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Preface

We remember Lipman Bers’ with affection. Especially memorable were
his expository lectures and his research efforts with students. Whether to a
newcomer or a veteran, he offered enthusiasm, encouragement, and a wealth
of ideas.

Towards the end of his life, the proliferation of work generated by his
research made it impossible for any one person to keep up with all the
new developments. In the seventies, Thurston presented a program to clas-
sify three-dimensional manifolds that incorporated a new approach to Te-
ichmüller theory. By using Teichmüller theory to glue together in a geomet-
ric way the surface boundaries of certain open three dimensional manifolds,
he was able to show that a wide class of compact three dimensional manifolds
can be realized as three dimensional hyperbolic space factored by certain dis-
crete subgroups of the group of Möbius transformations. Teichmüller theory,
which had appeared to be a subject concerning geometry in only one or two
dimensions, became important for understanding three-dimensional space.
In the eighties conformal dynamics, the study of which had been started by
Julia at the beginning of the century, was revived. Impetus for research here
came from the recently acquired ability to obtain computer-drawn pictures
of geometrical shapes forced by the simple algorithms implicit in the subject.
Also in the eighties, a school of physicists took an interest in Teichmüller
theory as a preliminary foundation for part of string theory. The intensive
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activity in low-dimensional topology, conformal dynamics and string the-
ory forced researchers to start from scratch and rethink all of Teichmüller
theory.

Bers was thrilled by the influence of Thurston, Sullivan and others who
entered the field to use it in other contexts. It spurred him to further
efforts and enhanced the extent and quality of his research. His joy in these
developments is an inspiring example of a youthfulness of mind lasting to
the end of a long life.

In the more than twenty years since Bers’ death, there has been substan-
tial progress: Thurston’s Geometrization Program giving a full characteri-
zation of all possible geometric structures for three manifolds was completed
last year and many of the open questions in conformal dynamical systems
have been answered. A major tool in all of this work is the idea of a holo-
morphic motion. The term was first coined by Màñé, Sad and Sullivan in
their paper [38]. Although Bers first learned about it in a lecture by Sul-
livan in the mid-eighties, the underlying idea goes back to his own work.
It plays a big role in Simultaneous Uniformization and the representation
of Teichmüller space as a complex analytic Banach space of holomorphic
quadratic differentials, the Bers embedding. (See the article by Wolpert in
this volume for an historical discussion and more details.) The ensuing theo-
rems on the extendibility of holomorphic motions by Sullivan and Thurston
[46], of Bers and Royden [8] and, finally, of Slodkowski [45] and of Astala
[5], clarified the whole subject of quasiconformal mapping and deformation
theory for dynamical systems and Kleinian groups.

In the 1998 Proceedings of the First Ibero-American Congress on Geom-
etry we contributed an expository article dedicated to Lipman Bers [28]. It
was organized around the topic of holomorphic motions with applications
to holomorphic dynamics and quasifuchsian groups. Because we wrote that
description more than fifteen years ago, this topic has ballooned into many
areas of research. On the occasion of the 100th anniversary of Lipa’s birth
and in light of the importance holomorphic motions have played since then
we have decided to reprint that exposition here with minor editorial cor-
rections and to add an appendix that summarizes some of the subsequent
developments. Of course while we cannot vouch for what Lipa’s mathemat-
ical tastes might now be, we have tried to choose topics that we believe
would most appeal to him.
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Introduction

This article is an expository account of why mappings in a holomorphic
motion ft(z) of the z−plane parameterized by a complex variable t with |t| <
1 are necessarily quasiconformal maps and an account of some geometric
applications of this fact. Our approach is different from the one ordinarily
given. In the first section we demonstrate how the generalized Schwarz
lemma implies ft is quasiconformal with dilatation less than or equal to
1+|t|
1−|t| and Hölder continuous with Hölder exponent 1−|t|

1+|t| . Extremal length
methods are not used to obtain the precise Hölder exponent. In the second
section, we describe Thurston’s construction of a quasifuchsian manifold
with prescribed geometry as a holomorphic motion.

A holomorphic motion of a closed set J in the extended complex plane
C̄ is a curve ft(z), defined for every z in J and for every t in the unit disk,
such that:

i) f0(z) = z for all z in J,

ii) z 7→ ft(z) is injective as a function from J into C and
iii) t 7→ ft(z) is holomorphic for |t| < 1 and for each fixed z in J.

The variable t is the complex time-parameter and as t changes the set Jt =
ft(J) moves in C. Although J may start out to be as smooth as a circle and
although the points of J are moving holomorphically, for every t 6= 0, Jt can
be an interesting fractal set with fractional Hausdorff dimension.

Any holomorphic motion of a closed subset of C defined for |t| < 1
automatically extends to a holomorphic motion of C. Moreover, for each
fixed t, the mapping z 7→ ft(z) is quasiconformal with dilatation K less

than or equal to 1+|t|
1−|t| .

Thus injectivity and holomorphic dependence automatically lead to qua-
siconformality. Viewed from first principles, this is surprising because quasi-
conformality is a geometric idea about distortion. By definition, an arbitrary
orientation preserving homeomorphism is quasiconformal if it distorts stan-
dard shapes by a bounded amount. It may distort sizes by a large amount;
no assumption is made on this point. A beautiful first result of the the-
ory is that quasiconformal mappings are necessarily Hölder continuous with
Hölder exponent 1/K. (This result is due to Lavrientiev or to Ahlfors, al-
though it is difficult to know who deserves credit because each attributed
it to the other [7].) Thus, quasiconformal control of distortion of shape im-
plies some control on distortion of size. Moreover, a normalized family of
quasiconformal mappings with a common bound on the dilatation of every
member is equicontinuous.
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The realization that any holomorphic motion defined for |t| < 1 and for
z in some closed set could be extended to all z in C and for all |t| < 1
was the combined result of several research papers. The first one by Màñé,
Sad and Sullivan presented the idea of a holomorphic motion and showed
that mappings in the motion necessarily have quasiconformal extensions.
Then the papers by Sullivan and Thurston [46] and by Bers and Royden [8]
showed the local holomorphic extendibility to a domain |t| < ε where ε is
universal, not depending on J or the particular holomorphic motion. (Bers
and Royden showed that ε ≥ 1/3.) Finally, Slodkowski [45] showed that
any such motion could be extended to a holomorphic motion of the whole
complex plane defined on the full unit disk, |t| < 1.

Slodkowski’s result complements nicely the 1961 paper by Ahlfors and
Bers [4] in which singular operators are used to solve the global Beltrami
equation

fz(z) = tµ(z)fz,

where µ is an arbitrary L∞ complex-valued function defined on C with
||µ||∞ = 1 and |t| < 1. The use of singular integral operators to solve the
Beltrami equation had been carried through earlier by Bojarski in [10]. The
solution f tµ is a quasiconformal homeomorphism of C uniquely determined
up to post-composition by a Möbius transformation. A major part of the
emphasis of the paper by Ahlfors and Bers was that f tµ(z) depends holo-
morphically on t for |t| < 1. When t = 0, f tµ is the identity and, for each
fixed |t| < 1, f tµ(z) is an injective function of z. In other words, their paper
showed the existence of many holomorphic motions of C. The new theory of
holomorphic motions showed their emphasis on the holomorphic dependence
had further significance: holomorphic dependence combined with injectivity
of z 7→ f tµ(z) implies z 7→ f tµ(z) is quasiconformal; the holomorphic depen-
dence of the quasfuchsian groups defined by G0 7→ f tµ(z)◦G◦(f tµ(z))−1 for
fixed quasifuchsian G0 ⊂ PSL(2,C) and quasiconformal f tµ(z) satisfying

µ(g(z))g
′(z)
g′(z) = µ(z) for all g ∈ G0 has been used to develop the complex

structure on Teichmüller space.
In Section 1 of this paper we give an analytic application of holomorphic

motions. We show why a holomorphic motion of injective mappings of the
plane starting at the identity necessarily consists of mappings which are
Hölder continuous and which are quasiconformal. The method of proof
of Hölder continuity shows how the (|ε log ε|)−1 growth of the infinitesimal
form of the Poincaré metric near a puncture is related, after integration of
an ordinary differential equation, to the Hölder continuity of the mappings.

In Section 2 we give a geometric application. In his Princeton lecture
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notes [?], Thurston described a method to construct hyperbolic 3-manifolds.
The main step is to construct a quasifuchsian manifold. Such a manifold is
the quotient of hyperbolic 3-space by a quasifuchsian group. The construc-
tion, which is a generalization of topological methods of Dehn, is geometric.
It involves “bending” the surface along geodesics; the resulting manifold not
only is quasifuchsian, but it has prescribed geometric properties. We de-
scribe Thurston’s construction and indicate how to prove, as a consequence
of the main theorems on holomorphic motions, that it yields quasifuchsian
manifolds with the prescribed geometry.

1 Quasiconformal mapping

The goal of this section is to explain why a holomorphic motion of C nec-
essarily moves through quasiconformal mappings. Our first step is to show
that ft is Hölder continuous with Hölder exponent 1−|t|

1+|t| .
We show this exponent by analyzing the tangent vectors to the curve ft.

Let Vt(z)
∂
∂z be the vector field defined by the equation

fs+t ◦ (ft)
−1(z) = z + sVt(z) + o(t).

Since ft(0) = 0, ft(1) = 1 and ft(∞) = ∞, for each |t| < 1, the vector field
Vt(z)

∂
∂z vanishes at 0, 1 and ∞. Note that a continuous vector field V (z) ∂∂z

vanishes at ∞ if, and only if, V (z)/z2 approaches 0 as z →∞.
A cross-ratio Q of four distinct points cannot equal 0, 1 or∞. Since ft is

injective, the same cross-ratio Qt of ft applied to these four distinct points
is also not equal to 0, 1 or ∞. Therefore, by applying Schwarz’s lemma to
the map t 7→ Qt, from |t| < 1 into Σ = C \ {0, 1,∞}, we find that the speed
of Qt at time t measured with the Poincaré metric on Σ does not exceed

2
1−|t|2 .

Let ρ be the infinitesimal form of the Poincaré metric on Σ normalized
to have constant negative curvature equal to −4. Assume z1, z2, z3 and z4

are four distinct points and let A = z2 − z1, B = z3 − z2, C = z4 − z3, and
D = z1− z4. We call z1 and z2 the initial and terminal points of A, and use
the notation

V ′(A) =
V (terminal point)− V (initial point)

terminal point − initial point
.

If we choose Q to be the cross-ratio AC
BD , a calculation shows that the speed

of Qt at t = 0 is

|ρ(Q)Q{V ′(A)− V ′(B) + V ′(C)− V ′(D)}|. (1)
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Since V (z)/z2 approaches 0 as z → ∞, it follows that if z4 = ∞ then the
term V ′(C)− V ′(D) in (1) vanishes. By letting A be the interval from z to
0 and B be the interval from 0 to 1, we find Q = z, V ′(A) = −V (z)/z and
V ′(B) = 0. Thus,

|ρ(z)Vt(z)| ≤
2

1− |t|2
.

Consequently, by the well-known estimate for the Poincaré metric in a neigh-
borhood of a puncture [2], for every ε > 0, there is a δ > 0, such that if
|z| < δ then

|Vt(z)| ≤ (
1 + ε

1− ε
)|z|(log

1

|z|
)

2

1− |t|2
. (2)

In fact, if ε = exp(−dn) where dn = log log 2n, one can choose δ = 1
2n .

Lemma 1 Suppose ft is a holomorphic motion of C such that ft(0) =
0, ft(1) = 1 and ft(∞) = ∞, for each |t| < 1. Then there exists a constant
C depending only on R such that if |z| < R and |w| < R and if |z−w| < 1

2 ,
then

|ft(z)− ft(w)| ≤ C|z − w|
1−|t|
1+|t| .

Proof. Let ∆(t) = |ft(z)− ft(w)|.
Step 1. We first consider the case w = 0 and |z| < 1/2 so ∆(t) = |ft(z)|.

Since one of the cross ratios of the quadruple ft(z), 0, 1,∞ is ft(z), by the
bound on the velocity given in (2), we find, for |z| ≤ 1

2n ,

d

dt
∆(t) ≤ B 2

1− |t|2
∆(t) log

1

∆(t)
,

where B = 1+εn
1−εn and εn = 1/ log 2n. The solution to this differential inequal-

ity with the inequality replaced by equality is

∆(t) = ∆(0)
(
1−|t|
1+|t| )

B

.

By the inequality principle for ordinary differential equations, we find

|ft(z)| ≤ |z|(
1−|t|
1+|t| )

B

.

Step 2. The last term in the previous inequality can be replaced by

C|z|
1−|t|
1+|t| . To prove this assume that 1

2n+1 ≤ |z| ≤ 1
2n and let α = 1−|t|

1+|t| . We
wish to find a constant C such that

|z|αB ≤ C|z|α.
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It is sufficient to find C such that

|1/2n|αB ≤ C|1/(2n+1)|α.

This is equivalent to finding an upper bound for

(α− αB)(n log 2) = α(1− α(B−1))n log 2.

Since 0 < α < 1, this is equivalent to finding an upper bound for

(B − 1)n(log 2)α(log(
1

α
)). (3)

But by (2), B − 1 = 2εn
1−εn and εn = 1

n log 2 and thus the quantity displayed
in (3) is bounded independently of n.

Step 3. Now suppose gt is a holomorphic motion fixing three points 0, z
and ∞ and assume |z −w| ≤ min{1/2, |z|/2}. Then the same arguments as
above yield the similar inequality:

|gt(w)− z| ≤ C|w − z|
1−|t|
1+|t| .

Step 4. Apply Step 3 to gt(w) = ft(w)
ft(z)

, a motion which fixes 0, z and

∞. Since ft(z) is bounded for |t| ≤ |t0| < 1, we obtain

|ft(w)− ft(z)| ≤ C|w − z|
1−|t|
1+|t| ,

where C is a new constant equal to the product of the constant in Step 3
and the bound on ft(z). �

The following result is given on page 60 of [1].

Lemma 2 If |t| < 2−
√

3, equivalently, if the hyperbolic distance from 0 to t
is less than 1

2 log 3, and if ft(∞) =∞, then the image of oriented vertices of
any equilateral triangle under z 7→ ft(z) are mapped to vertices of a triangle
with the same orientation.

Proof. Let z1, z2, z3 be the vertices of such a triangle labeled in counter-
clockwise order and let A be the segment from z1 to z2, B be the segment
from z2 to ∞, C be the segment from ∞ to z3 and D the segment from z3

to z1. Then

Q =
AC

BD
=

A

−D
=
z2 − z1

z3 − z1
,
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which for an equilateral triangle is equal to

1

2
+ i

1

2

√
3.

The mapping z 7→ ft(z) maps the vertices z1, z2, z3 to vertices w1, w2, w3.
Let Qt be a cross ratio of w1, w2, w3,∞. As the points move, the orientation
of the triangle remains counterclockwise until the points become collinear.
This happens precisely when Qt is real and cannot happen if dΣ(Q,Qt) <
dΣ(Q,R). By Schwarz’s lemma

dΣ(Q,Qt) ≤ log
1 + |t|
1− |t|

.

In order to complete the proof of the lemma it suffices to show the
Poincaré distance from ω = 1

2 + 1
2

√
3 to the real axis is log

√
3. Consider

S1(z) = 1 − z, S2(z) = 1/z and B(z) = z. Then B ◦ S1 and B ◦ S2 are
anticonformal automorphisms of Σ. Moreover, the intersection of the locus
of fixed points of B ◦S1 and B ◦S2 consists of two points, 1

2 ± i
1
2

√
3, each of

which is equidistant from the real axis. In the standard universal covering
of Σ by the upper half plane, the upper half of Σ is covered by part of a
fundamental domain lying to the right of the y-axis, to the left of the vertical
line with x-coordinate equal to 1, and above the semicircle with diameter
coinciding with the unit interval [0, 1]. The point ω in Σ is covered by the
point 1

2 + i1
2

√
3. Using the infinitesimal form |dζ|/Im(ζ) for the Poincaré

metric in the universal covering, we see that the Poincaré distance from ω
to the real axis is equal to ∫ √3/2

1/2

dt

t
= log

√
3.

�

Lemma 3 Let ft(z) be a holomorphic motion of the whole plane fixing 0, 1
and ∞, defined for |t| < 1. If |t| < 2 −

√
3, then the mapping z 7→ ft(z) is

quasiconformal.

Proof. To show z 7→ ft(z) is quasiconformal we construct a normalized
sequence fn of quasiconformal mappings such that K(fn) ≤ K0 which con-
verges pointwise to ft(z). Let Γn be a grid of equilateral triangles which fill
the plane. Assume each triangle of Γn has side-length equal to 1

2n and one
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of the triangles of Γn, which we call the initial triangle, lies in the first quad-
rant, has a vertex at the origin and one side on the positive real axis. The
mapping fn is defined by declaring that it coincides with ft on the vertices
of Γn and is affine in each triangle of Γn. To calculate the complex dilatation
of fn on a triangle ∆ of Γn, note that that this dilatation is the same as the
dilatation of A ◦ fn ◦B where A is affine and B(z) = cz+ d, where c is real.
Select B so that it maps the triangle with vertices at 0, 1 and τ0 = 1

2 + i1
2

√
3

to a triangle ∆ of Γn and select A so that A ◦ fn ◦ B fixes 0 and 1. Let
τ = A ◦ fn ◦ B(τ0). Then the complex dilatation µn of fn in the triangle ∆
satisfies:

µn = −τ − τ0

τ − τ0
.

Assuming |t| ≤ 2−
√

3− ε0, the argument of the previous lemma implies
| τ−τ0τ−τ0 | ≤ k0, where k0 < 1 and k0 depends only on ε0 > 0.

We conclude that the normalized family of mappings {fn} satisfiesK(fn) ≤
K0 = 1+k0

1−k0 . From the previous lemma, this implies that, restricted to any
bounded set in the plane, the family {fn} is equicontinuous. Therefore fn
converges pointwise to ft.

At this point we adopt the geometric definition of quasiconformality,
which says a mapping is quasiconformal if it distorts standard shapes by
a bounded amount. What we take as a model for a standard shape is
somewhat arbitrary but in this case, by a standard shape we mean a square
with horizontal and vertical sides. The image fn(S) of the square S is
a topological rectangle and there is a conformal map gn from fn(S) to a
rectangle Rn such that gn ◦ fn preserves horizontal and vertical sides. If
an is the length of the rectangle and bn is its height, then by Grötzsch’s
argument ([1], page 7), 1/K0 ≤ an/bn ≤ K0. This is true for each n and,
since fn converges locally uniformly to ft, the same inequality is also true
for the side lengths of the rectangle R = g ◦ ft(S). Therefore, K(ft) ≤ 1+|t|

1−|t| .
�

Lemma 4 Let ft(z) be a holomorphic motion of the whole plane fixing 0, 1
and ∞, defined for |t| < 1. Then z 7→ ft(z) is quasiconformal for every
|t| < 1.

Proof. Assume |t| < 1. On the hyperbolic geodesic joining 0 to t choose
points 0 = t0, t1, ..., tn = t so that the hyperbolic distance from tk−1 to tk is
equal to 1/n times the hyperbolic distance from 0 to t. We choose n large
enough so that this distance is less than 1

2 log 3. Let gk = ftk ◦ (ftk−1
)−1 so
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that
ft = gn ◦ gn−1 ◦ ... ◦ g1.

Also, let Fs = ft ◦ (ftk−1
)−1 where t =

s+tk−1

1+tk−1t
. Then the dependence of

Fs on s for |s| < 1 is holomorphic, when s = 0, Fs is the identity, and
when t = tk, Fs = gk. Since for this value of t, |s| = | tk−tk−1

1−tk−1tk
| < 2 −

√
3,

it follows from the previous lemma gk is quasiconformal. Therefore, ft is
quasiconformal because it is a composition of quasiconformal mappings. �

It is known that if a mapping f satisfies the geometric definition of quasi-
conformality, then it has first partial derivatives in the sense of distributions
which are locally L2 and, moreover, the Beltrami coefficient µf = fz/fz is
an L∞−function with ||µ||∞ < 1.

Lemma 5 The map

t 7→ µt = the Beltrami coefficient of ft,

is a holomorphic mapping from |t| < 1 into the open unit ball of the Banach
space L∞(C).

Proof. We must show that t 7→ µt is differentiable in the complex sense.
We may assume ft is normalized to fix 0, 1 and∞ because, if it does not, we
may select Möbius transformations At so that At ◦ft is normalized this way.
But the Beltrami coefficient of At ◦ ft is is equal to the Beltrami coefficient
of ft. Let

gs(z) = ft+s ◦ (ft)
−1(z) = z + sVt(z) + o(s).

Let z1, z2 and z3 be the vertices of an equilateral triangle and consider the
motion of the quadruple z1, z2, z3,∞ induced by gs, which depends holomor-
phically on s. Let ω1 = z2 − z1, ω2 = z3 − z2 and ω3 = z1 − z3 and let W
be an affine function whose values at z1, z2 and z3 coincide with the values
v1, v2 and v3 of Vt at these points. On the one hand,

∂W =
ω2v1 + ω3v2 + ω1v3

ω2ω1 − ω1ω2
.

On the other hand, we know from (1) that

∂W =
ω2v1 + ω3v2 + ω1v3

ω2
1

is bounded. Approximating Vt by a sequence affine functions Vn which co-
incide with Vt at the vertices of a hexagonal grid whose equilateral triangles
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have side length 1/2n, we find that ∂
∂zVt(z) = ν(z), exists as a generalized

partial derivative and ||ν||∞ <∞. Then

[
ν

1− |µ|2
](

1

θ
) ◦ f−1,

where f = ft, θ = p
p and p = ∂

∂zft(z), is the complex derivative of this
mapping with respect to s at s = 0. �

Combining the previous lemmas and using Schwarz’s lemma we obtain
the following theorem.

Theorem 1 Let ft(z) be a holomorphic motion of C defined for |t| < 1
where f0 = identity. Then, for each t with |t| < 1, z 7→ ft(z) is quasicon-

formal with dilatation less than 1+|t|
1−|t| and is Hölder continuous with Hölder

exponent 1−|t|
1+|t| .

2 Quasifuchsian groups

2.1 Quakebends

In his work on simultaneous uniformization, Bers defined a quasifuchsian
group analytically (see [1], [6]). Any hyperbolic Riemann surface S0 can be
represented as the quotient of the upper half plane U by a Fuchsian group
G0. We assume here for simplicity that S0 is a compact surface of genus
g ≥ 1 from which at most n, 0 ≤ n < ∞, points have been removed and
if g = 1, n > 0. A Beltrami differential µ defined on U , is an L∞ function
on U with ||µ|| < 1; it is compatible with G0 if it satisfies the condition

µ(g(z))g
′(z)
g′(z) = µ(z) for all g ∈ G0. If µ is extended to the lower half plane

L so that the compatibility condition is satisfied, the differential equation
fz̄ = µfz has a solution fµ that is a quasiconformal homeomorphism; the
compatibility condition implies that gµ = fµ ◦ g ◦ (fµ)−1 for any g ∈ G0

is a Möbius transformation. The group of Möbius transformations Gµ =
fµ ◦ G0 ◦ (fµ)−1 is called quasifuchsian. It is discrete and in general, its
limit set Λ(Gµ) = fµ(Λ(G0)) is not a subset of a circle so that it is not
Fuchsian; in fact it is usually a fractal with Hausdorff dimension greater
than 1.

The groupGµ represents two Riemann surfaces, fµ(U)/Gµ and fµ(L)/Gµ

each topologically equivalent to S0. Note however, that any finitely gener-
ated Kleinian group G whose domain of discontinuity Ω has exactly two
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invariant connected components is a quasifuchsian group representing two
Riemann surfaces of the same topological type (see [41]).

In the sixties, Fenchel circulated a manuscript that was never published.
In it, following on ideas of Poincaré from the turn of the century, he discussed
Kleinian groups as discrete groups of isometries of hyperbolic three space
H3. The quotient of H3 by a Kleinian group is thus a three manifold with a
hyperbolic structure. In the mid-seventies, the first paper ([39]) discussing
the geometry of the hyperbolic three manifolds and orbifolds arising from
Kleinian groups of was published. A few years later, Thurston revolutionized
the whole subject of three dimensional geometry and topology using Kleinian
groups as a major tool ([?]). Among other things he showed how to construct
general hyperbolic manifolds by gluing together special ones of the form S0×
(0, 1); these building blocks are the manifolds represented by quasifuchsian
groups.

In developing his theory, Thurston first considered deformations of the
hyperbolic structure of a Riemann surface, and hence of the Fuchsian group
representing it. He generalized Dehn twisting along a simple closed curve to
a process he called earthquaking along a measured lamination. He then ex-
tended the earthquake deformation to a deformation from a Fuchsian group
into a quasifuchsian group by bending and called the combination of earth-
quaking and bending quakebending. We describe these deformations below
and see that the quakebend deformation is actually a holomorphic motion.

A geodesic lamination on a Riemann surface S is a generalization of a
closed geodesic. It is a closed set that is a union of pairwise disjoint simple
geodesics called leaves. A measured lamination is a geodesic lamination with
a transverse measure invariant under isotopies preserving its leaves.

If the geodesic lamination consists of k simple closed geodesics γ1, . . . γk
and β is a transverse arc, the measure is

∑
p∈β∩γj tjδj where δj is atomic

measure and (t1, . . . tk) ∈ R+. Such a lamination is called rational. The weak
topology on measures gives a natural topology on the space of measured
laminations and the rational laminations are dense in this space (see [18]).

Two measured laminations λ1 and λ2 are projectively equivalent if they
are supported on the same geodesic lamination and if there exists some t > 0
such that for any transverse arc β, λ1(β) = tλ2(β). The set of projective
classes of measured laminations on S is denoted PML(S).

An earthquake is a generalization of a partial Dehn twist along an ori-
ented simple closed geodesic γ. A partial Dehn twist may be described
roughly as follows: mark a point p on γ, cut the surface along γ and then
reglue so that the point p on the right side is glued to a point q on the
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left, at distance t (the twist parameter) from p measured along γ. For an
earthquake γ is a geodesic lamination with a marked point p. One would
like to cut along γ and reglue so that the point p on the right side is glued
to a point q on the left at a distance t (now called the earthquake param-
eter) from p. To make this meaningful one has to introduce the measure
and work in the universal covering space realized as the hyperbolic plane.
See [18] for a detailed discussion of these ideas. This process changes the
lengths of geodesics transverse to the lamination and thus the hyperbolic
structure of the resulting surface. In the case γ is a closed curve, these
lengths can actually be computed from the parameter t (see [26]). In the
general case, it is not clear how to compute the new lengths, but the vari-
ation d`(η)/dt with respect to the earthquake parameter where `(η) is the
length of a closed geodesic intersecting γ can be computed (see [50, 33]).
In [34] it is shown that the new structure depends real analytically on the
earthquake parameter.

Below we describe the earthquake and its extension by bending to a
quakebend in the case where the geodesic lamination γ on the base surface S0

consists of a single simple closed oriented geodesic. The quakebend process
is easier to understand in this case and the proof that a small bend results
in a quasifuchsian group contains all the geometric ideas of the general
proof. After we sketch the proof for this case we indicate how to proceed
in the general case. We refer the reader to [21] for a detailed description of
quakebends. An alternate approach may be found in [37].

Fix a simple closed geodesic β intersecting γ and let τ = t + iθ be
a complex number. We define the quakebend as the composition of an
earthquake by t and a (pure) bend by θ relative to the choice of β. Represent
S0 by G0 acting on the disk D (instead of U) and embed D as the equatorial
plane in the ball model of H3. Let p be an intersection point of γ and β; let
p̃ be a lift of p to D and let γ̃ be a lift of γ to D with endpoints p̃ and p̃1.
Let V be the element in G0 such that V (p̃) = p̃1. Since γ is geodesic, γ̃ is
contained in the axis AV of V . Set V = ∪g∈G0g(AV ). These axes divide D
into pieces {Pk} that are infinite sided polygons with vertices on ∂D. Let
P0 be a piece that has AV as one of its boundaries.

Let q̃ be another point on AV ; we determine its signed distance s from
p̃ as follows: if, standing on P0, q̃ is to the left of p̃, we take s > 0, whereas
if it is to the right, we take s < 0.

Let β̃ be the lift of β intersecting P0 with one endpoint at p̃ and the
other at a point p̃2 and let W (p̃2) = p̃. Now let Pj be the piece adjacent to
P0 along AV so that W (P0) = Pj . The group G0 acts equivariantly on the
decomposition of D into these pieces. In fact, if H0 is the stabilizer in G0 of
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P0, then G0 is generated by H0 and W .
To construct the earthquake given t, let q̃ be the point on AV at signed

distance t from p̃. Define Wt as the Möbius transformation taking the fixed
points of AV ′ , where V ′ = W−1VW , to the fixed points of AV and taking
p̃2 to q̃. Note that Pj(t) = Wt(P0) is the same set Pj but sheared in the
direction of AV by a distance t. This construction defines an isomorphism
Φt : G0 → Gt as follows. Define Φt(h0) = h0 for all h0 in the stabilizer H0

of P0 and define Φt(W ) = Wt. Since G0 is generated by H0 and W , Φt is an
isomorphism. Moreover we have gtΦt(g0) = Φ−1

t (gt)g0 for all g0 ∈ G0 and
gt ∈ Gt.

We can form the developing map φt : D → D as the identity on P0 and
for every piece Pk, if Pk = g0(P0) for g0 ∈ G0, set φt(Pk) = Φt(g0)(P0). To
determine g0 uniquely, choose it as W for Pk = Pj as above and develop.
It is proved in [26] that the image of the developing map φt again gives an
embedding of D into H3 on which G acts discontinuously.

Now to make a pure bend, let v̄ be a unit normal vector to AV at p̃
pointing from P0 into Pj . Bend Pj along AV so that the bent vector w̄
pointing into the bent Pj makes an angle θ with v̄. The tangent t̄ to AV
pointing towards its attracting fixed point is orthogonal to both v̄ and w̄.
Make the sign convention that θ > 0 if (v̄, w̄, t̄) is a right handed system.

We can define Wθ as the Mob̈ius transformation taking the fixed points
of AV ′ , where V ′ = W−1VW , to the fixed points of AV and taking W−1(p̃)
to p̃ and W−1(v̄) to w̄; Wθ is W followed by a rotation of angle θ with fixed
axis AV . We can define an isomorphism Φθ : G0 → Gθ as above so that
it is the identity on H0 and sends W to Wθ. We also have an analogous
developing map Φθ defined on D whose image Dθ ⊂ H3 is invariant under
Gθ and consists of planar pieces joined at angle θ, along bending lines that
are the images in H3 of the axes in V. Again Φθ intertwines the actions of
G0 on D and Gθ on Dθ. Note that since P0 and φ(Pj) are not coplanar,
Λ(Gθ) is not necessarily contained in a circle. It is not too hard to see that
if θ = π, Λ(Gθ) is again a circle but the set of discontinuity of Gθ cannot
have two distinct invariant components.

The quakebend by τ is a composition of an earthquake and a pure bend.
We have an isomorphism Φτ (γ) : G0 → Gτ and a developing map φτ : D→
Dτ . Unlike the earthquake, however, the group Gτ thus obtained is not
necessarily discrete.

We have

Theorem 2 Let G be a Fuchsian group and let γ be a simple closed geodesic
on S = D/G. Let τ = t + iθ and let Φτ (γ) be the associated quakebend
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homomorphism. There exists ε > 0, depending on the hyperbolic length of
γ, such that if |θ| < ε, then Dτ is embedded and Gτ is quasifuchsian.

Proof. We sketch a proof of this by showing by purely geometric means
that the quakebend defines a holomorphic motion of the fixed points of the
elements of G0. A slightly different proof of the theorem, also based on
the geometric lemmas below, is carried out in full detail in [31] where it is
applied to the case of the punctured torus.

The proof that the quakebend defines a holomorphic motion of the fixed
points divides into two parts. First we show that the fixed points of Gτ
depend holomorphically on τ ; this will be true whether or not Gτ is discrete
and so does not use the hypothesis that the bend is small. Second we show
that the map φτ is an embedding and extends to an equivariant map on
the fixed points and moreover, that the extension is injective on the fixed
points; this part does require the small bending hypothesis.

1. Holomorphicity

Using the method developed in [44], we shall find a formula for the trace
tr(Wτ ) that shows it depends holomorphically on τ . Since the entries of Wτ

can be recovered from information about H0 and tr(Wτ ), the entries and
fixed points are holomorphic in τ . Since any element in Gτ is a word in
the fixed elements of H0 and W±nτ , its entries and fixed points will also be
holomorphic in τ .

The trace tr(Wτ ) and the complex translation length 2λWτ are related by
tr(Wτ ) = 2 coshλWτ ; we always take <λWτ > 0. Following the construction
in [44], we can form a skew hexagon in hyperbolic space by traversing the
geodesic arcs li, i = 1, . . . , 6 defined as follows:

l1 = AV and let l2 be the the common orthogonal to AV and AV ′ with
respective endpoints ξ, ξ′ on AV , AV ′ ; let l3 be the orthogonal to P0 through
the midpoint of the line (ξ, ξ′).

Let l5 = Wτ (l3), l6 = Wτ (l2) and let l4 be the common orthogonal to l3
and l5.

We claim that l4 is the axis AWτ and that we can find its complex
translation length using the hyperbolic cosine rule applied to the hexagon
formed by the lines l1, . . . l6. To prove the claim, recall that any loxodromic
element can be written as the product of reflections in a pair of disjoint
hyperbolic lines perpendicular to its axis. Denote the reflection in lk by ik
(see e.g. [25]). Let η be the midpoint of the segment of l1 joining ξ and
Wτ (ξ′) and let l0 be the geodesic normal to l1 at η such that i0(l2) = l6.
Observe that the real hyperbolic length of the segment (ξ, η) is t/2 and that
l0 makes an angle of θ/2 with P0 and with Wτ (P0).
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Note that i0(l3) = l5 so i5 = i0i3i0; i3(AV ) = AV ′ and if V ′′ = WτVW
−1
τ ,

then i5(AV ) = AV ′′ . Thus

i0i3(AV ′) = i0(AV ) = AV = Wτ (AV ′)

i0i3(AV ) = i0(AV ′) = AV ′′ = Wτ (AV ).

Therefore i0i3 = i5i0 = Wτ and AWτ is perpendicular to l0, l3 and l5; since
l4 was defined as this perpendicular, l4 = AWτ as claimed.

Denote the complex length of the segment of l2 from l1 to l3 by d0 + iψ.
Since d0 is half the distance between AV and AV ′ on P0 it depends only on
G0. Since l3 is perpendicular to P0, ψ = ±π/2 where the sign depends on
the sign of t and appropriate conventions. These are discussed in detail in
[44]. Applying these conventions again, the complex length of the segment
(Wτ (ξ), ξ) is ±τ and the complex length of l4 from l3 to l5 is 2λWτ + iπ.
Thus, by the hyperbolic cosine rule applied to the sides l1 . . . l6 we have

cosh l4 = cosh l1 cosh l2 cosh l6 − sinh l2 sinh l6

so that
cosh 2λWτ = cosh τ cosh2(d0)− sinh2(d0).

Rewriting, this becomes

coshλWτ = cosh d0

√
cosh τ + 1

2

where the root is chosen with sign conventions of [44].

2. Injectivity

The proof of the injectivity is based on two geometric lemmas. Let η :
[0,∞)→ D be a geodesic parametrized by distance; assume it is transverse
to a subset of the axes of V and set ητ (s) = φτ (s). If η(s0) intersects an axis,
its image ητ (s0) is called a bending point; denote by ψ the angle between the
right and left limits of the forward pointing tangents at ητ (s0).

The first lemma says |ψ| < |θ| and is proved by elementary geometry.
For the second lemma we need the following definitions:
Let X ∈ H3 and let v̄ be a vector in H3 at X. The forward cone of angle

α at X in the direction v̄ is the closed solid cone of angle α with vertex at
X whose central axis is the H3 geodesic in the direction of v̄. The shadow
of a cone at X in direction v̄ on ∂H3 is the set of endpoints on ∂H3 of the
semi-infinite geodesics emanating from X and contained inside the forward
cone at X.
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The second lemma, called the cone lemma, says that given α ∈ (0, π/2),
there is an ε > 0 depending only on α and the hyperbolic length of γ such
that if |θ| < ε, then the developed geodesic ητ (s+ t) is contained inside the
forward cone at any point ητ (s) — whichever of the two directions for the
cone is used at the bending points — and moreover, there is a constant dγ
such that the forward cones along ητ at points dγ apart are nested. The proof
of this lemma is based on estimates using elementary hyperbolic geometry.

From the cone lemma it follows that the developed image ητ of any
oriented geodesic η ⊂ D is embedded since the forward and backward cones
at any point separate the forward and backward trajectories of the geodesic.

Next, assume η(s) has as endpoint the fixed point of some element of
G0. The cone lemma applied to a sequence η(sn) → ∂D implies that the
accumulation set of ητ (sn) ∈ ∂H3. Since {sn} may be chosen so that the
cones at ητ (sn) are nested, it follows that the diameters of their shadows
go to zero. Using the group invariance, it follows that φτ extends to the
fixed points of elements of G0, taking them to corresponding fixed points of
elements of Gτ .

Now suppose that x, y ∈ D are fixed points — of perhaps different ele-
ments of G0 — and let z be a point on the geodesic η joining x and y. As
above, the forward and backward cones at φτ (z) separate the endpoints of
ητ so that φτ (x) 6= φτ (y) and φτ is injective.

3. Application of the λ-lemma

Finally, if Λ0 is the set of fixed points of elements of G, because the
fixed points of all elements of Gτ are holomorphic functions of τ and they
move injectively, φτ defines a holomorphic motion on Λ0 × ∆ where ∆ =
{τ = t + iθ, t ∈ R, |θ| < ε}. Moreover, the motion acts equivariantly with
respect to G0 on a dense subset of its limit set. By Slodkowski’s version
of the λ-lemma, the holomorphic motion can be extended to a quasicon-
formal homeomorphism f of Ĉ and by Theorem 1 of [20] the continuous
extension can be made to act equivariantly. Thus, Gτ = fG0f

−1 and Gτ is
quasifuchsian. �

If µ is an any rational measured lamination on S with support {γ1, . . . , γk},
0 < k ≤ 3g − 3 and transverse measure {t1δγ1 , . . . , tkδγk}, we define the
quakebend Φτ (γ) as a composition of quakebends Φtjτ (γj), j = 1, . . . , k.
Clearly the theorem holds in this case where the condition is that |=(tjτ)| <
ε for all j = 1, . . . , k.

4. Arbitrary laminations
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Now suppose γ is an arbitrary geodesic lamination on S = D/G with
a complex valued measure ω supported on γ. In this case, the essential
geometric ideas are the same, but carrying out the full details involves a
discussion of how to take limits of quakebends along rational laminations.
Here we only sketch what has to be done.

In chapter 3 of [21] there is a full description of how to define the
quakebend cocycle Bω and the corresponding developed surface φω : D →
Dω ⊂ H3 that determine the quakebend along ω by a limiting procedure.
It follows immediately from section 3.7 of [21] that Bω determines a group
Gω ⊂ PSL(2,C) such that φω intertwines the actions of G0 on D and Gω
on H3.

The theorem in the general case is

Theorem 3 Let G be a Fuchsian group and let γ be a measured lamination
on S = D/G. Let τ ∈ C be given and let Bτµ(γ) be the associated quakebend
cocycle. There exists ε > 0, depending on γ such that if |=τ | < ε, then
Dτµ = φτµ(D) is embedded and Gτµ is quasifuchsian.

Proof. The proof follows the same outline as the sketched proof above.
Again the holomorphicity does not depend on small bending but follows from
the general quakebend construction applied to complex measures of the form
ω = τµ where µ is a transverse measure supported on γ in the usual sense
and τ ∈ C. Theorem 3.9.1 of [21] can be carried out for this measure and it
says that the trace (or equivalently the complex translation length) of any
geodesic on S transverse to the lamination γ is a holomorphic function of τ .
It follows that the fixed points of Gτ also depend holomorphically on τ .

The main difference in the proof of the extendibility and injectivity of
φτ is that the cone lemma needs to be generalized. In the rational case,
because there is a minimum to the lengths of geodesic arcs joining leaves of
the lamination, elementary hyperbolic geometric arguments can be used to
prove the cone lemma. In the general case however, there is no minimum
and a new argument is required. This is given in detail for punctured tori
in [31]; the arguments there extend without difficulty. We outline the steps
here.

First, one needs to get a uniform control of the approximations to the
quakebend cocycle. This is done using area estimates on S0: one proves that
there are constants Kµ and dµ such that if β is any geodesic segment on S
of length less than dµ, then µ(β) < Kµ.

Second, the cones have to be properly defined. To do this, an appropri-
ate metric DT on the tangent space to H3 is introduced. Next the geodesics

18



η(s) ⊂ D and ητ (s) ⊂ Dτ are approximated. Using tangents to the approxi-
mations and taking limits in DT , one can prove that tangent vectors to ητ (s)
can be properly defined even though the bending points form a Cantor set
in ητ (s),

Finally, using the constant dµ one can prove that the cone lemma still
holds; that is, ητ (s + t) is entirely contained in forward cone at ητ (s) and
that the cones at ητ (s+ t) are nested for t > dµ.

The same argument as in the rational case shows that the map φτ extends
injectively to Λ0 and defines a holomorphic motion. Again, extending to
obtain an equivariant quasiconformal homeomorphism of Ĉ, we conclude
that Gτ is quasifuchsian. �

2.2 The convex hull boundary

One of the most elegant aspects of the study of Fuchsian and Kleinian groups
is the interplay between the analytical structure of the Riemann surfaces and
their parameter spaces and the geometric structure of the quotient spaces.
For a Fuchsian group G0, the conformal structure and the hyperbolic struc-
ture of the disk descends to the quotient S0 = D/G0. Traces of elements of
G0 can be used as parameters and they also have a geometric meaning in
terms of the lengths of closed geodesics on S0.

If S0 is a Riemann surface of finite type but not finite volume — a surface
of finite genus from which finitely many points and disks have been removed
— the limit set Λ(G0) is a Cantor set in the boundary of the hyperbolic
plane. Nielsen realized that if one takes the hyperbolic convex hull of Λ(G0)
(the Nielsen convex region) and forms the quotient, the result is a surface S̄0

of finite volume that contains all of the interesting geometric information;
in particular, it is completely determined by trace parameters for G0 or by
the lengths of geodesics on S0.

For quasifuchsian groups and more generally for Kleinian groups, the
relation between the conformal structure of the quotient surfaces and the
traces of group elements is very mysterious. By contrast however, the traces
can be interpreted in terms of the hyperbolic structure of the quotient three
manifold. Thurston pointed out that again, the convex hull of the limit
set C(G), and its quotient C/G, the convex core, contain all of the relevant
geometric information.

A pleated surface is a pair S, φ where S is a complete hyperbolic surface
and φ : S → M is an isometry into a hyperbolic 3-manifold such that at
every point p ∈ S there is at least one geodesic segment σ such that φ(σ) is
geodesic and such that φ induces an injective map on fundamental groups.
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The set of p ∈ S such that there is only one such σ is called the pleating
locus (see [21] for a full discussion). For example, the pair (D, φτ ), where φτ
is the developing map defined above, is a pleated surface, and the bending
lines are the pleating locus. For simplicity we also call the immersed image
surface Dτ = φτ (D) pleated.

The quotient surfaces ∂C/G have a hyperbolic structure and are pleated
surfaces. Thurston conjectured that the pleating locus of the convex hull
boundary with its natural bending measure should completely determine
the group. This has been proved for Schottky groups in the case that the
pleating locus is rational by Otal [43] and for arbitrary laminations by Bona-
hon [11]. These proofs use the deep machinery of Kerckhoff-Hodgson and
Thurston-Morgan-Shalen.

Using the quakebend construction and Theorem 3 it follows that

Theorem 4 For a quasifuchsian group G, the boundary surface components
of ∂C/G are pleated and the pleating locus for one component can be pre-
scribed arbitrarily.

Proof. Again we begin with the rational case. To prove the boundary
surfaces are pleated, we observe that by convexity, every bi-infinite geodesic
in a component of ∂C extends to Λ. We can thus define an isometry from
each component of ∂C to D by unfolding.

That the pleating locus of one side can be prescribed follows from

Proposition 1 Suppose µ is a rational measured lamination on the surface
S with support {γ1, . . . , γk} and measure {t1δγ1 , . . . , tkδγk}. Let τ ∈ C and
let Dτ be the developed surface associated to the quakebend Φτ (γ). If ε is
as in the cone lemma and if 0 ≤ =(tjτ) < ε for all j, then one of the half

spaces cut out of H3 ∪ Ĉ by Dτ is convex.

Proof. Since ∂Dτ is a Jordan curve on Ĉ, Dτ does indeed divide H3∪ Ĉ
into two half spaces, Hi, i = 1, 2. Suppose H1 is not convex so there are
points x1, y1 ∈ H1 and a geodesic σ1 joining them that leaves H1. Let Π1 be
a plane through σ1 intersecting H1. Then Π1 ∩ (σ1 ∪ ∂H1) is a hyperbolic
n-gon, the sum of whose interior angles is less than (n−2)π. By hypothesis,
the angles from ∂H1 all have the same sign and are less than π in absolute
value. If H2 is also not convex, we form another polygon by taking points
x2, y2 ∈ H2, an arc σ2, and a plane Π2 through σ2 and H2; since this time
the angles are measured on the opposite side of Dτ , they again all have the
same sign, but their absolute values are all greater than π. Such a polygon
cannot exist and this gives a contradiction. �
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Corollary 1 The pleated surface Dτ is a component of ∂C(Gτ ).

Proof. On one hand, H2 is convex so H2 ⊃ C. On the other, Dτ
is contained in the convex hull of its bending lines so that Dτ ⊃ ∂C and
Dτ = ∂H2 by definition. �

Since the projective rational laminations are dense in PML(S), we can
extend these results to arbitrary laminations by approximation. In [32] it
is proved that the map from quasifuchsian space to PML(S) defined by
sending a group to the pleating locus of one component of the convex hull
boundary is continuous. This coupled with the observation that the limit of
convex sets is convex completes the proof of theorem 4. �

Appendix

Much has happened mathematically since this paper was written. In
this appendix we indicate some of this progress that builds heavily on Bers
work.

• In his study of the geometric structures of all closed three manifolds
with finitely generated fundamental group, [?, ?], Thurston made fun-
damental use of Bers work. The Thurston Geometrization Program
first stated in [?] says that there is a uniformization theory for three
manifolds analogous to the uniformization of surfaces. One has, how-
ever, to use eight rather than three different geometries. Like surface
theory, most three manifolds are hyperbolic. Thurston began with a
very general class of closed three manifolds: that can be cut apart into
pieces that are manifolds whose boundary components are incompress-
ible surfaces; such manifolds are called Haken manifolds. With certain
restrictions on the fundamental group of the Haken manifold it is called
atorioidal. Thurston proved that these manifolds admit a hyperbolic
structure. The idea is that the pieces of the manifold can be repre-
sented by Kleinian groups, which in turn, give hyperbolic structures
to their interiors. The main step is to glue the pieces together in such
a way that the resulting closed manifold has a hyperbolic structure on
its interior. Finally, by Mostow rigidity, one knows this structure is
unique.

The first step in the gluing process is to use Bers simultaneous uni-
formization. By hypothesis there is a surface in the manifold whose
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fundamental group injects into the fundamental group of the mani-
fold. Cutting along this surface we obtain two copies X and Y . Each
of these surfaces can be uniformized by a quasifuchsian group that rep-
resents it and another surface, σ(X), σ(Y ) . The next step is to define
a homeomorphism from Y to σ(X). This determines a holomorphic
map from the Teichmüllerspace of X to itself, the skinning map which
is holomorphic with respect to the complex analytic structure coming
from the Bers embedding. As such, it is weakly contracting. The next
step is to prove the skinning map is strongly contracting so that un-
der iteration the resulting points in Teichmüller space converge to a
fixed point, the desired manifold. (See Minsky’s lecture in this vol-
ume). The full geometrization theory involves understanding pieces
that dont have Kleinian group representations, and proving that man-
ifolds either admit the cutting process or have covering spaces that do.
Combining the work of many others, the last step in the full proof of
Thurston’s geometric theory was given in 2012 by Ian Agol, based on
work of Wise and Kahn-Markovic. A good expository account can be
found in [9, 30].

• An important part of the Thurston theory is the study of the manifolds
with boundary and in particular those that can be represented by the
quasifuchsian groups obtained by simultaneous uniformization. The
point is that these groups have a natural representation as a subset of
Cm for appropriate m: Let S0 be a fixed base surface of genus g with
n punctures such that m = 3g−3+n > 0 and fix a presentation for its
fundamental group G0 = π1(S0). Let D = {ρ : π1(S0 → PSL(2,C)}
such that ρ is a discrete and faithful representation. The subspace
QF ⊂ D is the connected component of the identity. Using holomor-
phic motions, the groups in the image of QF are all quasifuchsian
groups; that is, for each ρ ∈ QF there exists a Beltrami differential
µ, compatible with G0, such that fµ(U)/ρ(G0) and fµ(L)/ρ(G0) are
oppositely oriented homeomorphic Riemann surfaces. By the measur-
able Riemann mapping theorem, (see [4] and the discussion in [51]
in this volume), the traces of a finite set of elements of ρ(G0) define
a complex analytic embedding into C6g−6+2n. The boundary of this
embedding is a very complicated fractal set.

The Bers Slice consists of those ρ ∈ QF or, by abuse of notation, its
3g−3+n dimensional image in C6g−6+2n such that fµ(L)/ρ(G0) = S0.
The boundary of the Bers slice in C6g−6+2n is called the Bers boundary.
A point on the boundary of this image such that the image ρ(A) of a
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loxodromic element A ∈ G0 is parabolic (tr2A = 4) is called a cusp.
Bers conjectured that the cusps were dense in this boundary. In 1991
McMullen [36] proved this conjecture. It is also now known that the
space QF has many different components and the boundaries of these
components have very interesting properties. See for example, [12, 16]

• Thurston [24, 47] gave his own description of points in Teichmüller
space. The hyperbolic structures on surfaces are determined by geodesic
laminations that admit transverse measures invariant under transla-
tion along the geodesic. (See the discussion in the article above). The
boundary of this space consists of the projective measure classes of
these laminations. Given a point G = ρ(G0) ∈ QF , the quotient man-
ifold H3/G has a convex core. The boundary of the core consists of two
pleated surfaces. These have hyperbolic structures determined by the
pleating locus and bending measure. Thus, each point is determined
by the boundary data of its convex core. Thurston called this bound-
ary data the ending laminations of the manifold If the pleating locus is
rational, that is, consists of closed geodesics, one can deform by a holo-
morphic motion so that the lengths of these geodesics goes to zero and
the bending goes to zero. The corresponding point on ∂QF is a cusp.
Other deformations can lead to other kinds of boundary points. He
conjectured that in all circumstances, the limit of ending laminations
makes sense as an ending lamination of the limit hyperbolic manifold
and that the manifold could be recovered from this data. This is called
the Ending Lamination Conjecture. This was proved in a long series of
papers: see [13, 14, 42] and the papers cited there. Also see Wolpert’s
article and the expository articles [9, 30].

• As part of this large program to understand hyperbolic three man-
ifolds, Marden conjectured that the structure of the interior of the
manifold as one moves outwards in the convex core is not too com-
plicated: that all three manifolds are tame. Describing this is beyond
the scope of this article. We mention it though, because this tameness
conjecture was proved true in [17, 22] and this has as a corollary a
theorem that Bers would have very much liked. To wit, the Lebesgue
measure of the limit set of any finitely generated Kleinian group is
either zero or full.

There was a similar conjecture for the measure of the limit set of a
rational map. This conjecture, however, is false. There is a construc-
tion by Buff and Cheritat of a quadratic polynomial whose limit set
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has positive measure but the limit set is not the whole sphere. [15].

• Thurston applied the technique of iterating a map from a Teichmüller
space to itself to another problem, that of determining when a finite
degree topological covering map f of the sphere to itself can be realized
by a rational map R, (See for example, [DH, Ji] and there references
in those papers.) It is easy to find a topological conjugacy; such a map
preserves the critical values and the branching structure. What isn’t
clear is how to make this conjugacy invariant under the dynamics; that
is, to make it preserve Pf , the closure of the set of forward orbits of
the critical values of f . As in the case of Kleinian groups, to expect
to control convergence of the iteration procedure one wants to work
with finite dimensional Teichmüller spaces. Thus the Kleinian groups
were assumed finitely generated. The analogous assumption here is
that Pf is a finite set and the Riemann surface is S = Ĉ \ Pf . The
equivalence relation defining the Teichmüller space is del Pf and the
Thurston map is from this Teichmüller space to itself. Thurston proved
that either the map is strongly contracting the iteration converges to
a point representing the desired rational map or there is a topological
obstruction and the iteration doesn’t converge to an interior point.
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