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In this paper we characterize those external rays that land on the bounded Fatou components
of hyperbolic and parabolic quadratic maps. For those maps not in the main cardioid of the
Mandelbrot set, we prove that the arguments of these rays form a Cantor subset of the circle
at infinity. Our techniques involve both the orbit portraits of Goldberg and Milnor that relate
the dynamic and parameter planes and the Thurston theory of laminations for quadratic
maps.
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1. Introduction

When the Julia set of rational map is locally connected it can be divided into two
subsets, those points that are accessible boundary points of a stable component
of the complement and those that are not. The latter form the residual Julia set.
This paper grew out of an investigation into a full characterization of points, and
in particular buried points, in the Julia set of a rational map arising from a self-
mating of a generalized star-like quadratic polynomial in the first author’s thesis
[6]. The crux of that characterization was to determine which external rays of
the generalized star-like quadratic actually land on a boundary point of a bounded
component of the Fatou set. The aim of this paper is to provide this characterization
for all quadratic polynomials.

The study of the combinatorial structure of the external rays of the Julia set goes
back to the seminal work of Douady and Hubbard on the dynamics of quadratic
polynomials [3–5]. They originated a number of techniques to characterize the
combinatorics of Julia sets including “Hubbard trees” , the “Spider algorithm”
and “tuning” . This was developed further by Hubbard’s students including Schle-
icher [17]. Thurston and Rees [15, 16, 19] used the concept of “laminations” to
study the combinatorics. A different, more purely combinatorial approach, via the
“devil’s staircase algorithm”, was presented by Bullet and Sentenac in [1]. Milnor
and Goldberg [12, 13] developed a theory of “orbit portraits” that complements the
Douady-Hubbard theory. The combinatorics of the dynamics of quadratic polyno-
mials is also described in [10]. Each of these works gives insight from a different
perspective and together they give a pretty full picture.

The characterization we give here is not in this literature and adds to this picture.
We use a variation of the “laminations” and the “orbit portrait” techniques.
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In this paper, we consider arbitrary hyperbolic and parabolic quadratic polyno-
mials. For these, every external ray lands at some point on the Julia set but, in
general, only certain rays land on the boundary of a bounded component of the
Fatou set. For example, the zero dynamic ray always lands at a repelling fixed
point; however, outside the main cardioid of the Mandelbrot set, it never lands on
a bounded component. Our main result is a full description of the external rays
that land on boundary points of the bounded components of the Fatou set. For
quadratics in the main cardiod, the problem is trivial: the Julia set is a Jordan
curve and every point is a landing point of an external ray. We therefore remove
these polynomials from our discussion.

Our methods use the combinatorial structure given by the external rays to the
Mandelbrot set M and the corresponding structure of the Julia set as described
by Goldberg and Milnor in their papers [7, 8, 12, 17]. We look only at points in
the interiors of the (non-cardiod) hyperbolic components of M and their roots.
The problem is clearly much more difficult for other points and our methods don’t
extend.

The combinatorial structure of the hyperbolic components of the Mandelbrot set
has been well-studied; the original description is in [5]. A more recent account is
given in [10]. Another excellent exposition and history is contained in [12] and we
will take our terminology from that paper. A full bibliography can be found in that
article. More recent results can be found in [18].

The root points of M are parameter values cP = rP such that the corresponding
quadratic fcP = z2 + cP has a parabolic periodic cycle of period p for some integer
p > 0 and whose dynamics are described by an orbit portrait P (see section 2.5).
They are called root points because they lie on the boundary of a hyperbolic
component HrP with the property that for any c ∈ HrP , fc has an attracting
periodic cycle of period vp for some positive integer v.

With the exception of the point c = 1/4, there are always two external parameter
rays of M , Rt−(rP),Rt+(rP) (measured in turns), landing at rP . These rays cut
off a region of the plane called the wake of rP and denoted by WrP . There are
external dynamic rays Rt±(rP) of the filled Julia set KrP of frP landing at the
parabolic periodic point on the boundary of the Fatou component containing the
critical value. The angles t± of the dynamic rays are the same as the angles of the
parameter rays.

Wakes of two roots rP and rP ′ , P 6= P ′ are either disjoint or one is contained
inside the other.

We can define a partial order on the roots of M as follows: rP ≺ rP ′ if WrP′ ⊂
WrP .

A hyperbolic component HrP is primitive if rP is not a boundary component of
any other hyperbolic component. Otherwise it is called a satellite. If rP0

, rP2
, . . . rPn

is a sequence of roots such that HrP0
is primitive and rPi+1

lies on the boundary of
HrPi

, i = 1, . . . , n, then the components HrPi
are satellites of the same primitive

component HrP0
. We say that {HrPi

}i=ni=k forms a chain from HrPk
to HrPn

for any
0 ≤ k < n.

Our main result is

Main Theorem If c ∈ HrP and frP has a parabolic orbit of period p, then the
rational rays landing on the boundary points of the bounded Fatou components of
fc are precisely all the rays in the union of the sets {∪nf−nrP (Rt±(rP))} and of
{∪nf−nrQ (Rt±(rQ))} for all rQ � rP such that there is a chain from HrP to HrQ

.

We also prove that the arguments of the rays that land on any bounded Fatou
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component form a Cantor set in the circle at infinity.
The paper is organized as follows. In section 2 we give the basic definitions and

set notation. In section 3 we define and describe the portrait laminations that are
our main technique to describe the external rays that land on the boundary of the
Fatou set, and in section 4 we prove our main theorem.

2. Basic Theory and Notation

In this section we recall basic definitions and set our notation. Proofs may be
found in standard texts, for example [2, 11]. We work with quadratic polynomials
fc = z2 + c.

2.1 The Fatou set and the Julia set

The orbit of a point z0 is the set {zn = fc(zn−1)}∞1 . We use the notation fn to
denote the nth iterate of the function f . The grand orbit is the set {fnc (z0)} for all
n ∈ Z.

As usual, the filled Julia set Kc of fc is the set of points in the dynamic plane
whose orbits under fc are bounded and the Julia set Jc = ∂Kc. The Fatou set is
the complement of the Julia set. The complement B∞ of Kc is the attracting basin
of infinity. It is completely invariant; that is, it is forward invariant, fc(B∞) = B∞,
and it is backward invariant f−1

c (B∞) = B∞.
For readability, in statements where the specific parameter is not relevant, we

omit the subscript.
The Mandelbrot set M is the set of values in the parameter plane such that for

each c ∈ M the orbit of the origin under fc is bounded. The filled Julia set Kc is
connected if and only if c ∈ M . The connected components of the Fatou set are
simply connected if and only if c ∈M .

A point z0 is a periodic point for fc if for some positive integer p, fpc (z0) =
z0 and the smallest such p is called the period of the orbit; z0 is pre-periodic if
fp+nc (z0) = fnc (z0) for some integers p, n > 0. If z0 is a periodic point, the set
of points {z0, z1, . . . , zp−1} are all periodic and form a periodic cycle. The cycle is
called attractive, neutral or hyperbolic as the multiplier λ = dfp(z0)/dz has absolute
value less than, equal to or greater than 1. If λ = e2πij/k the cycle is parabolic; if
λ = 0 the cycle is super-attracting. Note that if fc is considered as a rational
function on the Riemann sphere, the point at infinity is always a super-attracting
fixed point.

A bounded component F of the Fatou set is periodic if fp(F ) = F for some some
positive integer p and is eventually periodic if fn+p(F ) = fn(F ) for some integers
p, n > 0. As usual, the period of the component is the smallest p for which its orbit
is periodic and the periodic components in its orbit form a cycle. We also speak of
the grand orbit of a component.

If fc has an attractive or parabolic periodic cycle, the critical point is contained
in one of the components of the Fatou cycle. We reserve the notation F0 for this
component. The set of components {F0, f(F0) = F1, . . . , f(Fp−2) = Fp−1} are all
periodic and form what we call the Fatou cycle of components.

If fc has a non-parabolic neutral cycle and a non-empty Fatou cycle of p com-
ponents, the map fpc is holomorphically conjugate to an irrational rotation and
the orbit of the critical point accumulates on the boundaries of the components
in this cycle. By the general classification theory, these are the only possibilities
for non-empty bounded Fatou components. Therefore there is at most one cycle of
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bounded Fatou components.
In this paper we will be concerned only with those quadratic polynomials with

bounded critical orbit and an attracting or parabolic periodic cycle. The situation
for quadratics with non-parabolic neutral cycles is much more delicate and our
techniques do not apply.

2.2 Dynamic External rays and Böttcher Coordinates

If c ∈M , the basin of infinity is simply connected and the orbit of the critical point
is bounded. There is unique holomorphic change of coordinate, ψc : B∞ → C \∆
called the Böttcher coordinate at infinity that conjugates the map fc|B∞ to the
map z2 on the complement of the closed unit disk ∆; the derivative at infinity is
one.

The pre-image under ψc of a circle of radius ρ > 1 is a simple closed curve in
B∞ called an equipotential of potential log ρ. It is mapped by fc 2 to 1 onto the
equipotential of potential 2 log ρ. The pre-image of the ray ρe2πit for fixed t ∈ R/Z
and ρ > 1 is an orthogonal trajectory of the equipotential curves. It is called an
external ray of angle t and denoted by Rt. It is mapped one to one onto the external
ray R2t mod 1 under the map fc.

In the dynamic plane, as ρ → ∞, Rt is asymptotic to the ray with argument
2πit. Written this way, the ray is measured in turns. We say Rt meets the circle
at infinity at t. The action of fc on the circle at infinity is thus a doubling mod 1.
The equipotentials and external rays determine a chart of orthogonal coordinates
in the basin at infinity.

If limρ→1Rt exists, the ray is said to land on the Julia set. It is standard [12]
that there are external rays landing at repelling and parabolic periodic points in
the Julia set. Moreover, whenever there is a parabolic or attracting periodic cycle,
the Julia set is locally connected and the inverse of the Bottcher coordinate is
uniformly continuous and extends to the unit circle as a semi-conjugacy between
the doubling map and the quadratic polynomial. The bounded Fatou components
are also Jordan domains, and a similar property holds as well for them.

Böttcher coordinates may also be defined in a neighborhood of any super-
attracting fixed point. If fc has a Fatou cycle with p components that contains
a super-attracting cycle, then fpc (Fi) = Fi for any i = 0, . . . , p − 1. In particular,
0 ∈ F0 is a super-attracting fixed point for fpc . In this case, the rays defined by the
Böttcher coordinate ψc : F0 → C \∆ that conjugates the map fp to z2 are called
internal rays.

The boundary ∂F of a Fatou component in this case is precisely the set of
endpoints of the internal rays. We will show which external rays land at these
points.

2.3 Roots and components of the Mandelbrot set

The interior of the Mandelbrot set M contains simply connected components H
such that for each c ∈ H, fc has an attracting periodic cycle of the same period.
There is a holomorphic map from the parameter c to each of the periodic points in
the attracting cycle of fc. These components are the hyperbolic components. The
period of a hyperbolic component is the period of this attracting cycle.

The map µ : Hc → ∆ defined by sending the point c′ ∈ Hc to the multiplier λ
of the attracting cycle of fc′ is a holomorphic homeomorphism. It extends contin-
uously to the boundary, and in particular to the points where the argument of λ
is a rational multiple of π.
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Definition 2.1 . Let H be a component of M . The root point r of H is the point
µ−1(1) on ∂H. The center c is the point µ−1(0).

At the root there is a parabolic cycle and at the center there is a super-attractive
cycle.

Hyperbolic components are divided into two types:

Definition 2.2 . Suppose the period of H is p and let ẑ be a point in the parabolic
cycle corresponding to the root point r. Let Rt be an external ray landing at ẑ. If
fpr (Rt) = Rt the component H is primitive. Otherwise it is a satellite.

This notation comes from the fact that the root of a satellite component of period
p is a boundary point of another hyperbolic component of lower period q where
q|p. A primitive component is not.

Definition 2.3 . Define a chain of hyperbolic components {Hi}, i = k, k+1, . . . , n,
0 ≤ k < n, as a finite collection of components with the property that the root ri

of Hi+1 is on the boundary of Hi. We say the chain goes from Hk to Hn. 1

The component Hk may or may not be a primitive. If it is not, we can extend
the chain to a chain {Hi}, i = 0, . . . , n such that H0 is primitive.

2.4 Parameter External rays

In the parameter plane there is a Riemann map Ψ : C \M → C \ ∆ such that
Ψ(∞) =∞ and the derivative at infinity is one. This is the parameter analog of the
function ψc that defines the Böttcher coordinate in the dynamic plane. As for the
Böttcher coordinate, Ψ too has external rays, defined in the same way : for each
t, Rt is the pre-image under Ψ of the ray ρe2πit , ρ > 1. To differentiate between
dynamic and parameter rays, we will use different fonts and denote the former by
Rt and the latter by Rt.

In analogy with dynamic external rays, we say an external parameter ray lands
at a point of M if limρ→1 Ψ−1(ρe2πit) exists.

2.5 Orbit Portraits

We refer the reader to [12] for a full discussion and only give the definitions and
results we will need here. Where we state the theorems as they appear we refer to
the theorem number in [12]. In several instances, however, we have taken results
from several theorems there and combined them; these are marked only with the
citation [12].

Let O = {z0, . . . , zp−1} be a periodic orbit for f . If Rt is a ray landing at z0 then
R2t lands at zi = f(z0) and R2nt = Rt for the smallest n such that 2nt ≡ t mod 1.
Note that this implies that if Rt lands on a periodic point, or a pre-image of a
periodic point, t must be rational.

The collection {Rt, R2t, . . . , R2n−1t} is called the ray cycle of the orbit and n is
called the ray period. There is a natural equivalence relation on the ray cycle where
two rays are identified if they land on the same point of the orbit; the equivalence
classes are denoted by Ai.

Definition 2.4 . The orbit portrait is the collection

P = P(O) = {A0, . . . , Ap−1}.

1In [18] Hn is called visible from Hk.



July 13, 2009 10:6 Journal of Difference Equations and Applications FlekKeenJDEA

6 R. Flek and L. Keen

The number of elements is the same in each Ai and is called the valence v. Denote
the period of the angles in each Ai under the map t 7→ 2pt mod 1 by r so that the
period of each ray in the orbit is rp.

R 74
511

R 81
511

R 137
511

R 148
511

R 162
511

R 274
511

R 37
511

R 324
511

R 296
511

Figure 1. Orbit Portrait for the dynamic root with parameter value c = −0.03111 + 0.79111i

The period is 3 and the valence is 3, P = {( 74
511

, 81
511

, 137
511

), ( 148
511

, 162
511

, 274
511

), ( 296
511

, 324
511

. 37
511

)}

If v ≥ 2 or if the only angle in the portrait is zero, P = {{0}}, then the orbit
portrait is called non-trivial. For a non-trivial orbit with v ≥ 2, the v rays in each
Ai divide the dynamic plane into v sectors. They divide the full circle of angles at
infinity into v arcs so that the sum of the arc lengths of the sectors is +1.
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Under minimal assumptions satisfied in all cases here, the orbit portrait has the
following properties:

• Each Aj is mapped onto Aj+1 under the doubling map t 7→ 2t mod 1
• All the angles in A1 ∪ . . .∪Ap are periodic under doubling with common period
rp, and

• For each i 6= j the sets Ai and Aj are contained in disjoint sub-intervals of the
circle.

Given a rational number t, we can form its formal orbit portraits by forming
the ray cycle using the doubling map and form the various possible partitions into
subsets Ai.

We will need the following theorems:

Theorem 2.5 ([12], Theorem 1.1). Let O be an orbit of period p ≥ 1 for f = fc.
If there are v ≥ 2 dynamic rays landing at each point of O, then there is one and
only one sector S1 based at some point z1 ∈ O which contains the critical value
c = f(0), and whose closure contains no point of O other than z1. Among all of the
pv sectors based at all the points of O, S1 is the unique sector of smallest angular
width.

We call S1 the critical value sector.

Suppose O is given with valence v ≥ 2 and suppose fc admits an orbit with
portrait O. Let Rt± be the dynamic rays defining the critical value sector of fc,
0 < t− < t+ < 1.

Theorem 2.6 ([12], Theorem 1.2). The two corresponding parameter rays Rt±
land at a single point rP of the parameter plane. These rays, together with rP divide
the plane into two open subsets, WP and C\WP such that: a quadratic map fc has
a repelling periodic orbit with portrait P if and only if c ∈WP , and has a parabolic
orbit with portrait P if and only if c = rP .

Definition 2.7 . The set WP is called the P-wake in parameter space and rP is
the root point of the wake. The set MP = M ∩WP is the P-limb of the Mandelbrot
set.

The open arc IS1 = (t−, t+) consisting of all angles of dynamic rays Rt contained
in S1 is the characteristic arc IP for the orbit portrait P.

An immediate corollary to theorem 2.6 is

Corollary 2.8 [12]. If P and P ′ are two distinct non-trivial orbit portraits and
if IP ⊂ IP ′ with P 6= P ′ then WP ⊂WP ′.

The following theorem tells us that all non-trivial formal orbit portraits are
realized as roots of hyperbolic components.

Theorem 2.9 [12]. There is a one to one correspondence between the set of non-
trivial formal orbit portraits and the root points of the Mandelbrot set. If P is the
portrait, we denote the corresponding root rP .

As part of the proof of this theorem, it is necessary to distinguish the orbit
portraits of primitive and satellite components . For primitive components, there
are two distinct cycles of rays that land on the parabolic orbit. The valence is 2
and the rays that land have the same period as the orbit so that r = 1. For satellite
components, there are v = r rays landing at each point in the orbit and these are
permuted under doubling. The number of rays is vp and there is only one distinct
cycle.

For points in the component with root rP we have
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Theorem 2.10 [12]. If c is in the hyperbolic component with root rP , then fc
has a repelling periodic cycle with orbit portrait P and the points in this cycle lie
on the boundaries of the Fatou cycle components.

Figure 2. Rays in the Parameter plane: the inner rays land at the root rP for P as in Figure 1

Figure 1 shows the Julia set and the orbit portrait of the repelling cycle on the
boundary of the Fatou set. Figure 2 shows the corresponding rays in the parameter
plane that define the corresponding wakes.

It is possible to form chains of components using the following deformation the-
orems. Suppose P is an orbit portrait of period p and ray period rp ≥ p.

Theorem 2.11 ([12] Theorem 4.1). Let Hc be a hyperbolic component with root
rP . Then we may form a smooth path c(t) in parameter space ending at rP such
that fc(t) has a repelling orbit of period p with portrait P whose periodic points lie
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on boundaries of the Fatou cycle fc(t). Furthermore, fc(t) has an attracting orbit of
period rp and, as c(t)→ rP , both orbits converge to the orbit of frP .

Theorem 2.12 ([12], Lemma 4.4). Under the same hypothesis as above, there
also exists a smooth path c(t) in parameter space ending at rP such that fc(t) has
an attracting orbit of period p, and a repelling orbit of period rp whose points lie
on the boundaries of the Fatou cycle. Furthermore, the dynamic rays with angles
in AP = A1 ∪ · · · ∪Ap all land on this repelling orbit.

It follows that given a satellite component Hc, we can form a chain of components
{Hci}, i = 0, . . . , n as follows: ci+1 is on the boundary of Hci for i < n, cn = c
and Hc0 is primitive. We say that each Hci is a satellite of the primitive Hc0 for all
i = 1, . . . , n.

The periods of the attracting cycles of all components in the chain are multiples of
the period of the attracting cycle of the primitive Hc0 . The wakes Wri

, i = 0, . . . , n
of the roots of the components in the chain are nested, W ri+1

⊂ Wri
. We call the

wake Wr0
the pre-wake of any of the wakes Wri

, i = 1, . . . , n provided there exist
nested formal orbits of the given periods.

It also follows from this discussion that given any component Hc with root rP
of period p0, and a set of integers, r1, . . . rn, we can form a chain Hci , such that
c0 = rP , the root of Hci is on the boundary of Hci+1 and the period pi of the
attracting cycle in Hci is ripi−1. The wakes and the characteristic arcs of the
portraits are nested.

3. Portrait Laminations

Let P = {A0, . . . , Ap−1} be the orbit portrait of a repelling or parabolic periodic
cycle of period p such that rP is not a primitive root. For the rest of the paper we
shall tacitly assume, unless we say otherwise, that the portraits we consider are
non-trivial and are not the {0} portrait.

For each ray Rtj ∈ Ai, i = 0, . . . p − 1, mark the point e2πitj on the unit circle.
Join the points corresponding to the rays in each equivalence class Ai by hyperbolic
geodesics so that they form a convex hyperbolic polygon Q(Ai). The number of
sides is the valence v. Since the period of the portrait is p we have p polygons.

Note that if there are only two rays in an equivalence class, the polygon is degen-
erate and is just a line. This happens, for example, for the portrait P = ({1

3 ,
2
3})

and in particular, for portraits corresponding to roots of primitive components. The
discussion below is valid for degenerate polygons. We will assume, however, that
our polygons are not degenerate and leave it to the reader to make the necessary
adjustments when they are.

Definition 3.1 . The length of a side of a polygon is the length of the minor arc
of the unit circle that the side subtends.

We assume the polygons are labeled so that the vertices of Q(Ai+1) are obtained
from those of Q(Ai) by doubling (mod 1). That is, we double the arguments of the
vertices and connect to form a convex polygon again.

Definition 3.2 . The doubling map on the circle at infinity thus induces a map
on the polygons that we call the lamination map and which we denote by Λ(P) or
simply Λ if there is no confusion. The name is justified below.

Lemma 3.3 . The polygons Q(Ai) for a given orbit portrait P are mutually dis-
joint.
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Proof . Let p be the period of the repelling or parabolic cycle with portrait P. The
rays in a given class Ai all land at the same point, zi, fixed under the pth iterate.
Since the external rays to the Julia set cannot intersect outside the Julia set, the
rays landing at zj cannot intersect the rays landing at zi for i 6= j. Thus the rays
landing at zj lie between two rays landing at zi and all the vertices of Q(Aj) must
lie between two adjacent vertices of Q(Ai).

By the same considerations, it follows that adjacent vertices go to adjacent ver-
tices so that we can say Q(Ai+1) is obtained from Q(Ai) by the lamination map
induced by the doubling map on the circle at infinity. �

Under the lamination map Λ these polygons form a forward invariant cycle.

!v
Q!A1"

Q!A0"

!0

!0 '

Gv

G0

Q!A2"

37
511

81
1022

74
511

81
511

137
511148

511162
511

274
511

585
1022

296
511

324
511

Figure 3. The Portrait Lamination and the Gaps for fc, c = −0.03111 + 0.79111i

Definition 3.4 . Suppose P = {A0, . . . , Ap−1} is a non-trivial orbit portrait of a
repelling or parabolic periodic cycle such that rP is not a primitive root. We define
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the portrait lamination L(P) as the collection of polygons Q(Ai), i = 0, . . . , p − 1
together with all their pre-images under the lamination map Λ(P).

Proposition 3.5 . Let Hi, i = 0, . . . , n be a chain such that H0 is primitive
and Hn = HrP . Suppose f ∈ HrP . Then f has n+ 1 repelling periodic cycles with
non-trivial orbit portraits P0, . . .Pn and the characteristic arcs satisfy IPj ⊂ IPj−1;
that is, they are nested. There is a portrait lamination L(Pj) for each j = 1, . . . , n
and the polygons in each lamination are mutually disjoint. Moreover, the same is
true for the union of the polygons in all the laminations.

Proof . That f has n + 1 repelling periodic cycles with non-trivial nested orbit
portraits P0, . . .Pn is a consequence of the discussion following theorems 2.11 and
2.12. That the portrait laminations exist and the polygons in each are disjoint is
a consequence of applying the argument of lemma 3.3 to each lamination. That
the union of the polygons is disjoint as well follows because the external parameter
rays cannot intersect. �

The above proposition also holds if f = frP is the root of HrP but the n + 1-st
cycle with portrait P is parabolic instead of repelling.

There is a repelling or parabolic periodic point corresponding to the orbit portrait
Pn on the boundary of the Fatou component F0 containing the critical point. This
is called the dynamic root point by Schleicher in [17]. We will thus call the portrait
Pn the root portrait for f .

We will focus on this root portrait and by abuse of notation set P = Pn in what
follows.

Definition 3.6 . We define the Gaps of L(P), denoted by G = G(P), to be the
complementary components of L(P) in the unit disk ∆.

The gaps are open infinite sided ideal polygons in the disk. The boundary of a
gap consists of geodesic sides of polygons in the portrait lamination and points on
∂∆.

Proposition 3.7 . The lamination map induces a map on G that sends gaps to
gaps.

Proof . Since L(P) is completely invariant under the lamination map, sides and
vertices of gaps are mapped to sides and vertices of gaps. We need to show that
all the sides of a given gap are mapped to sides of the same gap. Suppose γ and
γ′ are sides of a given gap G and Λ(γ) and Λ(γ′) belong to different gaps. Then
there is at least one leaf of the L that separates them; call its endpoints s and t.
Since the vertices are mapped by the doubling map their order is preserved. This
means that there is a pre-image of s between an endpoint of γ and an endpoint
of γ′. Then the pre-images of t either lie between the other endpoints of γ and
γ′ or are separated from G by γ or γ′. In the first case a leaf joining s to one of
these pre-images divides G and it cannot be a gap; in the second, the leaf intersects
another leaf of the gap which cannot happen. �

Note that this map, like the map on polygons, is not defined pointwise. By abuse
of notation we call both the lamination map and its extension to gaps, Λ.

The endpoints of a given side of a gap subtend two complementary arcs in ∂∆;
one contains vertices of the gap and the other contains vertices of the polygon the
side belongs to. We say the side bounds the latter arc.

We want to focus on two particular gaps. One of the gaps has a side γv whose
endpoints (t−, t+) bound the characteristic arc IS1 . We call this gap the critical
value gap and denote it Gv. The side γv belongs to one of the polygons Q(Ai). We
may label the polygons so this one is Q(A1).
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Proposition 3.8 . The two pre-images of γv under Λ are symmetric with respect
to the origin. Moreover, no side of any polygon in the lamination separates these
pre-images.

Proof . Assume 0 < t− < t+ < 1. By Theorem 2.6, the characteristic arc bounds
the smallest sector among all sectors determined by the orbit O so that

t+ − t− < 1/2.

The two pre-images of this arc under the doubling map are the arcs, taken coun-
terclockwise,

(
t− + 1

2
,
t+
2

) and (
t−
2
,
t+ + 1

2
).

These are clearly symmetric with respect to the origin and each has arc length
greater than 1

2 .
Denote the sides of the lamination polygons that bound the complements of

these arcs by γ0 and γ′0. One of these is a side of Q(A0); call this one γ0. The arc
bounded by each of these sides is mapped one to one onto the complement of the
characteristic arc (t+, t−).

Recall that γv is a side of a polygon of L with endpoints (t+, t−). Suppose there
were a side γ of one the polygons in the lamination with ends (s, t) where

t−
2
< s <

t+
2

and
1 + t+

2
< t <

1 + t−
2

.

Under the lamination map, the image, Λ(γ) would have one endpoint at 2s where
t− < 2s < t+, and the other endpoint at 2t where t+ < 2t < t−. This would imply
that Λ(γ) intersects γv, however, contradicting the fact that the polygons in the
lamination are disjoint. �

By the second statement in the proposition the two sides γ0 and γ′0 bound a
common gap. This gap is the unique pre-image of Gv under Λ; we call it the
critical gap and denote it by G0. We denote by Q(A0)′ the other pre-image of
Q(A1) under Λ. We saw above that each of arcs on ∂∆ between γ0 and γ′0 maps
one to one onto the critical value sector.

The grand orbit of Gv under Λ is G = G(P).
As an immediate corollary to the proposition we have

Corollary 3.9 . The sides γ0 and γ′0 of Q(A0) and Q(A0)′ are the longest sides
among all the polygons in the lamination L(P).

It follows from this discussion that if a polygon Q 6= Q(A0), Q(A0)′ of the lam-
ination has a side in the boundary of G0, this side has both endpoints in one or
the other of the intervals ( t−2 ,

t+
2 ) and (1+t+

2 , 1+t−
2 ). Any other side of Q must have

endpoints in the same interval. Moreover, the side of Q that is in the boundary of
G0, must be the longest side of Q.

Recall that the period of the orbit of P is p but the period of a component in
the Fatou cycle is vp where v is the valence of the portrait.

Proposition 3.10 . None of the sides {Λ−j(γ′0)}, j = 1, . . . , vp − 1 is a side of
G0 but there are two sides in {Λ−vp(γ′0} that are; we denote them by E+(γ′0) and
E−(γ′0). These are the second longest sides of G0 and γv and the side Λ(E+(γ′0)) =
Λ(E−(γ′0)) of Gv are the longest and second longest sides of Gv.
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Proof . The vpth-iterate of the lamination map fixes the sides and vertices of Q(A0)
so that Λvp(γ0) = γ0. Any lower iterate either maps Q(A0) onto one of the other
polygons in L or permutes its sides. Moreover Λvp−1(Q(A1)) = Q(A0) so that
Λvp(Q(A0)′) = Q(A0) and Λvp(γ′0) = γ0.

Considering the extension to gaps we see that Λvp(G0) = G0 and γ0 has exactly
two pre-images in G0, γ′0 and itself. It follows that γ′0 also has two pre-images in
G0. Call these E+(γ′0) and E−(γ′0). Because G0 is symmetric, they will be a pair
of symmetric sides of G0, distinct from γ0, γ

′
0, and both endpoints of each will

lie in one of the symmetric arcs of ∂∆ between γ0 and γ′0. Since γ0, γ
′
0 are the

longest sides of G0, these are the second longest. It then follows that γv and the
side Λ(E+(γ′0)) = Λ(E−(γ′0)) of Gv are the longest and second longest sides of Gv.
�

We use argument of the preceding proof to construct two “inverse branches” of
the map Λvp on G0: let E+ : G0 → G0 be the map that sends γ0 to γ′0 and γ′0 to
E+(γ0); and let E− : G0 → G0 be the map that sends γ0 to γ′0 and γ′0 to E−(γ0).
If we insist that Λvp ◦ E+ and Λvp ◦ E− be the identity map on the sides of G0

these maps are well defined on every side of G0. We will use these maps in the next
section.

We note that if we iterate either of the maps Λvp or E+ on G0, the endpoints of
γ0, which are fixed, are accumulation points of all the vertices of the sides of G0.
The same is therefore true for any point in the grand orbit of these vertices and
thus for any vertex of a polygon in the lamination.

We now prove that the boundary of G0 in ∂∆ is a Cantor set.

Lemma 3.11 Cantor Set Lemma. Let G0 be the critical gap of the polygon lami-
nation L(P). Then the ∂G0 ∩ ∂∆ is a Cantor set.

Proof . Denote the length of the characteristic arc of (t−, t+) of the P-limb by

` = |t+ − t−|.

Label the arcs on ∂∆ between γ0 and γ′0 by I0 and I1. Since Λ doubles the lengths
of the sides (mod 1), it is straightforward to compute that for k = 1, 2 the length
of Ik is `1 = `/2. Remove the complementary arcs to I0 and I1.

Let γ̃ be a side of G0 and a side the of the polygon Q̃ = E(Q(A0)) where the
branch E of Λ−vp is chosen to fix G0. Suppose the endpoints of γ̃ are t̃±. Denote
the length of γ̃ = |t̃+ − t̃−| by |γ̃|. Since the other sides of Q̃ are not sides of G0,
their endpoints must lie in the interval (t̃+, t̃−). It follows that γ̃ is the longest side
of Q̃. Since Λ doubles the lengths of the sides (mod 1), we see that

|γ̃| = |E(γ0)| = 1
2vp+1

`.

The endpoints of γ̃ must lie in only one of the intervals Ik, k = 0, 1. Let γ̃′ = E′(γ0)
be the pre-image of γ0 under the other choice E′ of Λ−vp fixing G0. By symmetry,
it will have the same length as γ̃ and its endpoints will lie in the other Ik.

Now remove the intervals spanned by γ̃ and γ̃′ leaving four intervals,
I00, I01, I10, I11. Computing, we see that each Ijk has length

`2 = |Ijk| =
2vp − 1
2vp+1

`1.

We iterate this process: at stage n we have 2n intervals of length `n; we remove
an interval whose length is `n

2vp from each of these and obtain 2n+1 intervals of
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length

`n+1 =
1
2
`n(1− 1

2vp
) =

2vp − 1
2vp+1

`n.

This is a standard Cantor set construction and from the formulas it follows easily
that the sum of the lengths of the removed intervals tends to 1. �

We have the following relation between gaps of polygon laminations for portraits
of chains.

Lemma 3.12 . Suppose that there is a finite chain HrPi
, i = 0 . . . , n from HrP

to HrQ
with P0 = P, Pn = Q and rQ � rP . Denote the lamination polygons of

L(Pi) by Qi(Aj) and the critical gaps and critical value gaps of Pi by G0,i and Gv,i
. Then the critical gaps and the critical value gaps are nested, G0,i+1 ⊂ G0,i and
Gv,i+1 ⊂ Gv,i. Moreover, if ζ is a boundary point in ∆ of G0,n, it is a boundary
point in ∆ for all G0,i for all i = 0, . . . , n− 1.

Proof . By Proposition 3.5, the polygon laminations are mutually disjoint for all the
Pi. It follows that we can fit polygons from each of the portraits Pi into the gapG0,0.
Because the characteristic arcs of the portraits in the chain are nested, the polygons
Q1(A0) and Q1(A0)′ separate the polygons Q0(A0) and Q0(A0)′ from the origin and
the gap G0,1 ⊂ G0,0. Continuing in this way, we obtain a nested sequence of critical
gaps. Taking the images of the critical gaps under the appropriate lamination maps
the critical value gaps are also nested. It follows immediately that the boundary
points on ∆ are also nested. �

4. The Relation between F0 and G0

4.1 Centers of Hyperbolic Components

Fix a hyperbolic component H with root rP and assume the period of the parabolic
cycle at rP is p. Let cP be the unique point in H for which the attracting cycle is
super-attractive. This is the center of H. The period of the super-attractive cycle
is vp where v is the valence of the portrait. For simplicity of notation denote this
map by f = fcP for now. By Theorem 2.10, there is a repelling cycle of period p
with portrait P whose orbit lies in the boundary of the Fatou cycle. Let z0 be the
point in this orbit on the boundary of the component F0, containing the critical
point; then fp(z0) = z0 is a repelling fixed point on ∂F0 and is the dynamic root
for f . Let zk = f(zk−1), k = 1, . . . , p be the orbit of z0. Each point is a fixed point
of fp on the boundary of v Fatou components.

We can define a Böttcher coordinate in the component F0 such that the internal
ray in F0 with argument 0 lands on the fixed point z0 of fp. There is another point
z′0 on ∂F0 such that f(z′0) = z1; it will have internal ray 1/2. Using branches of the
inverse of fnvp that fix F0, we find that for each n = 1, 2, . . . there are n points ζk,n
with internal ray 2k/2n, k = 0, . . . , n− 1 on ∂F0. The orbit portrait tells us there
are exactly v external rays landing at z0. This immediately implies v external rays
land at each endpoint on ∂F0 of an internal ray of argument 2k/2n, k = 0, . . . , n−1.
These endpoints are the pullbacks of the v external rays that land at the periodic
point z0 by the branches of the inverses of fnvp that fix F0, n = 1, 2, . . ..
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4.2 Defining the map Ψ

We continue to consider the dynamics of the map f = fcP at the center of a
hyperbolic component. We fix notation as follows. We let m = vp denote the
period of F0 and let g± = f−m be the branches of the inverse that fix F0. We
denote by E± the branches defined in section 3 of the inverse of the first return of
the lamination map, Λm, that fix the gap G0. We use the fact that as sets in the
plane, both F0 and G0 are symmetric with respect to the origin.

Theorem 4.1 . There is a continuous map Ψ : G0 → F0 with the following
properties:

• Ψ preserves the dynamics; that is, Ψ(G0) = fm ◦Ψ(G0)
• Ψ has a continuous extension Ψ̄ : ∂G0 ∩ ∂∆→ ∂F0.

Proof . Draw a ray in G0 from the origin to each point in ∂G0 ∩ ∂∆. These rays
remain inside G0 because, by construction, it is starlike with respect to the origin.
Set Ψ(0) = 0.

To each side γ of G0, there is a triangle Tγ formed by the γ and the two rays from
the origin to the endpoints of the side. Since the endpoints of the sides are disjoint,
these triangles are disjoint. Define Λm(Tγ) as the triangle formed by Λm(γ) and
the rays of from the origin to endpoints of this side. The maps E± are also defined
on the triangles in the same way.

If T0 is the triangle with side γ0, parameterize the ray sides of T0, t0(s), t′0(s)
in ∆, by hyperbolic length s; join points at equal distance from the origin by a
geodesic ls(t), 0 ≤ t ≤ 1, where ls(0) = t0(s) and ls(1) = t′0(s). The component F0

admits a hyperbolic metric. Parameterize the internal ray with argument 0 it by
its hyperbolic length r0 = r0(s).

Define the map Ψ|T0
from the interior of T0 into F0 as follows. For all t ∈ [0, 1]

and all s ∈ [0,∞] set

Ψ(ls(t)) = r0(s).

Note that the side γ0 of T0 and the endpoints of the other two sides map to a single
point on the boundary of F0, the dynamic root.

Use E± and g± to extend Ψ|Tγ as a map from the remaining triangles to the
internal rays r2k/2n(s), k = 0, . . . n− 1. We have

E+(T0) = T0 , g+(r0) = r0.

Set T01 = E−(T0). If xn = x0x1 . . . xn where xi ∈ {0, 1} we define inductively,

T0xn = E−(Txn) and

T1xn = E+(Txn).

We can use the same scheme to code the internal rays:

r01 = g−(r0) has internal argument 1/2

r10 = g+(r0) = r0
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r0xn = g−(rxn) and

r1xn = g+(rxn).

We extend the maps Ψ|Tγ to the interiors of the triangles in the same way we
did for T0.

It follows from lemma 3.11 that the endpoints of the ray sides of the triangles
form a dense set in ∂G0 ∩ ∂∆. Therefore, given a point t ∈ ∂G0 ∩ ∂∆ that is not a
vertex of a triangle, we can find a sequence Tγn of triangles whose ray sides converge
to the ray with endpoint t. We extend the map Ψ to this ray by continuity. This
gives us an extension of Ψ to all of G0 and to its closure in ∆. Since the images
of the triangles are precisely the collection of all internal rays whose argument has
denominator 2n for some n, and this set is dense in the set of all internal rays, the
image of the extended map consists of F0 ∪ ∂F0.

�

We can use this theorem to characterize the external rays that land on ∂F0.

Theorem 4.2 . The external ray Rt lands on ∂F0 if and only if t ∈ ∂G0 ∩ ∂∆.

Proof . The map Ψ assigns the argument of one or two points in ∂G0 ∩∆ to each
point of ∂F0, depending whether or not they are endpoints of a side of G0. By
the construction of the lamination L, if t is not in ∂G0 ∩∆, a ray in ∆ with this
argument must pass through a side of some polygon in the lamination. This means
that the external ray Rt is blocked from landing on ∂F0 because it lies between
two rays that land at the same point.

If t ∈ ∂G0 ∩∆, then either t is a vertex of a polygon or a limit of such points,
t = limn→∞ tn. Because we have a Böttcher coordinate in F0, the boundary of F0 is
locally connected and every internal ray lands on ∂F0. The points Ψ(tn) lie on ∂F0

and are endpoints of the external rays Rtn . Since Ψ is continuous Ψ(tn) converges
to Ψ(t) and the Hausdorff limit of the external rays Rtn is a ray Rt whose endpoint
is Ψ(t) and so it lands on ∂F0. �

As a corollary we have

Corollary 4.3 . The rational external ray Rt lands on ∂F for any component F
of the Fatou set if and only if 2nt mod 1 ∈ ∂G0 ∩ ∂∆ for some n.

Proof . This follows directly from the fact that the map Ψ preserves the dynamics.
�

We are now ready to characterize all the rational rays landing on ∂F .

Theorem 4.4 . At a point on ∂F , for the polynomial fcP at the center of the
hyperbolic component HrP , either

• there are exactly v external rays that land, and this point is in the grand orbit of
the dynamic root z0 of period p and portrait P with valence v or,

• there is exactly one ray landing at the point. In this case, if Rt lands on ∂F and
t is rational, then t, or some iterate of it under doubling, belongs to some orbit
portrait Q 6= P whose root rQ is in the wake of WrP and can be reached by a
chain from HrP to HrQ. The period of Q is a multiple of vp.

Proof . We may assume, by taking iterates if necessary, that Rt lands at a point
ζt on ∂F0 for fcP . Consider the gap G0 for this portrait. By Theorem 4.2, t is on
the boundary of the G0 corresponding to P. It is either a vertex of a lamination
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polygon in L(P), in which case it belongs to the grand orbit of the ray cycle of the
portrait P or not, in which case only one ray lands at ζt.

Assume now that only one ray lands at ζt. The same is therefore also true for
any image under the lamination map. Let ζt′ be an iterate of ζt on ∂F1. By the
definition of the characteristic arc IP , since t′ is not one of its endpoints, it lies in
IP . Since t is rational we may assume t′ is periodic of some period, say k, under
doubling. It follows that t′ lies on the boundary of Gv = G0,v for P. We can find
a root rP1

on the boundary of HrP such that t′ ∈ IP1 . Draw in the polygons of
L(P1) that lie inside G1,v; by Proposition 3.5, these polygons are disjoint from
those bounding G0,v. If t′ is a vertex of one of these polygons, it belongs to the
ray cycle of the portrait P1, and so, by Theorem 2.10 the angles of P1 are a trivial
portrait for fcP . If it is not such a vertex, it, (or one of the points in its periodic
cycle) belongs to the boundary of G1,v for P1 and we repeat this process. We find
a root rP2

such that t′ ∈ IP2 and draw its polygon lamination L(P2) inside G1,v.
We claim that after repeating this process n times, for some finite n, t′ must be a
vertex of a polygon of L(Pn).

If the above procedure does not stop, because the periods of the portraits are
increasing multiples of p, for some n, the period of Pn will be greater than k, the
period of t′. This would mean, however, that there is a point on the boundary of
Gn,v for Pn whose period is less than the period of Gn,v and hence a point on the
boundary of Gn,0 for Pn whose period is less than the period of Gn,0. Applying
Theorem 4.1, this means that there is a point on ∂F0 for fcPn with lower period
than the period of F0. This is clearly a contradiction.

The points on the boundary of ∂F that are endpoints of rational rays are thus
the grand orbits of rays whose arguments are in the non-trivial portraits obtained
from roots reached by finite chains in parameter space. �

Remark 1 . We note that this theorem implies that for any primitive component
HrQ inside the wake WP , arguments of parameter rays landing at rQ cannot be
arguments of dynamic rays landing on any Fatou component of fcP .

Remark 2 . By corollary 2.8, we know that the only periodic or pre-periodic points
in the full Julia set where more than one point may land correspond to cycles whose
portraits lie in the pre-wake of P. The above theorem shows that the landing points
for these cycles do not lie on boundaries of Fatou components.

In the next section we will need to refer to the set we have described here of
external rays that land on the boundary of the Fatou set of f so we introduce the
following notation.

Definition 4.5 . Denote by Land(f) the set of arguments of external rays that
land on the boundary of the Fatou set of f .

4.3 Non-centers of hyperbolic components

Suppose now that c is either the root rP or an arbitrary point in the component
HrP with center cP . It is well-known, see for example, [14], that for all points in
c ∈ HrP , there is a conjugacy Φc between the Julia sets Jc and JcP that preserves
dynamics. That is, Φc : JcP → Jc and fcΦc = ΦcfcP . At the root, the dynamics of
the orbit of the dynamic root point are preserved by Corollary 2.8.
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This immediately gives us

Theorem 4.6 . The set of external rays that land on the boundary of the Fatou
set of any f ∈ HrP or its root depends only on P. In other words, let HrP be any
hyperbolic component and let c be either its root or an interior point. Then

Land(fc) = Land(fcP ) = Land(P).

Thus, Land(P) is precisely described in Theorems 4.2 and 4.4 and Corollary 4.3.
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dynamiques (Orsay, 1995). Astrisque 261 (2000), xiv–xv, 405–443.

[18] D. Schleicher, Internal Addresses of the Mandelbrot Set and Galois Groups of Polynomials, version
Feb. 5, 2008, arXiv:math/9411238v2.

[19] W. Thurston, On the Geometry and Dynamics of Iterated Rational Maps, Princeton University
Preprint (1985).


