.7. If Ω is a component of S2, then its virtual center is a solution of
vqλ = kπ + π/2 for some integer k.

Proof. By Lemma 4.6, we only need to show that each component of S2 is bounded.
Suppose there is an unbounded component Ω ∈ S2 and fλ has a periodic cycle

{z1, z0}. We will show that if Ω is unbounded then both points lie in asymptotic
tracts, and therefore that p and q are both odd. This in turn implies that fλ has
only one attracting cycle of period 2 so that Ω ∈ S1 and not in Ω ∈ S2.

Let λ(t)→ λ∗, t→∞ be a path in Ω such that the multiplier of the periodic cycle
µ(λ(t)) → 0. If Ω is unbounded, the multiplier of the periodic cycle has absolute
value 1 for any finite point on the boundary. Therefore, the “virtual center” λ∗ of
Ω is at infinity. (We use quotes because infinity is a parameter singularity. ) From
the proof of Lemma 4.6, the point z0(λ(t)) of the cycle must be in the asymptotic
tract and | Im z0(λ(t))q| → ∞ and thus z1(λ(t)) = λ(t) tanp z0(λ(t))q � ipλ(t) also
goes to infinity.

Suppose z1(λ(t))q = x1(t) + iy1(t) � ipqλ(t)q. We claim that if y1(t) goes to
infinity, then z1(λ(t)) is also in an asymptotic tract. If not, then x1(t) → ∞ but
y1(t) stays bounded. Take a sequence z1(tk) such that x1(tk) = kπ. Then

tan(x1(tk) + iy1(tk)) = tan(iy1(tk)) = i tanh(y1(tk)) = Bki,
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where Bk is real and bounded.
Since z0(tk) = λ tanp(z1(tk))q = λ(Bki)

p, z0(tk)q/z1(tk)q = Bpqk ∈ R; that
is, z0(tk) is asymptotically parallel to z1(tk) with a bounded ratio so that the
imaginary part of zq0(t) remains bounded. This contradicts our assumption that
zq0(tk) is unbounded, so it follows that Ω is bounded as claimed.

5. Theorem C. We now have all the ingredients to prove Theorem C.

Theorem C. All the components of Sn, n > 1 are bounded.

Proof. We proved in Theorem 4.3 and Lemma 4.5 that for the family Fλ, S0, consists
of 2q unbounded components, {±Ω1, · · · ,±Ωq}. These are symmetric about the

rays R̃ = {±rηk, r > r0}qk=1 and separated by the rays R̃′ = {±rωk, r > 0}qk=1.
The boundary of each Ωk is an analytic curve defined by the relation |f ′λ(z0)| = 1

where z0 is the fixed point or, if pq is odd and there is a single period 2 cycle, {z0, z1},
by the relation |f ′λ(z0)f ′λ(z1)| = 1. We assume now that there are two fixed points.
The discussion for the period 2 cycle case is essentially the same. Along ∂Ωk there is
a sequence of points where f ′λ(z0) = e2πip/q with p/q ∈ Q and the fixed points have
become parabolic. At these points there is a standard bifurcation creating a new
“bud component” attached to ∂Ωk, and tangent to it, in which the fixed point is
now repelling and a new attracting cycle of period q appears. At the sequence νk,m
where f ′λ(z0) = −1 the new cycle is of period two. We label the bud component
Ω2,k,m; it belongs to S2. By Lemma 4.7, Ω2,k,m is bounded and has a virtual center,

say sm,k on the ray in R̃ separating Ωk from the next one in order around the origin;
for argument’s sake assume it is −Ωk+1.

If we now look at the points on the boundary of −Ωk+1, there is a sequence
νk+1,m′ where the multiplier of the cycle is −1 and there is a bud component

Ω2,k+1,m′ with virtual center sm′,k+1 on the same ray of R̃ separating Ωk and
−Ωk+1. Choose νk+1,m′ so that sm′,k+1 = sm,k. We can do this since the boundaries
of Ωk and −Ωk+1 are both asymptotic to the ray containing the centers.

At sm,k there are 2pq shell components and Ω2,k,m andW2,k+1,m′ are two of them.
Now we draw a curve in Ω2,k,m from νk,m to sm,k and another from sm,k to νk+1,m′

in Ω2,k+1,m′ . We then choose another parabolic point νk+1,m′′ on the boundary of
−Ωk+1 whose bud component Ω2,k+1,m′′ has a center sm′′,k+1 on the next ray in
order around the origin. We draw a simple curve in −Ωk+1 from νk+1,m′ to νk+1,m′′ .
Continuing around, in the next component Ωk+2, we find the bud component that
shares sm′′,k+1 as its center and draw a simple curve through the bud components
joining −Ωk+1 and Ωk+2. We continue in this manner until we get back around to
the original Ωk. We join all the curves in the ±Ωk and the bud components between
them. The result, γm is a simple closed around the origin.

In this way, choosing the νk,m carefully and systematically, we can create a nested
sequence of curves γm around the origin. Any other component of S is disjoint from
the components ±Ωk and the bud components Ω2,k,m and so must lie inside one of
the γm and is therefore bounded.

An immediate corollary of the above proof is

Corollary 5.1. All the capture components in the dynamically natural slice are
bounded.
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