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Abstract

We consider the class of meromorphic functions whose set of singular

values is bounded and for which the ω−limit set of the post singular set

is a compact repeller. We show that if two simples growth conditions are

satisfied, then the function is ergodic on its Julia set.

1 Introduction

The dynamical phenomena of systems generated by conformal mappings of the
plane are controlled by the behavior of the forward orbits of the singular values.
The closure of these orbits is called the post-singular set, or in the case of ratio-
nal maps, the post-critical set. For rational maps, it is known that outside the
post-critical set the function is expanding and this expansion leads to the follow-
ing dichotomy: a rational map either acts ergodically with respect to Lebesgue
measure on the sphere and the Julia set is the full sphere or the postcritical set
behaves as a measure theoretic attractor. (See [16], [18]). For transcendental
meromorphic functions, the essential singularities make the situation more com-
plicated. For example, in [15] Lyubich proved that for the exponential function,
the set of points whose ω-limit set contains the ω-limit set of the post-singular
set may have positive but not full measure and in [17] McMullen proved that
for the sine family the set of points attracted to infinity always has positive
measure and many ergodic components.

In this paper, motivated by our study of the tangent family [14], we find
sufficient conditions for a transcendental meromorphic function to be ergodic
on its Julia set. We prove
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Theorem 1. Let f be a transcendental meromorphic function whose singular
values lie in a bounded set. If f satisfies two simple growth conditions, if the ω-
limit set of the post singular set, ωf , is compact and if for some k > 1, |f ′| > k
on ωf , then f is ergodic with respect to Lebesgue measure on its Julia set.

As examples of the theorem we see first that if the omitted values of the
tangent map λ tan z land on repelling periodic cycles, the map is ergodic and
second that that there are values of λ such that the map λe−z2

sin z is ergodic.
These special cases also follow from the results in [8].

Our techniques are an adaptation of those developed in [11] to control the
set attracted to the essential singularities. The new ideas involve dealing with
the poles.

The paper is organized as follows. In section 2 we set our notation and
summarize the basic definitions and theory. In section 3 we prove our theorem
and in section 4 we discuss applications and examples.

We would like to thank I.N. Baker for helpful comments on the original
version and for pointing out that our proof of the main theorem holds more
generally than we had originally stated it.

2 Preliminaries

2.1 Julia sets of meromorphic functions

If f : C → Ĉ is a transcendental meromorphic function, the orbits of points fall
into three categories: they may be infinite, they may become periodic and hence
consist of a finite number of distinct points, or they may terminate at a pole of
f . To study the dynamics, we define the stable set, or Fatou set, Ωf as the set of
those points z such that the sequence f◦n(z) is defined and meromorphic for all
n and forms a normal family in a neighborhood of z. The unstable set, or Julia
set, Jf is the complement of the stable set. We assume ∞ ∈ Jf . Thus, Ωf is
open, Jf is closed. It is easy to see that Ωf is completely invariant and z ∈ Jf if

and only if f(z) ∈ Jf or z = ∞. As in the rational case Jf ⊂ (
⋃

n≥0 f
◦−n(z)) for

all z ∈ Ĉ−Ef , where Ef consists of at most two exceptional values with finite
inverse orbits. For all transcendental entire functions ∞ is an omitted value,
so it is also exceptional. For generic transcendental meromorphic functions, the
set of prepoles Pf = ∪n≥0f◦−n(∞) is infinite and Jf = Pf . Moreover, the Julia
set Jf is the closure of the repelling periodic points ([1, 3, 9]).

The singular set S = Sf of a meromorphic function f consists of those val-
ues in C at which f is not a regular covering. Therefore at a singular value
v there is a branch of the inverse which is not holomorphic but has an alge-
braic or transcendental singularity. If the singularity is algebraic, v is a critical
value, whereas if it is transcendental, there is a path α : [0,∞) → C such that
limt→∞ |α(t)| = ∞ and limt→∞ f(α(t)) = v, and v is called an asymptotic value
for f . If we can associate to a given asymptotic value v an asymptotic tract,
that is, a simply connected unbounded domain A such that f(A) is a punctured
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neighborhood of v and f : A → f(A) is an unramified covering, then v is called
a logarithmic singularity.

We define the post-singular set as

PS = PSf =
⋃

n≥0

fn(S)

and denote its ω−limit set by ωf .

We distinguish the following classes of meromorphic functions. For f mero-
morphic and p ≥ 1 define

Mp = {f : cardS = p}, M =
⋃

p≥1

Mp, and B = {f : S is bounded}.

Of course M ⊂ B. Some basic examples of entire functions in M are:

λez, a sin(z) + b, f(z) =

∫ z

h(η) exp(p(η))dη,

where λ, a, b ∈ C and h(η), p(η) are polynomials. The class M also includes
meromorphic functions with polynomial Schwarzian derivative. An example
is λ tan(z) whose Schwarzian derivative is constant. Examples of functions in
B −M are:

f(z) = λsin(z)/z and f(z) = λe−z2

sin(z);

an example of a function not in B is f(z) = λz sin z.

We call the set ωf a repeller if, for all z ∈ ωf such that f(z) is defined,
f(z) ∈ ωf and if there exists k > 1 such that, for all z ∈ ωf , |f ′(z)| ≥ k. It is a
compact repeller if f(z) is defined for all z ∈ ωf and if ωf is compact.

In particular, if f ∈ M and all critical and asymptotic values are eventually
mapped to repelling periodic points, then ωf is a compact repeller. Note that
for transcendental meromorphic functions with poles, ωf may include points
with finite forward orbits. For example, the singular set S of the function
f(z) = πi

2 tan(z) consists of the omitted values {±π
2 }. Since they are poles

and have no forward orbit, ωf = Sf is a repeller but is not a compact repeller.
Clearly, if ωf is not finite and contains prepoles it cannot be a compact repeller.

2.2 Classification of stable behavior

Let D be a component of the stable set; f will map D to a component, but if
the image contains an asymptotic value, the map might not be onto. In any
case, we call the image f(D) and note that either there exist integers m ̸= n > 0
such that f◦n(D) = f◦m(D), and D is called eventually periodic with period
p = min(|m−n|), with the minimum taken over all such m,n, or for all m ̸= n,
f◦n(D) ∩ f◦m(D) = ∅, and D is called a wandering domain.

The qualitative and quantitative description of the eventually periodic be-
havior is slightly more complicated than in the rational case because of the
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transcendental singularity at ∞ and the possibility that fp may not be defined
at some values. As for rational maps, eventually periodic domains may be at-
tracting, parabolic or rotation domains. In addition, however, an eventually
periodic domain D may be an an essentially parabolic or Baker domain; that
is, the boundary of D contains a point z0 (possibly ∞) such that fnp(z) → z0
for z ∈ D and fp is not holomorphic at z0. If p = 1, then the only possible
boundary point is ∞.

2.3 Two propositions

We shall need the following proposition proved in [13]

Proposition 2.1. Let f be a meromorphic function and let D be an open disk
such that D ∩ Jf ̸= ∅. Suppose that there are branches gnk ∈ f−n holomorphic
and univalent on D with nk → ∞. Then (g′nk

) → 0 uniformly on every compact
set in D.

We shall also need the following version of Koebe’s distortion theorem.

Proposition 2.2. If g : D(0, 1) → C is a univalent map normalized so that
g(0) = 0, then for every 0 < k < 1 and z, w ∈ D(0, k), there is a constant T (k)
such that and |g′(z)|/|g′(w)| lies between 1/T (k) and T (k).

2.4 Orbits that tend to infinity

In this section we adapt the discussion of Eremenko and Lyubich [11] on entire
functions in B to meromorphic functions in B. They give a sufficient condition
for the measure of the set

I∞(f) = {z ∈ C : fn(z) → ∞}

to be zero. We need additional condition on the Laurent expansions about the
poles to prove this in the meromorphic case.

At each pole p of ordermp, form the Laurent expansion of f about p, fp(z) =
cp/(z− p)mp(1 +φp(z − p)) where φ(z) is analytic and φ(z − p) = o((z − p)mp).

Suppose f ∈ B. Let D(q, r) denote the disk of radius r centered at q, Ar the
annulus Ar = {z : r < |z| < ∞}.

Because S(f) is bounded, we can find R0 > 0 such that S(f) ⊂ D(0, R0).
Fix R > R0. Without loss of generality we may assume that f is analytic at 0
and |f(0)| < R0/2.

Suppose w ∈ AR and f(z) = w. Since there are no singular values in AR, any
branch g of f−1 such that g(w) = z can be continued analytically throughout
AR. Let g be some branch of f−1 and set V = g(AR). By [20], ∞ is either
a logarithmic branch point of g with asymptotic value a, V = Va is simply
connected and f : Va → AR is a universal covering, or ∞ is an algebraic branch
point of g of order mp−1 for some integer mp, V = Vp is conformally equivalent
to a disk punctured at a pole p of f and f : Vp → AR is a regular mp to 1
covering.
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Let m denote Lebesgue measure in C and let ΘR(r, f) be the linear measure
of the set {θ : |f(reiθ)| < R}.

With this notation we have

Proposition 2.3. Let f ∈ B and suppose that there is a positive integer J
and positive constants b, B,C1, C2 > 0 such that for every p, and z ∈ Vp, the
multiplicities mp are bounded by J and the coefficients cp and functions φp(z−p)
and φ′

p(z − p) satisfy

b < |cp| < B, |φp(z−p)| < C1, |φ′
p(z−p)| < C1, C2 < |1+φp(z−p)| (∗)

Moreover suppose

lim inf
r→∞

1

log r

∫ r

1
ΘR(t, f)

dt

t
> 0. (∗∗)

Then m(I∞(f)) = 0.

Proof: We summarize the proof in [11] that m(I∞) = 0 for entire functions
satisfying condition (∗∗), indicating the necessary changes to account for the
poles. We remark that the proof there is valid if there are only finitely many
poles. We therefore assume here that our functions have infinitely many poles

The first step in the proof that m(I∞) = 0 is to obtain a uniform expansion
estimate on |f ′| restricted to each component Va or Vp.

For simply connected Va, the argument is the same as in [11] using Te-
ichmüller’s construction of a logarithmic coordinate. We outline that argument
here. If ∞ is a logarithmic branch point of g, we first define a logarithmic coor-
dinate w = log z, z ∈ Va and set Ua = logVa; then Ua ⊂ H = {w : ℜw > 0} has
infinitely many simply connected unbounded components Ua,n each contained
in a vertical strip of width 2π and the exponential maps each Ua,n univalently
onto Va. We have a commutative diagram:

Ua
F
→ HR

exp ↓ ↓ exp

Va
f
→ AR

where HR = {w : ℜw > logR} and F maps Ua,n ⊂ H univalently onto HR.
If w ∈ H , the disk D = D(F (w), δ(w)) centered at F (w) with radius δ(w) =

ℜF (w)− logR is contained in HR. Denote the branches of F−1 by Gn : HR →
Ua,n. By the Koebe 1

4 -theorem Gn(D) contains a diskDn of center w and radius
1
4δ(w)|(Gn)′(F (w))|. Since Ua,n cannot contain any vertical segment of length
2π, for w ∈ Ua,n we have

|F ′(w)| >
1

4π
(ℜF (w) − logR).

It follows there are constants k,K > 1 such that if ℜF (w) > k, then |F ′| >
K. By the chain rule, we have |f ′(z)| > K|f(z)|/|z|.
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To obtain an estimate for |f ′| = |f ′
p| on the punctured disk domain Vp we

use a different argument.
Note that since φp and φ′

p are analytic in Vp, |φp| and |φ′
p| achieve their

maxima on ∂Vp. Increasing R clearly decreases these maxima so that by taking
R large enough, we may assume C1, C2 and C1/C2 are small relative to R.

If z ∈ Vp, by conditions (∗)

R ≤ |fp(z)| =

∣

∣

∣

∣

cp
(z − p)mp

(1 + φp(z − p))

∣

∣

∣

∣

≤
B

|z − p|mp
(1 + C1)

so that |z − p| < Mp = B(1+C1)
R )

1
mp < 1.

For t > R, set AR,t = AR \ At. Choose R′ >> R and such that R′ > C2b;
for each pole p set Ṽp = f−1

p (AR,R′ ). Then if z ∈ Ṽp, by conditions (∗) we have

bC2

|z − p|mp
≤ |fp(z)| =

∣

∣

∣

∣

cp
(z − p)mp

(1 + φp(z − p))

∣

∣

∣

∣

≤ R′

so that |z−p| > ρp = bC2

R′

1/mp
. The annulus ρp < |z−p| < Mp is thus contained

in Ṽp. Note that since for all p, 1 ≤ mp ≤ J , the moduli of these annuli are
uniformly bounded.

Next compute that

|f ′
p(z)| = |fp(z)|

∣

∣

∣

∣

mp

z − p
+

φ′
p(z − p)

1 + φp(z − p)

∣

∣

∣

∣

.

In Ṽp we have

|f ′
p(z)| ≤ R′

∣

∣

∣

∣

∣

J

(

R′

bC2

)
1

mp

+
C1

C2

∣

∣

∣

∣

∣

and
∣

∣

∣

∣

mp

z − p
+

φ′
p(z − p)

1 + φp(z − p)

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

∣

∣

mp

z − p

∣

∣

∣

∣

−

∣

∣

∣

∣

φ′
p(z − p)

1 + φp(z − p)

∣

∣

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

1

M
mp
p

−
C1

C2

∣

∣

∣

∣

.

Thus by choosing R and R′ large enough, we see that there are constants, K ′,K,
independent of p, such that for every |p| > R, in Ṽp we have

K ′ > |f ′
p(z)| > K > 1. (1)

To show that m(I∞) = 0, by the Lebesgue density theorem it is sufficient to
show that for any point z ∈ I∞,

lim sup
δ→0

m(D(z, δ) ∩ I∞)

m(D(z, δ))
< 1. (2)
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In order to do this we first restate condition (∗∗) as follows: Let V = f−1(AR).
Then there is a κ > 0 such that

lim sup
t→∞

area(AR,t ∩ V)

area(AR,t)
≤ 1− κ. (3)

In terms of the logarithmic coordinates log z = s + iθ, let St = {logR < s <
t, 0 ≤ θ < 2π} and set U = logV . Then there is a δ > 0 such that

lim sup
t→∞

area(St ∩ U)

area(St)
≤ 1− δ. (4)

For z0 ∈ I∞, set zn = fn(z0). We may assume without loss of generality
that |zn| > R is so large that the estimates (1) on |f ′| hold. Then either there is
some N such that for all n > N , zn ∈ Va for some simply connected component
Va or there is a subsequence znj → ∞ and a sequence of poles pj → ∞ such
that znj ∈ Vpj .

In the first case the argument is just as in [11]. For w0 = log z0 in a fixed
strip of width 2π, let wn = F (wn−1), where F is the lift defined above. We
may assume that for all n, ℜwn is large enough that |F ′(wn)| > K > 1. Let
F−1
n (wn) = wn−1. Then, there is a constant d, independent of n such that

F−1
n is univalent on Dn = D(wn, d). Moreover, by the expansion of F , we may

choose m such that F (Dn) contains a vertical segment of width bigger than 2π.
Fix such an m and let Bj = F−j(D(wm, d/4)) for j = 1, . . .m, where F−j is the
composition of the appropriate inverse branches. Applying the Koebe distortion
theorem to the function F−m we have Bm ⊂ D(w0, d/4Km). Moreover if sm
is the radius of the smallest disk centered at w0 containing Bm, there is a
constant t < 1, independent of m such that D(w0, tsm) ⊂ Bm ⊂ D(w0, sm).
Clearly sm → 0 as m → ∞ so that applying (4) we obtain (2).

In the second case we need to modify the argument. Since the moduli of the
annulii Ṽp have the same bounds, there is a constant 0 < τ < 1, independent

of Vp, such that area(Ṽp)
area(Vp)

≤ 1− ( bC2R
B|1+C1|R′ )

2
mp < 1− τ . We want to show that

there is a constant µ > 0 independent of p satisfying

area(Vp ∩ f−1
p (V))

area(Vp)
≤ 1− µ. (5)

With the constants of inequality (1), set L = K′

K . We claim that µ = κ
L2 τ where

κ is the constant in inequality (3).

We rewrite
area(Vp∩f−1

p (V))

area(Vp)
and estimate

area([(Vp \ Ṽp) ∩ f−1
p (V)] ∪ [Ṽp ∩ f−1

p (V)])

area(Vp)
≤

area([(Vp \ Ṽp) ∩ f−1
p (V)])

area(Vp)
+

area(Ṽp)

area(Vp)
=
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area([(Vp \ Ṽp) ∩ f−1
p (V)])

area([Vp \ Ṽp])
×

area([Vp \ Ṽp])

area(Vp)
+

area(Ṽp)

area(Vp)
≤

(

1−
κ

L2

)

(

1−
area(Ṽp)

area(Vp)

)

+
area(Ṽp)

area(Vp)

= 1−
κ

L2
−

area(Ṽp)

area(Vp)
+

κ

L2

area(Ṽp)

area(Vp)
+

area(Ṽp)

area(Vp)

≤ 1−
κ

L2
+

κ

L2
(1− τ)

= 1−
κ

L2
τ = 1− µ.

Now fix nj such that znj ∈ Vnj and choose a univalent branch of f−1
pnj−1

so

that f−1
pnj−1

: znj 0→ znj−1. Let m = nj and set Dm = D(zm,Mm). For large m,

|zm − pm| << ρm and Vpm ≈ D(zm,Mm). We define Bm = f−m(zm,Mm/4)
where again f−m is a composition of the appropriate inverse branches so that
z0 ∈ Bm. Then f−m is univalent on Vpm and we can control distortion on Dm.
Now for any trajectory from zn to zn+k, by the chain rule and the estimates
on factors |f ′|, whether the corresponding domain containing zj is a simply

connected Va or is an annular Ṽp, we have |fk(zn+k)′| > Kk |zn+k|
|zn|

. We apply

this with n = 0 and k = nj and we may certainly assume
|znj |

|z0|
> 1. In the

annular domains we also have |fk(znj )
′| < K ′k.

We may assume |znj | > |znj−1
| so that the contraction over this part of the

orbit is at least 1/Km. Then by the Koebe theorems Bm ⊂ D(z0,Mm/Km),
its distortion is bounded independent of m and its diameter goes to zero as m
goes to infinity. Thus applying (5) to Dm and pulling back we obtain (2).

Thus we have shown that (2) holds at any point in m(I∞) and hence that
its Lebesgue measure is zero.

3 The results

3.1 Two lemmas

For a given f define the sets

L = Lf = {z : fn(z) → ωf}

Kϵ = Kϵ(f) = {z : dist(z,ωf) < ϵ}

where we omit the f unless confusion results.
If ωf is a compact repeller it is obvious that it contains no critical points.

In fact, the post-singular set does not accumulate on ωf but actually lands on
it. Precisely,
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Lemma 3.1. If ωf is a compact repeller then there is an ϵ > 0 and an integer
N > 0 such that if c ∈ S, n > N and fn(c) ∈ Kϵ/2 then fn(c) ∈ ωf .

Proof: If PS is finite, the lemma is obviously true so assume PS is not finite.
Since ωf is compact and PS is infinite, ωf contains no prepoles. Moreover, since
it is a repeller, there exist constants k > 1 and ϵ > 0 such that |f ′(z)| ≥ k > 1
on the sets Kϵ and Kϵ/2.

Set V = f(Kϵ/2). Since Kϵ/2 contains no poles V is compact. Moreover,

since f |Kϵ/2
is expanding, Kϵ/2 ⊂ int(V ) and there is a regular branch g of f−1

that maps V to Kϵ/2. Thus, the annuli A0 = V − g(V ), An+1 = gn(A0), n ∈ N

are nested and mod(An) ̸= 0 for all n ∈ N.
We claim that for each n ∈ N

fn(S) ∩ (Kϵ − ωf ) = ∅.

If not, there is a sequence nk ∈ N, nk → ∞ such that for each nk, there is some
ck ∈ S (not necessarily distinct) satisfying vk = fnk(ck) ∈ Kϵ − ωf . By the
compactness of Kϵ, as k → ∞, the sequence vk accumulates and by definition,
any accumulation point belongs to ωf . For each k, there is an i(k) such that
vk ∈ Ai(k) and wk = f ik(vk) ∈ A0. Since A0 is compact, the sequence wk has

an accumulation point in A0 which by definition, also belongs to ωf , This is
a contradiction because A0 is separated from ωf by the annuli An, n > 0 and
PS ∩ (K − ωf) = ∅ as required.

Next, for the set Lf we have,

Lemma 3.2. If f ∈ B and ωf is a compact repeller then the Lebesgue measure
of Lf is 0.

Proof: Since ωf is a compact repeller, it is clear by the classification of stable
domains that Lf ⊂ Jf .

Let ϵ be chosen as in lemma 3.1 and define

L =
⋂

n≥0

f−n(Kϵ/2).

Then z ∈ L − Pf if its full forward trajectory belongs to Kϵ/2. We will prove
that m(Jf ∩ (L − Pf )) = 0. Since L ⊂

⋃∞
n=0 f

−n(L) and Pf is countable, this
will imply m(L) = 0.

Suppose that m(L−Pf ) > 0 and let z0 be a density point of L−Pf . Since ωf

is compact, the orbit {fn(z0)} has a finite accumulation point y0 ∈ Kϵ/2 ⊂ Kϵ.
It follows that there exists a sequence nk → ∞ such that zk = fnk(z0) → y0.
For k ∈ N, let Dk = D(zk, ϵ/4) and let gk be the branch of f−nk that maps zk
to z0. Since zk ∈ Kϵ/2, Dk ⊂ Kϵ and by lemma 3.1 gk is univalent on Dk.

Now by the definition of a density point and by propositions 2.1 and 2.2

m(gk(Dk) ∩ L)

m(gk(Dk))
→ 1.
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Again by proposition 2.2

m(Dk ∩ fnk(L))

m(Dk)
→ 1

and m(Dk ∩ fnk(L)) = m(Dk).
Let U be an open set with compact closure contained in C−K. Since zk ∈ Jf

there exists an integer N such that fN(Dk) ⊃ U so that m(fN+nk(L)∩U) > 0.
By definition however, for all k ∈ N, fk(L) ⊂ Kϵ/2 so fN+nk(L ∩ U) = ∅. This
contradiction finishes the proof.

3.2 The main theorem

We are now ready to prove the main theorem.

Theorem 3.3. Suppose f ∈ B. If ωf is a compact repeller and if conditions
(∗) and (∗∗) hold then f is ergodic with respect to Lebesgue measure on its Julia
set.

Proof: Suppose that E ⊂ Jf is an f -invariant measurable set of positive mea-
sure and let z be a density point of E. Since Pf is countable we may assume
z /∈ Pf . Under the hypotheses that f ∈ B and that both (∗) and (∗∗) hold,
by proposition 2.3 we may assume z /∈ I∞ and thus that its orbit has a finite
accumulation point y; let zk = fmk(z) → y, k → ∞.

Under the hypotheses that ωf is a compact repeller, by lemma 3.2 we may
assume z /∈ L and hence y /∈ ωf . Now suppose that either y = fn(v) for some
v ∈ S or that for some sequence ck ∈ S and iterates nk, fnk(ck) → y. By
lemma 3.1, in the first case fN(y) ∈ ωf and in the second, the nk are bounded
and fnk+N (ck) ∈ ωf . In either case there is an N such that fN(zk) → ωf .
Arguing as in the proof of lemma 3.1, we can find a sequence kj → ∞ such
that wj = fN+kj (zk) lie in a compact annulus A0 separated from ωf ; since
fN+kj (y) ∈ ωf , we have a contradiction. Thus η = dist(y, PS) > 0 and we can
define a univalent branch gk of f−mk on Dk = D(zk, η/4) such that gk(zk) = z.

As above, by the definition of a density point and by propositions 2.1 and 2.2
we obtain

m(gk(Dk) ∩ E)

m(gk(Dk))
→ 1 and

m(Dk ∩ fmk(E))

m(Dk)
→ 1.

Since E is forward invariant we have m(Dk ∩ E) = m(Dk).
If f is not ergodic, we can find another forward invariant positive measure

set F ⊂ Jf , m(E ∩ F ) = 0, and a density point z′ for F for which we can
construct disks D′

l of fixed radius such that m(F ∩ D′
k′) = m(D′

k′). Because
zk ∈ Dk, zk′ ∈ D′

k′ defined as above belong to Jf there is some N ∈ N such that
fN(D′

k′ ) ⊃ Dk. It follows that m(E ∩ F ) > m(fN(D′
k′ ∩ F ) ∩ (Dk ∩ E)) > 0

and we obtain a contradiction.
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4 Examples

1. Examples of functions that the main theorem applies to are found in the class
of meromorphic functions with polynomial Schwarzian derivative. By Nevan-
linna’s theorem, if the Schwarzian of f is a polynomial of degree p ≥ 0 then
f ∈ Mp+2 and all singularities of f−1 are logarithmic. Moreover, at least half
of the singularities are finite so it is not hard to show directly that condition
(∗∗) holds.

Now note from [19] that if the Schwarzian derivative is polynomial is degree
p− 2, then in a sector of width 2π/p− 2ϵ about each of the p Julia directions,
the function has the asymptotic form

AGν +BGν+1

CGν +DGν+1

where
Gν ≈ exp (−1)ν+1zp/2.

Therefore in any given Julia direction the coefficients cp and functions φp are
all approximately equal and condition (∗) holds.

The dynamical properties of these functions were described in [9]. In partic-
ular, it is shown that they have no wandering domains and no Baker domains.
Thus, if each singular value lands on a repelling cycle, J = Ĉ and the function
is ergodic.

A special subclass contains the functions with constant Schwarzian deriva-
tive. To this class belong the families λez , λ tan(z), λ ∈ C where it is easy to
construct examples for which the singular values land on repelling cycles. For
instance: if f1(z) = πi tan(z), then S(f1) = {±π}, PS = {±π, 0}, ωf = {0}
and |f ′

1(0)| = π; and if f2(z) = πi exp(z) then S = {0}, PS = {0,πi,−πi},
ωf = {−πi} and |f ′

2(−πi)| = π.

2. Functions in the above class where theorem 3.3 does not apply are ez and
πi
2 tan(z). For ez the orbit of the singular value 0 tends to ∞ and for πi

2 tan(z)
the singular values are the poles ±π/2; thus, although ωf is a repeller, it is
not compact. In fact, it is proved in [15] that ez is not ergodic. The same is
probably true for πi/2 tan(z).

Another simple example where theorem 3.3 does not apply is the family
a sin(z)+b studied in [17]. Although the singular set consists of two points, and
a, b can be chosen so that the critical values are mapped to repelling periodic
orbits, condition (∗∗) fails and Jf = I∞(f) = Ĉ has many ergodic components.

3. It is hard to find examples of maps with infinitely many singular values
satisfying the hypotheses of our theorem because it is hard to tell whether ωf

is a compact repeller and to check the conditions on the Laurent expansions.
Here is one such example.

Consider the entire function in fλ = λe−z2

sin z. Since it is entire condition
(∗) is vacuous. To see that it satisfies condition (∗∗) note that for λ real, if
| arctan z| < 1/2 then |f ′

λ(z)| is bounded. Its infinitely many critical values
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are bounded and accumulate on the asymptotic value 0 hence it belongs to B.
Moreover, λ may be chosen so that ωfλ is a compact repeller. Thus theorem 3.3
applies so that fλ is ergodic on its Julia set.

In this case we also know there are no eventually periodic domains and, since
m(I∞) = 0, no Baker domains. There are also no wandering domains. If there
were a multiply connected wandering domain D, it would contain a homotopi-
cally non-trivial loop γ and by [2] the winding number of (a subsequence of)
fn(γ) would be non-zero for n sufficiently large and the diameter of fn(γ) would
tend to infinity. Thus γ would have to intersect the real axis; since the positive
and negative real axes are asymptotic curves such domains cannot exist. Since
m(I∞) = 0, no wandering domain can escape to infinity. Moreover, since by [7]
all limit functions of fn|D would have to be constants in the compact repeller
ωfλ , we conclude Jfλ = Ĉ.
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