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Abstract. We define two classes of topological infinite degree covering maps
modeled on two families of transcendental holomorphic maps. The first, which
we call exponential maps of type (p, q), are branched coverings and is modeled
on transcendental entire maps of the form PeQ, where P and Q are polynomials
of degrees p and q. The second is the class of universal covering maps from the
plane to the sphere with two removed points modeled on transcendental mero-
morphic maps with two asymptotic values. The problem we address is to give a
combinatorial characterization of the holomorphic maps contained in these classes
whose post-singular sets are finite. The main results in this paper are that a
post-singularly finite topological exponential map of type (0, 1) or a certain post-
singularly finite topological exponential map of type (p, 1) or a post-singularly
finite universal covering map from the plane to the sphere with two points re-
moved is combinatorially equivalent to a holomorphic same type map if and only
if this map has bounded geometry.

1. Introduction

Thurston proved that a post-critically finite degree d ≥ 2 branched covering of
the sphere, with hyperbolic orbifold, is either combinatorially equivalent to a ratio-
nal map or there is a topological obstruction, now called a “Thurston obstruction”
(see [T, DH, J] for the definition). In this paper, we address the problem of char-
acterizing some post-singularly finite covering maps of infinite degree that can be
realized as meromorphic maps. Thurston’s proof uses an iteration scheme defined
for an appropriate finite dimensional Teichmüller space. It is divided into two parts.
Given an initial point, the iteration scheme is used to obtain a sequence of points
in the Teichmüller space. The first part of the proof is to show that the sequence is
contained in a compact subset of Teichmüller space if and only if the map is combi-
natorially equivalent to a rational map (a limit map of the iteration). The second
part is to give a topological criterion equivalent to non-compactness. The criterion
is called a “Thurston obstruction” to the existence of a combinatorially equivalent
rational map.

Thurston’s proof is presented in [DH]. There the main idea for the first part
of the proof is to reduce the sequence in Teichmüller space to a sequence in the
associated moduli space and to prove that compactness of the sequence in moduli
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space is equivalent to non-existence of the Thurston obstruction. Then, the finite-
ness of the degree is used to lift this argument to the Teichmüller space. The key
lemma, [DH, Lemma 5.2], guarantees that because the degree is finite, the sequence
in the Teichmüller space is contained in a compact subset (in the Teichmüller space)
provided the corresponding sequence in moduli space is contained in a compact sub-
set (in moduli space). Because finiteness of degree is a crucial element in this proof
it does not extend to infinite degree maps.

Another framework to prove the first step for branched coverings of finite degree
is outlined in [J]. It also uses Thurston’s iteration scheme and the finite dimension
of the associated Teichmüller space but it avoids the key lemma [DH, Lemma 5.2]
in Thurston’s original proof and does not depend on the finiteness of the degree of
the given map. Instead, it uses the concept of “bounded geometry”. This will be
defined precisely in Section 9 but the idea is that under iteration the images of the
points of the post-critical set stay bounded and remain a bounded distance from
one another. At a limit point of the iteration, the images form a discrete set of the
same multiplicity. The main purpose of this paper is to show that this framework
works for topological transcendental maps too.

We define two topological classes of covering maps of the plane that model tran-
scendental maps with finitely many singular values. The model maps form a sub-
space of the topological space with a natural parameterization. Recall that over a
singular value a map fails to be a covering. Transcendental maps have two types of
singular values, critical values over which they are branched, and asymptotic values.
We give precise definitions of algebraic and asymptotic singular values for topolog-
ical maps in Section 2 that agree with the classical definitions when the maps are
transcendental. In Section 8 we show that the Thurston iteration scheme that as-
sociates a sequence of holomorphic maps in the model space to a given topological
map is well defined for our classes. We follow the framework given in [J] to these
families to find conditions under which a topological map with finite post-singular
set is combinatorially equivalent to a transcendental map. Note that because the
degree of these maps is not finite, the sequence generated by the iteration process
does not automatically remain in a compact subset of the parameter space of model
maps. Therefore, in addition to requiring a bounded geometry condition, we need to
require a compactness condition that ensures that, under the iteration scheme, the
iterates converge in the associated Teichmüller space. We discuss this compactness
condition in more detail in Section 13.

The first family we define is modeled on the family of entire maps PeQ, where P
are Q are polynomials of degrees p and q. These maps have one finite asymptotic
value, one asymptotic value at infinity and p + q − 1 critical points. We call it the
family of topological maps of type (p, q) and we denote it by T Ep,q.

The second family is modeled on transcendental maps with two asymptotic values
and no critical values. An example of such a map is tan z. The topological class
consists of universal covering maps from the plane to the sphere with two removed
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points. The removed points are a topological version of asymptotic values which we
again call asymptotic values. We call this the space of topological transcendental
maps with two asymptotic values and we denote it byAV2. Note that T E0,1 ⊂ AV2.

We will prove that the holomorphic or meromorphic maps in the topological fami-
lies are precisely the model maps. The model maps PeQ for T Ep,q are parameterized
naturally by the coefficients of P and Q. The model maps forAV2 are parameterized
naturally by their asymptotic values (or simple functions of them).

The compactness condition says that the sequence of holomorphic or meromorphic
maps generated by the Thurston iteration scheme remains inside a compact subset
of the parameter space of the model maps.

We follow the framework given in [J] to prove that a map f ∈ T Ep,q ∪AV2 with
finite post-singular set that satisfies the bounded geometry and compactness condi-
tions described above is combinatorially equivalent to a holomorphic or meromorphic
map.

Our first theorem is

Theorem 1.1. A post-singularly finite map f in T Ep,q ∪ AV2 is combinatorially
equivalent to a post-singularly finite entire map of the form E = PeQ or a post-
singularly finite meromorphic map with two asymptotic values if and only if it has
bounded geometry and satisfies the compactness condition. The realization is unique
up to conjugation by an affine map of the plane.

In some cases, bounded geometry actually implies compactness. This is the case
for some f ∈ T Ep,q and for f ∈ AV2.

This is the content of our main theorems.

Theorem 1.2. A post-singularly finite map f in T Ep,1, p ≥ 1, with only one
non-zero simple branch point c such that either c is periodic or c and f(c) are both
not periodic, is combinatorially equivalent to a unique post-singularly finite entire
map of the form αzpeλz, where α = (−λ/p)pe−λ(−p/λ)p, if and only if it has bounded
geometry.

Theorem 1.3. A post-singularly finite map f in AV2 is combinatorially equiva-
lent to a post-singularly finite transcendental meromorphic function g with constant
Schwarzian derivative if and only if it has bounded geometry. The realization is
unique up to conjugation by an affine map of the plane.

Theorem 1.2 is the first one to use the Thurston iteration scheme to characterize a
transcendental entire map with critical points and is thus completely new. Therefore,
we give a detailed proof of this result .

Theorem 1.3 is the content of our paper [CJK]. The main difference in the proofs
of the two theorems is the proof that the compactness condition holds. Because it
is not very long, we include the compactness part of the proof of Theorem 1.3 for
the convenience of the reader.
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Our techniques involve adapting the Thurston iteration scheme to our situation.
We work with a fixed normalization. The proof of Theorem 1.1 applies to an ar-
bitrary post-singularly finite map in either T Ep,q or AV2. It shows that bounded
geometry together with the assumption of compactness implies the convergence of
the iteration scheme to fixed point in the Teichmüller space that corresponds to an
entire or meromorphic map of the same type (see section 11). Its proof involves an
analysis of quadratic differentials associated to the functions in the iteration scheme.
To prove Theorems 1.2 and 1.3, which apply to the special cases, we need a topo-
logical constraint (see section 12). We then prove that bounded geometry together
with the topological constraint implies compactness.

To conclude this introduction, we make a remark about the second step in Thurston’s
iteration scheme in the infinite degree context. It is still an open problem to prove
that compactness of the sequence in moduli space is equivalent to non-existence of
an appropriately generalized “Thurston obstruction” for maps in T Ep,q or AV2. In
a recent paper [HSS], Hubbard, Schleicher, and Shishikura gave a partial answer in
the case of topological exponential maps. They used the non-existence of a Levy
cycle, a very special type of Thurston obstruction, to characterize when the sequence
of iterates generated by a map in T E0,1 is contained in a compact subset of moduli
space. A full answer to the question of finding an appropriate generalization of a
Thurston obstruction is still open, even for this special case.

The paper is organized as follows. In §2, we review the covering properties of (p, q)-
exponential maps E = PeQ. In §3, we define the family T Ep,q of (p, q)-topological
exponential maps f . In §4, we review the properties of meromorphic maps with
two asymptotic values. In §5, we describe the space of universal covering maps
from the Eucildean plane to the sphere with two removed points. In §6, we define
combinatorial equivalence between post-singularly finite maps in T Ep,q or AV2 and
prove there is a local quasiconformal map in every combinatorial equivalence class.
In §7, we define the Teichmüller space Tf for a post-singularly finite (p, q)-topological
exponential map f or a post-singularly finite map in AV2. In §8, we introduce the
induced map σf from the Teichmüller space Tf into itself; this is the crux of the
Thurston iteration scheme. In §9, we define the concept of “bounded geometry”
and in §10 we prove the necessity of the bounded geometry condition. In §11, we
give the proof of sufficiency assuming compactness for any post-singularly finite
map f in either T Ep,q or AV2. In §12, we define a topological constraint for the
maps in Theorem 1.2 and Theorem 1.3; this involves defining markings and the
winding number of a homotopy class. We prove that the winding numbers and the
homotopy classes are unchanged under iteration of the map σf . Furthermore, in §13
we prove that bounded geometry together with the topological constraint implies
compactness. This completes the proofs of Theorem 1.2 and Theorem 1.3.
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2. The space Ep,q of (p, q)-Exponential Maps

We use the following notation: C is the complex plane, Ĉ is the Riemann sphere
and C∗ is the complex plane punctured at the origin.

A (p, q)-exponential map is an entire function of the form E = PeQ where P and
Q are polynomials of degrees p ≥ 0 and q ≥ 0 respectively such that p+ q ≥ 1. We
use the notation Ep,q for the set of (p, q)-exponential maps.

Note that if P (z) = a0 + a1z+ . . . apz
p, Q(z) = b0 + b1z+ . . . bqz

q, P̂ (z) = eb0P (z)

and Q̂(z) = Q(z)− b0 then

P (z)eQ(z) = P̂ eQ̂(z).

To avoid this ambiguity we always assume b0 = 0. If q = 0, then E is a polynomial
of degree p. Otherwise, E is a transcendental entire function with an essential
singularity at infinity.

The growth rate of an entire function f is defined as

lim sup
r→∞

log logM(r)

log r

where M(r) = sup|z|=r |f(z)|. It is easy to see that the growth rate of E is q.
Recall the following definitions:

Definition 2.1. Given an entire or meromorphic function g, the point v is an as-
ymptotic value of g if there is a path γ(t) such that limt→1 γ(t) =∞ and limt→1 g(γ(t)) =
v. It is a logarithmic singularity for the map g−1 if there is a neighborhood Uv of
v and a component V of g−1(Uv \ {v}) such that the map g : V → Uv \ {v} is a
holomorphic universal covering map. If an asymptotic value is isolated, it is a log-
arithmic singularity. (This will always be the case in this paper.) The domain V is
called an asymptotic tract for v. A point may be an asymptotic value for more than
one asymptotic tract. An asymptotic value may be an omitted value.

Definition 2.2. Given a holomorphic or meromorphic function g, the point v is
an algebraic singularity for the map g−1 if there is a neighborhood Uv such that for
every component Vi of g−1(Uv) the map g : Vi → Uv is a degree di ≥ 1 branched
covering map and di > 1 for some Vi. For these components, if ci ∈ Vi satisfies
g(ci) = v then g′(ci) = 0; that is ci is a critical point of g for i = 1, . . . , n and v is
a critical value.

Note that if a meromorphic function had exactly one asymptotic value and no
critical values it would be a covering map g : C → Ĉ \ {a} where a is the asymp-
totic value. Such a map is a conformal homeomorphism that extends to a Möbius
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transformation. Therefore if a meromorphic map of degree greater than one has
no critical values it must have at least two asymptotic values. By the big Picard
theorem, no entire function can omit more than one value and no transcendental
meromorphic function g : C→ Ĉ can omit more than two values.

The following theorem about functions E in Ep,q is a summary of Theorem 3.5 in
[Z].

Proposition 2.3. If q ≥ 1, E has 2q distinct asymptotic tracts that are separated
by 2q rays. Each tract maps to a punctured neighborhood of either zero or infinity
and these are the only asymptotic values.

Proof. From the growth rate of E we see that for |z| large, the behavior of the
exponential dominates. Since Q(z) = bqz

q + lower order terms, in a neighborhood
of infinity there are 2q branches of <Q = 0 asymptotic to equally spaced rays. In the
2q sectors defined by these rays the signs of <Q alternate. If γ(t) is an asymptotic
path such that limt→∞ γ(t) = ∞ and γ(t) stays in one sector for all large t, then
either limt→∞E(γ(t)) = 0 or limt→∞E(γ(t)) =∞, as <Q is negative or positive in
the sector. It follows that there are exactly q sectors that are asymptotic tracts for
0 and q sectors that are asymptotic tracts for infinity. Because the complement of
these tracts in a punctured neighborhood of infinity consists entirely of these rays,
there can be no other asymptotic tracts. �

Remark 2.4. The directions dividing the asymptotic tracts are called Julia rays or
Julia directions for E. If γ(t) tends to infinity along a Julia ray, E(γ(t)) remains
in a compact domain in the plane. It spirals infinitely often around the origin.

Two (p, q)-exponential maps E1 and E2 are conformally equivalent if they are

conjugate by a conformal automorphism M of the Riemann sphere Ĉ, that is, E1 =
M ◦E2 ◦M−1. The automorphism M must be a Möbius transformation and it must
fix both 0 and ∞ so that it must be the affine stretch map M(z) = az, a 6= 0. We
are interested in conformal equivalence classes of maps, so by abuse of notation, we
treat conformally equivalent (p, q)-exponential maps E1 and E2 as the same.

The critical points of E = PeQ are the roots of P ′ + PQ′ = 0. Therefore, E has
p+ q − 1 critical points counted with multiplicity which we denote by

ΩE = {c1, · · · , cp+q−1}.
Note that if E(z) = 0 then P (z) = 0. This in turn implies that if c ∈ ΩE maps to
0, then c must also be a critical point of P . Since P has only p − 1 critical points
counted with multiplicity, there must be at least q points (counted with multiplicity)
in Ω which are not mapped to 0. Denote by

ΩE,0 = {c1, · · · , ck}, k ≤ p− 1,

the (possibly empty) subset of ΩE consisting of critical points such that E(ci) = 0.
Denote its complement in ΩE by

ΩE,1 = ΩE \ ΩE,0 = {ck+1, · · · , cp+q−1}
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and denote the set of non-zero critical values of E by

V = E(ΩE,1) = {v1, · · · , vm}.

If ΩE,0 is not empty, the set of critical values is

V ∪ {0}.

When q = 0, E is a polynomial. The point at infinity is a fixed critical point and
hence a critical value. The post-singular set in this special case is the same as the
post-critical set. It is defined as

PE = ∪n≥1En(ΩE) ∪ {∞}.

From now on we will always assume q > 0 so that E is not a polynomial. Since q ≥ 1,
E always has one finite asymptotic value at the origin. It has another asymptotic
value at infinity which we can think of as a fixed point of E so the full set of singular
values V̂ of E always contains 0 and ∞. Note, however, that E(∞) is not defined.
That is,

V̂ = V ∪ {0} ∪ {∞}.
The post-singular set is defined as

PE = ∪n≥0En(v), v ∈ V ∪ {∞}.

Conjugating by an affine map z → az of the complex plane, we normalize so that
0, 1,∞ ∈ PE.

To avoid trivial cases here we will assume that #(PE) ≥ 4. When q = 1 and
p = 0, ΩE = ∅ and E0,1 consists of exponential maps αeλz, α, λ ∈ C∗. Since the
singular set contains only the two asymptotic values, 0 and∞, the post-singular set
in this special case can be written as

PE = ∪n≥0En(0) ∪ {∞}.

Conjugating by an affine stretch z 7→ αz of the complex plane, we normalize so that
E(0) = 1. Note that after this normalization 0, 1,∞ ∈ PE and the family takes the
form eλz , λ ∈ C∗.

When q ≥ 2 and p = 0 or when q ≥ 1 and p ≥ 1, ΩE,1 is a non-empty set; that is

V̂ contains at least one value other than 0 or ∞.
We normalize as follows so that we always have 0, 1,∞ ∈ PE:

If E does not fix 0, which is always true if q ≥ 2 and p = 0, we conjugate by an
affine stretch z → az so that E(0) = 1.

If E(0) = 0, there is a critical point ck+1 in ΩE,1 with ck+1 6= 0 and v1 = E(ck+1) 6=
0. In this case we normalize so that v1 = 1. The family E1,1 consists of functions of
the form αzeλz. After normalization they take the form

−λezeλz.
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An important family we consider in this paper is Ep,1, p ≥ 1; each map in this family
has only one non-zero simple critical point. After normalization, the functions take
the form

E(z) = αzpeλz, α =
(
− λ

p

)p
ep.

This is the family for which we have the strongest new results.

3. Topological Exponential Maps of Type (p, q)

In this section we define the space of maps of the Euclidean plane, denoted here by
R2, whose covering properties are modeled on the maps in the holomorphic family
Ep,q with p+ q ≥ 1 discussed above. We call this the space of topological exponential
maps of type (p, q) and denote it by T Ep,q.

The maps in f ∈ T Ep,q are topological maps of R2 that are branched (with finite
order) at p+ q − 1 points. In analogy with holomorphic maps we call these branch
points critical points and their images critical values. If q > 0, the maps f also have
one singular point a over which the map is not a covering that has the following
property. There is a punctured neighborhood of the point U \ {a} and a simply
connected component V of f−1(U \ {a}) such that f : V → U \ {a} is a universal
covering. In analogy with holomorphic maps we call this an asymptotic value of f .

Remark 3.1. In the definitions below, we assume that the maps are conjugated by
an affine map so that the asymptotic value a = 0. This is only for convenience. In
fact the classes we define are invariant under pre or post composition by a homeo-
morphism.

In [Z], Zakeri gives a description of the covering properties for the family Ep,q.
Our definition of the covering properties for the family T Ep,q is modeled on his
description.

If q = 0, then T Ep,0 consists of all topological polynomials P of degree p: these
are degree p branched coverings of the sphere such that f−1(∞) = {∞}.

If q = 1 and p = 0, the space T E0,1 consists of universal covering maps f : R2 →
R2 \ {0}. These are discussed at length in [HSS], where they are called topological
exponential maps.

The polynomials P and Q contribute differently to the covering properties of
maps in Ep,q. As we saw there, the degree of Q controls the growth and behavior at
infinity. We therefore first define the space T E0,q using maps eQ as our model.

In the definitions below, we use the term ray to mean a simple topological curve
starting from a finite point in R2 and extending to infinity.

Definition 3.2. If q ≥ 2 and p = 0, the space T E0,q consists of infinite to one
topological maps f : R2 → R2 \ {0} whose set of critical points, Ωf = {c ∈
R2 | degc f ≥ 2}, consists of q − 1 points counted with multiplicity. Let V =
{v1, · · · , vm} = f(Ωf ) ⊂ R2 \ {0} be the set of critical values. For each map in
T E0,q we can choose a set of pairwise disjoint rays Li in R2 \ {0}, i = 1, . . . ,m,
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starting at vi, in such a way that the set f−1(Li) consists of infinitely many rays
starting at points in the pre-image set f−1(vi). These are divided into two categories:
if x ∈ f−1(vi) ∩ Ωf , there are dx = degx f rays meeting at x and these are called
critical rays; if x ∈ f−1(vi) \ Ωf , there is only one ray emanating from x and it is
called a non-critical ray.

The existence of the rays Li and f−1(Li) implies that the maps in T E0,q have
covering properties that are like those of the maps eQ. Set

W = R2 \ (∪mi=1Li ∪ {0}).
The set of critical rays meeting at points in Ωf divides f−1(W ) into q = 1 +∑

c∈Ωf
(dc − 1) open unbounded connected components W1, · · · ,Wq. For each 1 ≤

i ≤ q, the components are simply connected and the map f : Wi → W is a universal
covering. This means that the map restricted to each Wi is a topological model for
the exponential map z 7→ ez. The local degree at the critical point ci determines
the number of Wi that meet a ci.

We now define the space T Ep,q in full generality where we assume p > 0 and
there is additional behavior modeled on the role of the new critical points of PeQ

introduced by the non-constant polynomial P . (See Figure 1.)

Definition 3.3. If q ≥ 1 and p ≥ 1, the space T Ep,q consists of infinite to one
topological maps f : R2 → R2 such that

i) f−1(0) consists of p points counted with multiplicity.
ii) The set of critical points, Ωf = {c ∈ R2 | degc f ≥ 2} consists of p + q − 1

points counted with multiplicity.
iii) Let Ωf,0 = Ωf ∩ f−1(0) be the k < p critical points that map to 0 and Ωf,1 =

Ωf \Ωf,0 the p+ q− 1−k critical points that do not. Note that Ωf,1 contains
at least q points and the set of critical values V = {v1, · · · , vm} = f(Ωf,1) is
contained in R2 \ {0}.

For each map in T Ep,q we can choose a set of pairwise disjoint rays Li
in R2 \ {0}, i = 1, . . . ,m, starting at vi, in such a way that the set f−1(Li)
consists of infinitely many rays starting at points in the pre-image set f−1(vi).
These are divided into two categories: if x ∈ f−1(vi) ∩ Ωf,1, there are dx =
degx f rays meeting at x and these are called critical rays; if x ∈ f−1(vi)\Ωf,1,
there is only one ray emanating from x and this is called a non-critical ray.

Again we see that the existence of the rays Li and f−1(Li) implies that the maps
in T Ep,q have the covering properties that mimic the covering properties of the maps
of the form E = PeQ. Set

W = R2 \ (∪mi=1(Li) ∪ {0}).
The set f−1(W ) has the following properties:

(1) The collection of all critical rays meeting at points in Ωf,1 divides f−1(W ) into
l = p+ q− k = 1 +

∑
c∈Ωf,1

(dc− 1) open unbounded connected components.
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V
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Figure 1. The function here is f(z) = αz2ez with critical point −2,
critical value V and fixed asymptotic value at 0. 0 is also a critical
point and critical value. The non-critical pre-images of V are labeled
by V (k), k ∈ Z. The line L is a ray emanating from the critical value
V and its pre-images under f are labeled by L(k).

(2) The set f−1(0) = {ai}p−ki=1 contains p − k distinct values. Each ai is con-
tained in a distinct component of f−1(W ); label these components Wi,0,
i = 1, . . . p− k. Then the restriction f : Wi,0 \ {ai} → W is an unbranched
covering map of degree di = degaif where di > 1 if ai ∈ Ωf,0 and di = 1
otherwise.

(3) Label the remaining q connected components of f−1(W ) byWj,1, j = 1, . . . , q.
They are simply connected and the restriction f : Wj,1 → W is a universal
covering map.

From [Z, Section 3], we see that the (p, q)-exponential maps are in T Ep,q and that
the converse follows from Lemma 3.1. We include a proof for the convenience of the
reader.

Theorem 3.4. Suppose f ∈ T Ep,q is analytic. Then f = PeQ for two polynomials
P and Q of degrees p and q. That is, an analytic topological exponential map of type
(p, q) is a (p, q)-exponential map.

Proof. If q = 0, then f is a polynomial P of degree p.
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If q ≥ 1, then f is an entire function with p roots, counted with multiplicity.
Every such function can be expressed as

f(z) = P (z)eg(z)

where P is a polynomial of degree p and g is some entire function (see [A, Section
2.3]).

Consider
f ′(z) = (P (z)g′(z) + P ′(z))eg(z).

It is also an entire function, and by assumption it has p+q−1 roots so that Pg′+P ′

is a polynomial of degree p+ q− 1. It follows that g′ is a polynomial of degree q− 1
and g = Q is a polynomial of degree q. �

Remark 3.5. Since the functions in T Ep,q are defined by their topological properties,
post or pre-composing with a homeomorphism results in a function that is again in
T Ep,q.

Note that if f ∈ T Ep,q, q 6= 0, the origin plays a special role: it is the only point
with no or finitely many pre-images. Since q 6= 0, it is an asymptotic value so there
are some rays R in components Wi such that f(R) limits on 0. The point at infinity
is not in the domain or range of f but it too plays a special role. There are rays
L in W with pre-image rays R = f−1(L) in the components Wi. This means that
infinity is also an asymptotic value for f . Below we treat these asymptotic values
differently because the orbit of the origin is always defined but the orbit of infinity
is not.

Below we define the post-singular set Pf of f . When q = 0, f is topologically
conjugate to a polynomial and, as mentioned in the introduction, a full discussion
of such maps is treated elsewhere. We therefore always assume q ≥ 1.

Definition 3.6. For f ∈ T Ep,q, we define the post-singular set as follows:

i) When q = 1 and p = 0, the post-singular set is

Pf = ∪n≥0fn(0) ∪ {∞}.
ii) When q ≥ 1 and p ≥ 1, the set of branch (critical) points is

Ωf = {c ∈ R2 | degc f ≥ 2}
and and the set of critical values is V = f(Ωf ). Note that 0 is not necessarily
in V. The post-singular set is

Pf = ∪n≥0fn(V ∪ {0}) ∪ {∞}.

Since the conjugate of f ∈ T Ep,q by z 7→ az, a ∈ C∗ is also in T Ep,q and conjugate
maps are conformally equivalent, we can always normalize so that {0, 1,∞} ∈ Pf .
If q > 1 or if q = 1 and f(0) 6= 0, we normalize so that f(0) = 1 ∈ Pf . If
f(0) = 0, then, by the assumption q ≥ 1, there is a branch point ck+1 6= 0 such that
v1 = f(ck+1) 6= 0. In this case we normalize so that v1 = 1 ∈ Pf .

To avoid trivial cases we assume that #(Pf ) ≥ 4.
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It is clear that, in any case, Pf is forward invariant, that is,

f(Pf \ {∞}) ∪ {∞} ⊆ Pf

or equivalently,

f−1(Pf \ {∞}) ∪ {∞} ⊃ Pf .

Note that since we assume q ≥ 1, f−1(Pf \ {∞}) \ (Pf \ {∞}) contains infinitely
many points.

Definition 3.7. We call f ∈ T Ep,q post-singularly finite if #(Pf ) <∞.

4. The Space M2

In this section we define the space of meromorphic functionsM2. It is the model
for the more general space of topological functions AV2 that we define in the next
section.

The space M2 consists of meromorphic functions whose only singular values are
its asymptotic values. We will see later that in this situation these must be omitted
values.

Definition 4.1. The space M2 consists of meromorphic functions g : C → Ĉ with
exactly two asymptotic values and no critical values.

4.1. Examples. Examples of functions in M2 are the exponential functions αeβz

and the tangent functions α tan iβz = iα tanh βz where α, β are complex constants.
The asymptotic values for the exponential functions above are {0,∞}; the half

plane <βz < 0 is an asymptotic tract for 0 and the half plane <βz > 0 is an
asymptotic tract for infinity. The asymptotic values for the tangent functions above
are {αi,−αi} and the asymptotic tract for αi is the half plane =βz > 0 while the
asymptotic tract for −αi is the half plane =βz < 0.

4.2. Nevanlinna’s Theorem. To find the form of the most general function in
M2 we use a theorem of Nevanlinna [N, Chapter 11]1

Theorem 4.2 (Nevanlinna). Every meromorphic function g with exactly p asymp-
totic values and no critical values has the property that its Schwarzian derivative is
a polynomial of degree p− 2. That is

(1) S(g) =
(g′′
g′
)′ − 1

2

(g′′
g′
)2

= ap−2z
p−2 + . . . a1z + a0.

1In this chapter Nevanlinna constructs rational functions with a fixed number of branch points
and then lets the order of branching go to infinity. By an earlier theorem the limit function
is analytic and has asymptotic values and no critical points. The functions all have rational
Schwarzian where the degree is bounded only by the number of points and so is bounded in the
limit. Since there are no critical points the limit Schwarzian is a polynomial. A proof of the
converse can be found in [H2, Chapter 10].
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Conversely, for every polynomial P (z) of degree p−2, the solution to the Schwarzian
differential equation S(g) = P (z) is a meromorphic function with p asymptotic
values and no critical values.

Here we apply this theorem to the special case when P (z) is a constant. It is easy
to check that S(αeβz) = −1

2
β2 and S(α tan iβ

2
z) = −1

2
β2.

To find all functions in M2, let β ∈ C be constant and consider the Schwarzian
differential equation

(2) S(g) = −β2/2

and the related second order linear differential equation

(3) w′′ +
1

2
S(g)w = w′′ − β2

4
w = 0.

It is straightforward to check that if w1, w2 are linearly independent solutions to
equation (3), then gβ = w2/w1 is a solution to equation (2). The converse is also
true: if g is a meromorphic function defined in a simply connected domain in C,
then two solutions w1 and w2 of (3) can be found, and furthermore, these are unique
up to a common scale factor. Thus solutions to the differential equation (3) give all
the solutions of the equation (2). (This classical result can be found, for example,
in [H1, sec. 17.6]).

Normalizing so that w1(0) = 1, w′1(0) = −β/2, w2(0) = 1, w′2(0) = β/2 and solving

equation (3), we have w1 = e−
β
2
z, w2 = e

β
2
z as linearly independent solutions and

gβ(z) = eβz and g−β(z) = e−βz as linearly independent solutions to equation (2). An
arbitrary solution to equation (2) then has the form

(4)
Aw2 +Bw1

Cw2 +Dw1

, A,B,C,D ∈ Ĉ, AD −BC = 1

and its asymptotic values are {A/C,B/D}.

Remark 4.3. The asymptotic values are distinct and omitted.

Remark 4.4. If B = C = 0, AD = 1, A =
√
α we obtain the exponential family

{αeβz} with asymptotic values at 0 and ∞. If A = −B =
√

αi
2
, C = D =

√
− i

2α
we

obtain the tangent family {α tan iβ
2
z} whose asymptotic values {±αi} are symmetric

with respect to the origin.

Remark 4.5. Note that in the solutions of S(g) = −β2/2 what appears are eβ

and e−β, and not β (or β2); this creates an ambiguity about which branch of the
logarithm of eβ corresponds to a given solution of equation (2). In section 12 we
address this ambiguity in our situation. We show that the topological map we start
with determines a topological constraint which in turn, defines the appropriate branch
of the logarithm for each of the iterates in our iteration scheme.
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Remark 4.6. One of the basic features of the Schwarzian derivative is that it sat-
isfies the following cocycle relation: if f, g are meromorphic functions then

S(g ◦ f)(z) = S(g)(f(z))f ′(z)2 + S(f)(z).

In particular, if T is a Möbius transformation, S(T )(z) = 0 and S(T ◦ g)(z) =
S(g)(z) so that post-composing by T doesn’t change the Schwarzian.

In our dynamical problems the point at infinity plays a special role and the dy-
namics are invariant under conjugation by an affine map. Thus, we may assume
that all the solutions have one asymptotic value at 0 and that they take the value 1
at 0.

Since this is true for gβ(z) = eβz, any solution with this normalization has the
form2

(5) gα,β(z) =
αgβ(z)

(α− 1
α

)gβ(z) + 1
α

where α is an arbitrary value in C∗. The second asymptotic value is λ = α
α− 1

α

. It

takes values in C \ {0, 1}. The point at infinity is an essential singularity for all
these functions.

The parameter space P for these functions is the two complex dimensional space

P = {α, β ∈ C∗}.

The parameters define a natural complex structure for the spaceM2. The subspace
of entire functions in M2 is the one dimensional subspace of P defined by fixing
α = 1 and varying β;

gβ(z) = eβz.

The tangent family has symmetric asymptotic values. Renormalized, it forms an-
other one dimensional subspace of P . This is defined by fixing α =

√
2 and varying

β;

g√2,β(z) = 1 + tanh
β

2
z =

√
2eβz

1√
2
eβz + 1√

2

.

These functions have asymptotic values at {0, 2} and g 1√
2
,β(0) = 1.

Definition 4.7. For gα,β(z) ∈ M2, the set Ω = {0, λ} of asymptotic values is the
set of singular values. The post-singular set Pg is defined by

Pg =
⋃
n≥0

gn(Ω) ∪ {∞}.

2Notice that gα,β is obtained from gβ by a Möbius transformation with determinant 1. To see

this, multiply the top and bottom of (4) by e
β
2 z, require that one asymptotic value is 0 and make

the determinant 1.
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Note that we include the point at infinity separately in Pg because whether or
not it is an asymptotic value, it is an essential singularity and its forward orbit is
not defined. The asymptotic values are in Pg and, since 0 and λ are omitted and
gα,β(0) = 1 ∈ Pg, #Pg ≥ 3.

5. The Space AV2

We now want to consider the topological structure of functions inM2 and define
AV2 to be the set of maps with the same topology.

Definition 5.1. Let X be a simply connected open surface and let S2 = R2 ∪ {∞}
be the 2-sphere. For any pair of distinct points a, b ∈ S2 let fa,b : X → S2 \ {a, b}
be an unbranched covering map; that is, a universal covering map. We say the pair
(X, fa,b) is equivalent to the pair (Y, fc,d) if and only if there is a homeomorphism
h : X → Y such that fc,d ◦ h = fa,b. The space of these pairs is denoted by AV2.

Let (X, fa,b) be a representative of a map in AV2. By abuse of notation, we
will often suppress the dependence on the equivalence class and identify X with
R2 = S2 \ {∞} and refer to fa,b as an element of AV2.

By definition fa,b is a local homeomorphism and satisfies the following conditions:
For v = a or v = b, let Uv ⊂ X be a neighborhood of v whose boundary is a

simple closed curve that separates a from b and contains v in its interior. Since fa,b
is a universal cover, v is an omitted value and

(1) f−1
a,b (Uv \ {v}) is connected and simply connected.

(2) The restriction fa,b : f−1
a,b (Uv \ {v}) → Uv \ {v} is a regular covering of a

punctured topological disk whose degree is infinite.
(3) f−1(∂Uv) is an open curve extending to infinity in both directions.

In analogy with meromorphic functions with isolated singularities we say

Definition 5.2. v is called a logarithmic singularity of f−1
a,b or, equivalently, an

asymptotic value of fa,b. The domain Vv = f−1
a,b (Uv \ {v}) is called an asymptotic

tract for v.

Definition 5.3. Ωf = {a, b} is the set of singular values of fa,b.

Because it is compact, we can endow S2 with the standard complex structure and
identify it with Ĉ. By the classical uniformization theorem,3 for any pair (X, fa,b),
there is a map π : C → X such that ga,b = fa,b ◦ π is meromorphic. It is called the
meromorphic function associated to fa,b.

By Nevanlinna’s theorem S(g(z)) is constant and moreover,

Proposition 5.4. If g(z) ∈ M2 with Ωg = {a, b} then g(z) = ga,b(z) ∈ AV2 and,
conversely, if ga,b ∈ AV2 is meromorphic then ga,b ∈M2.

3The proof of Lemma 6.2 shows that there is a quasiconformal map. By the measurable Riemann
mapping theorem, [AB], it can be made meromorphic.
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Proof. Any g(z) ∈ M2 is a universal cover g : C → Ĉ \ Ωg and so belongs to AV2.
Conversely, if ga,b ∈ AV2, it is meromorphic and its only singular values are the
omitted values {a, b}; it is thus in M2. �

We define the post-singular set for maps in AV2 just as we did for functions in
M2.

Definition 5.5. For f = fa,b ∈ AV2, the post-singular set Pf is defined by

Pf =
⋃
n≥0

fn(Ωf ) ∪ {∞}

Note that under the identification of S2 with the Riemann sphere and X with the
complex plane, S2 \X is the point at infinity and it has no forward orbit although
it may be an asymptotic value. We therefore include it in Pf .

Conjugation of fa,b by an affine transformation T results in another map in AV2.
In what follows, therefore, we always assume X is the Euclidean plane R2, one
asymptotic value is a = 0 and the second asymptotic value is b = λ and we normalize
so that f(0) = 1.

Definition 5.6. We call f ∈ AV2 post-singularly finite if #(Pf ) <∞.

6. Combinatorial Equivalence

Definition 6.1. Suppose f and g are a pair of post-singularly finite maps either in
T Ep,q or in AV2. We say that f and g are combinatorially equivalent if there are
two homeomorphisms φ and ψ of the sphere S2 = R2 ∪ {∞} fixing 0 and ∞ such
that φ ◦ f = g ◦ψ on R2 and if, in addition, φ−1 ◦ψ is isotopic to the identity of S2

rel Pf ; that is, φ|Pf = ψ|Pf .

The commutative diagram for the above definition is

R2

f
��

ψ // R2

g
��

R2 φ // R2

The isotopy condition says that Pg = φ(Pf ).
Consider R2 ∪ {∞} equipped with the standard conformal structure as the Rie-

mann sphere and let f be a map from X ⊂ C into Ĉ. We say f is locally K-
quasiconformal for some K > 1 if for any z ∈ Ĉ \ (Ωf ∪ {0, 1}) there is a neighbor-
hood U of z such that f : U → f(U) is K-quasiconformal. Since the maps f we are
working with are isotopies rel a finite set, the following lemma is standard. We only
give a proof for f ∈ T Ep,q. For f ∈ AV2, the proof is similar.

Lemma 6.2. Any post-singularly finite f ∈ T Ep,q (or f ∈ AV2) is combinatorially
equivalent to some locally K-quasiconformal map g ∈ T Ep,q (or g ∈ AV2).
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Proof. Recall that Ωf is the set of branch points of f in C and 0 is the only asymptotic
value in C. Consider the space X = C \ Ωf . For every p ∈ X, let Up be a small
neighborhood about p such that φp = f |Up : Up → f(Up) ⊂ C is injective. Then
α = {(Up, φp)}p∈X defines an atlas on X with charts (Up, φp). If Up ∩ Uq 6= ∅, then
φp ◦φ−1

q (z) = z : φq(Up∩Uq)→ φp(Up∩Uq). Thus all transition maps are conformal
(1 − 1 and analytic) and the atlas α defines a Riemann surface structure on X
which we again denote by α. Denote the Riemann surface by S = (X,α). From
the uniformization theorem, S is conformally equivalent to the Riemann surface
C \ A with the standard complex structure induced by C, where A consists of
n = #(Ωf ) + 1 points . The homeomorphism h : C → C with h(0) = 0 and
h : S = (X,α) → C \ A is conformal so that R = f ◦ h−1 : C → C is holomorphic
with critical points at h(Ωf ) and one asymptotic value at 0. Since the set Pf is
finite, following the standard procedure in quasiconformal mapping theory, there is
a K-quasiconfornal homeomorphism k : Ĉ → Ĉ such that h is isotopic to k rel Pf .
The map g = R◦k is a locally K-quasiconformal map in T Ep,q and combinatorially
equivalent to f . This completes the proof of the lemma. �

Thus without loss of generality, in the rest of the paper, for our purposes, we
will assume that any post-singularly finite f ∈ T Ep,q (or f ∈ AV2) is locally K-
quasiconformal for some K ≥ 1. The argument in Lemma 6.2 can be adapted to
show that we may assume the maps φ and ψ in Definition 6.1 are quasiconformal.
We will do so in the rest of the paper.

7. Teichmüller Space Tf

Recall that we denote R2 ∪ {∞} equipped with the standard conformal structure

by Ĉ. Let M = {µ ∈ L∞(Ĉ) | ‖µ‖∞ < 1} be the unit ball in the space of all
measurable functions on the Riemann sphere. Each element µ ∈ M is called a
Beltrami coefficient. For each Beltrami coefficient µ, the Beltrami equation

wz = µwz

has a unique quasiconformal solution wµ which maps Ĉ to itself fixing 0, 1,∞. More-
over, wµ depends holomorphically on µ.

Let f be a post-singularly finite map in T Ep,q ( or AV2) with post-singular set Pf .

The Teichmüller space T (Ĉ, Pf ) is defined as follows. Given Beltrami differentials
µ, ν ∈ M we say that µ and ν are equivalent in M, and denote this by µ ∼ ν, if

(wν)−1 ◦ wµ is isotopic to the identity map of Ĉ rel Pf . The equivalence class of µ
under ∼ is denoted by [µ]. We set

Tf = T (Ĉ, Pf ) =M/ ∼ .

The classical Teichmüller space Teich(Ĉ \ Pf ) = Teich(X0) of Riemann surfaces

with basepoint X0 = Ĉ \ Pf consists of equivalence classes of pairs (g,X) where
X is the Riemann sphere punctured at n = #Pf points and g is a quasiconformal
map g : X0 → X; (g1, X1) is equivalent to (g2, X2) if there is a conformal map
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h : X1 → X2 such that g−1
2 ◦ h ◦ g1 is isotopic to the identity. It is well known that

Teich(X0) is a finite dimensional complex analytic space.
If µg is the Beltrami differential of g in the pair (g,X), we identify [µg] with

[µ] ∈ Tf . This implies that Tf has the same dimension as Teich(X0). Therefore,
the Teichmüller distance dT and the Kobayashi distance dK on Tf coincide (see
e.g. [GJW]).

8. Induced Holomorphic Map σf

For any post-singularly finite f in T Ep,q (orAV2), there is an induced map σ = σf
from Tf into itself given by

σ([µ]) = [f ∗µ],

where

(6) f ∗µ(z) =
µf (z) + µf ((f(z))θ(z)

1 + µf (z)µf (f(z))θ(z)
, µf (z) =

fz̄
fz
, θ(z) =

f̄z
fz
.

It is a holomorphic map, so it contracts the the Kobayashi distance dK . By the
final paragraph in the last section, this means it is a contraction in the Teichmüller
distance dT . Thus we have that

Lemma 8.1. For any two points τ and τ̃ in Tf ,

dT (σ(τ), σ(τ̃)) ≤ dT (τ, τ̃).

The next lemma follows directly from the definitions.

Lemma 8.2. A post-singularly finite f in T Ep,q (or AV2) is combinatorially equiv-
alent to a (p, q)-exponential map E = PeQ (or a meromorphic map in M2) if and
only if σ has a fixed point in Tf .

Proof. Suppose σ has a fixed point τ = [µ], that is, σ(τ) = [f ∗µ] = τ = [µ]. This
implies that wµ and wf

∗µ are isotopy rel Pf . Using Formula (6) and Lemma 6.2,
one can check that

E = wµ ◦ f ◦ (wf
∗µ)−1

is holomorphic. This says that f is combinatorially equivalent to E(z) = P (z)eQ(z)

or equivalently that it belongs to AV2. This proves the “if” part.
For the “only if” part, suppose there are two quasiconformal homeomorphisms φ

and ψ as in Definition 6.1 such that φ and ψ are isotopic rel Pf and E = φ◦f ◦ψ−1 =
PeQ. Let µ be the Beltrami coefficient of φ. Then the last equality implies that f ∗µ
is the Beltrami coefficient of ψ. Thus wµ and wf

∗µ are isotopic rel Pf . This implies
that σ(τ) = τ as required. �



BOUNDED GEOMETRY AND CHARACTERIZATION 19

9. Bounded Geometry

For any τ0 ∈ Tf , let τn = σn(τ0), n ≥ 1. The iteration sequence τn = [µn]
determines a sequence of finite subsets

Pf,n = wµn(Pf ), n = 0, 1, 2, · · · .
Since all wµn fix 0, 1,∞, it follows that 0, 1,∞ ∈ Pf,n. Note that Pf,n depends only
on τn and not µn by the Teichmüller equivalence relation.

Definition 9.1 (Spherical Version). We say f has bounded geometry if there is a
constant b > 0 and a point τ0 ∈ Tf such that

dsp(pn, qn) ≥ b

for pn, qn ∈ Pf,n and n ≥ 0. Here

dsp(z, z
′) =

|z − z′|√
1 + |z|2

√
1 + |z′|2

is the spherical distance on Ĉ.

Note that dsp(z,∞) = |z|√
1+|z|2

. Away from infinity the spherical metric and

Euclidean metric are equivalent. Precisely, for any bounded S ⊂ C, there is a
constant C > 0 which depends only on S such that

C−1dsp(x, y) ≤ |x− y| ≤ Cdsp(x, y) ∀x, y ∈ S.

Consider the hyperbolic Riemann surface R = Ĉ \Pf equipped with the standard
complex structure as the basepoint τ0 = [0] ∈ Tf . A point τ in Tf defines another
complex structure τ on R. Denote by Rτ the hyperbolic Riemann surface R equipped
with the complex structure τ .

A simple closed curve γ ⊂ R is called non-peripheral if each component of Ĉ \ γ
contains at least two points of Pf . Recall that we are assuming that #Pf ≥ 4. Let γ
be a non-peripheral simple closed curve in R. For any τ = [µ] ∈ Tf , let lτ (γ) be the
hyperbolic length of the unique closed geodesic homotopic to γ in Rτ . The bounded
geometry property can be stated in terms of hyperbolic geometry as follows.

Definition 9.2 (Hyperbolic version). We say f has bounded geometry if there is
a constant a > 0 and a point τ0 ∈ Tf such that lτn(γ) ≥ a for all n ≥ 0 and all
non-peripheral simple closed curves γ in R.

The above definitions of bounded geometry are equivalent because of the following
lemma and the fact that we have normalized so that 0, 1,∞ always belong to Pf .

Lemma 9.3. Consider the hyperbolic Riemann surface Ĉ \X, where X is a finite

subset of Ĉ such that 0, 1,∞ ∈ X, equipped with the standard complex structure.
Let a > 0 be a constant. Every simple closed geodesic in Ĉ \X has hyperbolic length
greater than a, if and only if spherical distance between any two distinct points in
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X is bounded below by a bound b > 0 which depends only on a and the number of
points m = #(X).

We omit the proof and refer the interested reader to [CJK] for a detailed proof.

10. The Proof of Necessity

Our theorems have two parts: the necessity and sufficiency of the bounded geom-
etry condition. The necessity is relatively easy and can be proved once for all cases
together. We prove the following statement.

Theorem 10.1 (Necessity). If a post-singularly finite map f ∈ T Ep,q (or AV2)
is combinatorially equivalent to a (p, q)-exponential map E = PeQ ∈ Ep,q (or a
meromorphic map g ∈M2), then f has bounded geometry.

Proof. If f is combinatorially equivalent to E = PeQ ∈ Ep,q (or g ∈M2), then σ has

a fixed point τ0 so that τn = τ0 for all n. The complex structure on Ĉ \ Pf defined
by τ0 induces a hyperbolic metric on it. The shortest closed geodesic in this metric
gives a lower bound on the lengths of all geodesics so that f satisfies the hyperbolic
definition of bounded geometry. �

11. Sufficiency under Compactness

The proof of the sufficiency of bounded geometry in our theorems is more compli-
cated and needs some preparatory material. There are two parts: one is a compact-
ness argument and the other is a fixed point argument. Once one has compactness,
the proof of the fixed point argument is quite standard (see [J]) and works for any
f ∈ T Ep,q and any f ∈ AV2. This is the content of Theorem 1.1 whose proof we
give in this section. We only give the details for f ∈ T Ep,q. For f ∈ AV2, the proof
is similar but uses different notation (see [CJK]).

The normalized functions in Ep,q are determined by the p + q + 1 coefficients of
the polynomials P and Q. This identification defines an embedding into Cp+q+1 and
hence a topology on Ep,q.

Given f ∈ T Ep,q and given any τ0 = [µ0] ∈ Tf , let τn = σn(τ0) = [µn] be the
sequence generated by σ. Let wµn be the normalized quasiconformal map with
Beltrami coefficient µn. Then

En = wµn ◦ f ◦ (wµn+1)−1 ∈ Ep,q
This follows because by Remark 3.5 it belongs to T Ep,q, by construction it preserves
µ0 and hence is holomorphic so that by Theorem 3.4 it is in Ep,q. This gives a
sequence {En}∞n=0 of maps in Ep,q and a sequence of subsets Pf,n = wµn(Pf ). Note
that Pf,n is not, in general, the post-singular set PEn of En.

The compactness condition. We say f satisfies the compactness condition if
the sequence {En}∞n=1 generated in the Thurston iteration scheme is contained in a
compact subset of Ep,q.
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From a conceptual point of view, the compactness condition is very natural and
simple. From a technical point of view, however, it is not at all obvious. We give a
detailed proof showing how to get a fixed point assuming both bounded geometry
and compactness.

Suppose f is a post-singularly finite topological exponential map in T Ep,q. For
any τ = [µ] ∈ Tf , let Tτ and T ∗τ be the tangent space and the cotangent space
of Tf at τ respectively. Let wµ be the corresponding normalized quasiconformal
map fixing 0, 1,∞. Then T ∗τ coincides with the space Qµ of integrable meromorphic
quadratic differentials q = φ(z)dz2. Integrablility means that the norm of q, defined
by

||q|| =
∫
Ĉ
|φ(z)|dzdz

is finite. This condition implies that the poles of q must occur at points of wµ(Pf )
and that these poles are simple.

Set τ̃ = σ(τ) = [µ̃] and denote by wµ and wµ̃ the corresponding normalized
quasiconformal maps. We have the following commutative diagram:

Ĉ \ f−1(Pf )
wµ̃−→ Ĉ \ wµ̃(f−1(Pf ))

↓ f ↓ Eµ,µ̃
Ĉ \ Pf

wµ−→ Ĉ \ wµ(Pf ).

Note that in the diagram, by abuse of notation, we write f−1(Pf ) for f−1(Pf \
{∞}) ∪ {∞}. Since by definition µ̃ = f ∗µ, the map E = Eµ,µ̃ = wµ ◦ f ◦ (wµ̃)−1

defined on C is analytic. Again by Remark 3.5 it belongs to T Ep,q, by construction it
preserves µ0 and hence is holomorphic so that by Theorem 3.4 it is in Ep,q. Therefore
Eµ,µ̃ = Pτ,τ̃e

Qτ,τ̃ for a pair of polynomials P = Pτ,τ̃ and Q = Qτ,τ̃ of respective
degrees p and q.

Let σ∗ : Tτ → Tτ̃ and σ∗ : T ∗τ̃ → T ∗τ be the tangent and co-tangent maps of σ,

respectively. Take a co-tangent vector q̃ = φ̃(w)dw2 in T ∗τ̃ . Let q = σ∗q̃ be the
corresponding co-tangent vector in T ∗τ . Then q is also the push-forward integrable
quadratic differential of q̃ by E

(7) q = E∗q̃ = φ(z)dz2.

To see this, recall from section 3 that E, and a choice of curves Li from the branch
points, determine a finite set of domains Wi on which E is an unbranched covering to
a domain homeomorphic to C∗. Since E restricted to each Wi is either a topological
model for ez or zk, we may divide each Wi into a collection of fundamental domains
on which E is bijective. Therefore the coefficient φ(z) of q is given by the formula

(8) φ(z) = (Lφ̃)(z) =
∑

E(w)=z

φ̃(w)

(E ′(w))2
=

1

z2

∑
E(w)=z

φ̃(w)

(P
′(w)
P (w)

+Q′(w))2

Here L is called a transfer operator in thermodynamical formalism. Following some
standard calculations (see e.g. [J]) on transfer operators, we have,
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(9) ||q|| < ||q̃||.

Remark 11.1. The main point in the calculations is to note that E has infinite
degree and q has finitely many poles. If there were a q̃ with ||q|| = ||q̃|| 6= 0 and poles
comprising a set Z, then the poles of q would be contained in the set E(Z) ∪ VE,
where VE is the set of critical values of E. Thus, by formula (8),

E∗q = φ(E(w))dw2 = nq̃(w),

where n is the degree of E. Furthermore,

E−1(E(Z) ∪ VE) ⊆ Z ∪ ΩE.

Since n is infinite, the last inclusion formula can not hold because the left hand side
is infinite and the right hand side is finite.

An immediate corollary of inequality (9) is
Corollary 11.2. For any two points τ and τ̃ in Tf ,

dT

(
σ(τ), σ(τ̃)

)
< dT (τ, τ̃).

In addition, inequality (9) also implies uniqueness.

Corollary 11.3. If σ has a fixed point in Tf , then this fixed point must be unique.
This is equivalent to saying that a post-singularly finite f in T Ep,q is combinatorially
equivalent to at most one (p, q)-exponential map E = PeQ.

We can now finish the proof of the sufficiency in Theorem 1.1.

Proof of Theorem 1.1. Suppose f ∈ T Ep,q has both bounded geometry and com-
pactness. Suppose τ0 = [µ0] satisfies the bounded geometry condition and µn is
defined by σn(τ0) = [µn]. Recall that the map defined by

(10) En = wµn ◦ f ◦ (wµn+1)−1

is a (p, q)-exponential map.
If q = 0, En is a polynomial and the theorem follows from the arguments given

in [CJ] and [DH] so we assume now that q > 0.
Note that if Pf = {0, 1,∞}, then f is a universal covering map of C∗ and is

therefore combinatorially equivalent to e2πniz. The Teichmüller space in this case is
a single point. Thus in the following argument, we assume that #(Pf ) ≥ 4. Then,
given our normalization conventions and the bounded geometry hypothesis we see
that the functions En, n = 0, 1, . . . satisfy the following conditions:

1) m = #(wµn(Pf )) ≥ 4 is fixed.
2) 0, 1,∞ ∈ wµn(Pf ).
3) ΩEn ∪ {0, 1,∞} ⊆ E−1

n (wµn(Pf )).
4) there is a b > 0 such that dsp(pn, qn) ≥ b for any pn, qn ∈ wµn(Pf ).
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As a consequence of the compactness, we have that in the sequence {En}∞n=1, there
is a subsequence {Eni}∞i=1 converging to a map E = PeQ ∈ Ep,q where P and Q are
polynomials of degrees p and q respectively.

To complete the proof we need to show that the sequence has a unique limit.
To this end, note that any integrable quadratic differential qn ∈ T ∗τn has, at worst,
simple poles in the finite set Pf,n = wµn(Pf ). Since T ∗τn is a finite dimensional linear
space, there is a quadratic differential qn,max ∈ T ∗τn with ‖qn,max‖ = 1 such that

0 ≤ an = sup
||qn||=1

‖(En)∗qn|| = ‖(En)∗qn,max‖ < 1.

Moreover, by the bounded geometry condition any simple poles of {qn,max}∞n=1 lie
in a compact set and hence these quadratic differentials lie in a compact subset of
the space of quadratic differentials on Ĉ with, at worst, simples poles at m = #(Pf )
points.

Let
aτ0 = sup

n≥0
an.

Let {ni} be a sequence of integers such that the subsequence ani → aτ0 as i → ∞.
Taking a further subsequence if necessary, we obtain a convergent sequence of sets
Pni,τ0 = wµni (Pf ) with limit set X. By bounded geometry, #(X) = #(Pf ) and
dsp(x, y) ≥ b for any x, y ∈ X. Thus we can find a subsequence {qni,max} converging
to an integrable quadratic differential q of norm 1 whose only poles lie in X and are
simple. Now by inequality (9), we have that

aτ0 = ||E∗q|| < 1.

Thus we have proved that there is an 0 < aτ0 < 1, depending only on b and f ,
such that

‖σ∗‖ = ‖σ∗‖ ≤ aτ0 .

Let l0 be a curve connecting τ0 and τ1 in Tf and set ln = σnf (l0) for n ≥ 1. Then
l = ∪∞n=0ln is a curve in Tf connecting all the points {τn}∞n=0. For each point τ̃0 ∈ l0,
we have aτ̃0 < 1. Taking the maximum gives a uniform a < 1 for all points in l0.
Since σ is holomorphic, a is an upper bound for all points in l. Therefore,

dT (τn+1, τn) ≤ a dT (τn, τn−1)

for all n ≥ 1. Hence, {τn}∞n=0 is a convergent sequence with a unique limit point τ∞
in Tf and τ∞ is a fixed point of σ. This together with Lemma 8.2 completes the
proof of sufficiency in Theorem 1.1. �

In the case of rational maps (see [J]) the bounded geometry condition always
guarantees that the compactness condition holds. The statements of Theorems 1.2
and 1.3 do not assume that the compactness condition holds for the families they
treat. To complete the proofs of these theorems we need to show that the bounded
geometry condition implies compactness for these families. From Definition 3.3
of the family T Ep,q and the subsequent discussion, it follows that the connected
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components Wi in that definition can be decomposed into fundamental domains;
that is, subsets that map one to one onto W . We need to have some control of these
fundamental domains to prove the compactness condition holds. To do this, in the
next section we define some topological constraints on the families of Theorems 1.2
and 1.3. In Section 12.3 we show how the topological constraints, together with the
bounded geometry condition, control the fundamental domains.

12. Topological Constraints.

In section 3 we defined two different normalizations for functions in T Ep,q that
depend on whether or not 0 is a fixed point of the map. The topological constraints
for post-singularly finite maps also follow this dichotomy.

12.1. For f ∈ T E0,1 satisfying the hypotheses of Theorem 1.3. A function
in f ∈ T E0,1 is also AV2 because it has the topological covering properties of
the exponential map and as such has two topological asymptotic values, a finite one
normalized to be 0 and one at infinity. Since it has no branch points its post-singular
set is Pf = ∪k≥0fk(0) ∪ {∞}. Recall that we are assuming that #Pf ≥ 4.

The hypotheses of Theorem 1.3 are that Pf is finite and that f has bounded
geometry. Because Pf is finite the orbit of 0 is either periodic or pre-periodic. Since
the asymptotic value 0 is omitted it cannot be part of a periodic orbit so the orbit of
0 must be pre-periodic. Let ck = fk(0) for k ≥ 0. By the pre-periodicity, there are
a minimal integer k1 ≥ 0 and a minimal integer l ≥ 1 such that f l(ck1+1) = ck1+1.
This says that

{ck1+1, . . . , ck1+l}
is a periodic orbit of period l. Let k2 = k1+l. Let γ be a continuous curve connecting
ck1 and ck2 in R2 disjoint from Pf , except for its endpoints. Because

f(ck1) = f(ck2) = ck1+1,

the image curve δ = f(γ) is a closed curve.

12.2. For f ∈ T Ep,1 with a non-periodic critical point satisfying the hy-
potheses of Theorem 1.2. Any such f has exactly one non-zero simple branch
point which we denote by c; 0 is the only other branch point and it is fixed with
multiplicity p− 1. By our normalization, f(c) = 1. In this case

Pf = ∪k≥1f
k(c) ∪ {0,∞}.

Again by the hypothesis of Theorem 1.2, Pf is finite. Set ck = fk(c) for k ≥ 0.
If c is periodic, we will see below that compactness follows directly from bounded

geometry so we assume here that c is not periodic. Then, as above, there are minimal
integers k1 ≥ 0 and l ≥ 1 such that f l(ck1+1) = ck1+1. Again,

{ck1+1, . . . , ck1+l}
is a periodic orbit of period l. Let k2 = k1 + l.
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As above, let γ be a continuous curve connecting ck1 and ck2 in R2 disjoint from
Pf , except for its endpoints. Since

f(ck1) = f(ck2) = ck1+1,

the image curve δ = f(γ) is a closed curve.

12.3. Winding number. In each of the above cases, 0 is either omitted or is its
only pre-image. Since the curve γ avoids Pf it doesn’t pass through any pre-image
of 0. Therefore the winding number η of the closed curve δ = f(γ) about 0 is
well defined. Since the winding number is independent of homotopy rel Pf we can
replace γ by a curve that intersects as few fundamental domains as possible. Thus,
the winding number essentially counts the number of fundamental domains between
ck1 and ck2 and thus defines a “distance” between these fundamental domains. (See
Figure 2).

L(5)

L(4)

L(3)

L(-5)

L(-4)

L(-3)

L(-2)

L(2)

L(-1)

L(1)

L(0)

LW(1,1)

W(1,0)V(2)

V(-2)

V(-3)

V(-4)

V(-5)
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V(4)

V(5)

c_1

c_2

c_4

c_3

c_0 0

V(0)

Figure 2. The figure shows f(z) = αz2eλz with critical point c0 =
−2/λ, critical value c1 = 1 and fixed asymptotic value at 0. We
assume that c0 lands on the cycle {c3, c4} so the points c2 and c4 are
the pre-images of c3. We show them separated by 3 fundamental
domains.
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The following lemma is a crucial point in the proof that the compactness condition
holds for each family of functions satisfying the hypotheses of Theorem 1.2 and
Theorem 1.3.

Lemma 12.1. Suppose f ∈ T Ep,q or AV2 with 4 ≤ #Pf < ∞ and normalized
so that {0, 1,∞} ∈ Pf . Let δ be any closed curve in C \ Pf with winding number
η about 0. If wµn is a normalized quasiconformal map arising from the Thurston
iteration procedure, set δn = wµn(δ). Then δn has winding number η about 0. That
is, the winding number is invariant under Thurston iteration.

Proof. Given τ0 = [µ0] ∈ Tf , apply the Thurston map σ to obtain the sequence
τn = σn(τ0) = [µn]. Let wµn be the normalized quasiconformal map in its equivalence
class with Beltrami coefficient µn. Then

En = wµn ◦ f ◦ (wµn+1)−1

is holomorphic since it preserves the standard structure µ0 and is holomorphic. See
the following diagram.

Ĉ wµn+1

−→ Ĉ
↓ f ↓ En
Ĉ wµn−→ Ĉ.

For the given closed curve δ in C \ Pf whose winding number about 0 is η, set

δn = wµn(δ).

Note that since wµn is a homeomorphism δn is a closed curve in C\wµn(Pf ); because
wµn fixes 0, 1,∞, these points belong to wµn(Pf ) and δn has a winding number ηn
about 0. Now the winding number is a topological invariant so ηn = η for all n. �

We apply this lemma first to the functions f ∈ T Ep,1, p ≥ 0 with finite Pf and
no periodic critical point. Using the notation of the previous two sections, if c is the
non-zero critical point of f , set ck = fk(c), k ≥ 0, and let ck,n = wµn(ck). Because
c is preperiodic, there are minimal integers k1 ≥ 1 and k2 such that

{ck1+1, . . . , ck2}
is a periodic orbit.

Let γ be a continuous curve from ck1 to ck2 in (R2 \ Pf ) ∪ {ck1 , ck2}. Then δ =
f(γ) ∈ (R2 \ Pf ) ∪ {ck1+1}. The curve

γn+1 = wµn+1(γ)

is continuous and goes from ck1,n+1 to ck2,n+1 avoiding any other points in wµn+1(Pf ).
Then

δn = En(γn+1) = wµn(f((wµn+1)−1(γn+1))) = wµn(f(γ)) = wµn(δ)

is a closed curve through the point ck1+1,n = wµn(ck1+1) that avoids all other points
in wµn(Pf ). By the lemma, it has winding number η around 0. We can interpret η
as the number of fundamental domains or “distance” between ck1,n+1 and ck2,n+1.
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We also apply this lemma to functions f ∈ AV2 with asymptotic values Ωf =
{0, λ}, with 4 ≤ #Pf < ∞ and normalized so that f(0) = 1. The application is a
bit different from the one above.

The fundamental group π1(Ĉ\{0, λ}) = Z. If we draw a curve α on Ĉ from 0 to λ,

then f−1(Ĉ\α) is topologically equivalent to the union of strips Ĉ\{∪n=z = 2πn}.
If we take a closed curve β ∈ Ĉ \ {0, λ} separating 0 and λ, its winding number
counts the number of strips it crosses. Since Pf is finite the orbits {ck = fk(0)}∞k=0

and {c′k = fk(λ)}∞k=0 are both finite, and thus, preperiodic. Note that neither can
be periodic because the asymptotic values are omitted. Because 0 is preperiodic,
there are minimal integers k1 ≥ 1 and k2 such that

{ck1+1, . . . , ck2}

is a periodic orbit.
Let γ be a continuous curve connecting ck1 to ck2 in (R2 \Pf )∪{ck1 , ck2}. Because

f(ck1) = f(ck2) = ck1+1, the image curve δ = f(γ) is a closed curve in (R2 \ Pf ) ∪
{ck1+1}. We can choose γ once and for all such that δ separates 0 and λ; that is, so
that δ is a non-trivial curve closed curve in R2 \ Pf except at its endpoints. Let η
be its winding number about 0.

The fundamental group π1(Ĉ \ {0, λ}) = Z so the homotopy class η = [δ] in the
fundamental group is an integer which essentially counts the number of fundamental
domains (strips) between ck1 and ck2 and defines a “distance” between the funda-
mental domains. The integer η depends only on the choice of γ and since γ is fixed,
so is η.

The iteration defines the map

gn = wµn ◦ f ◦ (wµn+1)−1 ∈ AV2

which is holomorphic since it preserves the standard structure µ0. The continuous
curve

γn+1 = wµn+1(γ)

is simple and goes from ck1,n+1 = wµn+1(ck1) to ck2,n+1 = wµn+1(ck2). The image
curve

δn = gn(γn+1) = wµn(f((wµn+1)−1(γn+1))) = wµn(f(γ)) = wµn(δ)

is a closed curve through the point ck1+1,n = wµn(ck1+1).
From our normalization, it follows that

(11) gn(z) = gαn,βn(z) =
αne

βnz

(αn − 1
αn

)eβnz + 1
αn

.

and 0 is an omitted value for gn. Since λn = wµn(λ), it is also omitted for gn and

(12) λn =
αn

αn − 1
αn

∈ Pf,n = wµn(Pf ).



28 TAO CHEN, YUNPING JIANG, AND LINDA KEEN

Applying Lemma 12.1 with the curve δ, we see that the curves δn are have winding
number equal to η, the winding number of δ.

Moreover, since the fundamental group π1(Ĉ \ {0, λn}) = Z, we deduce that

η = [δn] ∈ π1(Ĉ\{0, λn}) = Z. Thus the homotopy class of δn in the space Ĉ\{0, λn}
is the same throughout the iteration. We can interpret the integer representing the
homotopy class as the number of fundamental domains between ck1 and ck2 .

Note that when f ∈ AV2 with λ =∞, it is also in T E0,1. So the homotopy class
defined in this section is the same as the winding number defined above.

13. Compactness.

The arguments that the invariance under the Thurston iteration scheme of the
winding number and the homotopy class together with the bounded geometry condi-
tion imply compactness are different in the proofs of Theorem 1.2 and Theorem 1.3.
We present these arguments in the two subsections below. Recall that

Pf,n = wµn(Pf ), n = 0, 1, 2, . . . .

13.1. The proof of Theorem 1.2. For a map in T Ep,1, f(0) = 0, 0 is a branch
point of multiplicity p − 1 and f has exactly one non-zero branch point c with
f(c) = 1. All the functions in the Thurston iteration have the form

En(z) = αnz
peλnz, αn = ep

(
− λn

p

)p
.

Note that En(0) = 0 and 0 is a critical point of multiplicity p − 1. It is also the
asymptotic value and hence it has no other finite pre-images. Moreover, En(z) has
exactly one non-zero simple critical point

cn = − p

λn
= wµn(c)

and αn is defined by the normalization condition En(cn) = 1. Recall that we are
always assuming that #Pf ≥ 4 which implies f(1) 6= 1 and this in turn implies
En(1) 6= 1.

If c is periodic, then c ∈ Pf . It follows that cn( 6= 0,∞) ∈ Pf,n and thus its
spherical distance from either 0, 1 or ∞ is bounded below. That is, there are two
constants 0 < κ < K <∞ such that

κ ≤ |λn| ≤ K, ∀n > 0.

Because Ep,1 is a one parameter family parameterized by λ, this implies that the
sequence {En}∞n=1 is contained in a compact subset.

Now suppose c is not periodic. By the the hypotheses in Theorem 1.2, f(c) = 1
is also not periodic and therefore k1 ≥ 1.

We have

0, 1 = En(cn), En(1) = ep
(
− λn

p

)p
eλn ∈ Pf,n.

Let ck,n = wµn(ck). Then ck,n ∈ Pf,n for all k ≥ 1. Let γn = wµn(γ) and δn = wµn(δ).
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When f has bounded geometry, since En(1) 6= 0, its spherical distance from 0 is
bounded below. This implies that the sequence {|λn|} is bounded below; that is,
there is a constant κ > 0 such that

κ ≤ |λn|, ∀n > 0.

By our hypothesis, ck1,n+1 6= ck2,n+1 both belong to Pf,n+1 and bounded geometry
implies there are two constants, which we again denote by κ,K with 0 < κ < K <
∞, such that

κ ≤ |ck2,n+1|, |ck1,n+1| ≤ K and κ ≤ |ck2,n+1 − ck1,n+1| ≤ K, ∀ n ≥ 1.

Now we prove that the sequence {|λn|} is also bounded above. Recall that when
we chose γ, we assumed it did not go through 0 and thus by the normalization,
none of the γn+1 go through 0 either. Therefore, for each n we can find a simply
connected domain Dn+1 ⊃ γn+1 that does not contain 0. Now we compute

η =
1

2πi

∮
δn

1

w
dw =

1

2πi

∫
γn+1

E ′n(z)

En(z)
dz =

1

2πi

∫
γn+1

(p
z

+ λn

)
dz

so that

2πiη =

∫
γn+1

p

z
dz +

∫
γn+1

λndz =

∫
γn+1

p

z
dz + λn(ck2,n+1 − ck1,n+1).

Rewriting we have

λn(ck2,n+1 − ck1,n+1) = 2πiη −
∫
γn+1

p

z
dz.

This implies that

κ|λn| ≤ |λn(ck2,n+1 − ck1,n+1)| ≤ 2πη +
∣∣∣ ∫

γn+1

p

z
dz
∣∣∣.

Thus, if we can bound the integral on the right we will be done.
Notice that log z can be defined as an analytic function on the simply connected

domain Dn+1 containing γn+1 that we chose above. We take log z = log |z|+ i arg(z)
as the principal branch, with −π ≤ arg(z) < π. We then estimate∣∣∣ ∫

γn+1

p

z
dz
∣∣∣ = p| log ck2,n+1 − log ck1,n+1|

≤ p(| log |ck2,n+1| − log |ck1,n+1||+ | arg(ck2,n+1)− arg(ck1,n+1)|).
We have

| arg(ck2,n+1)− arg(ck1,n+1)| < 2π(η + 1)

because of the topological constraint. By Lemma 12.1, the number of fundamental
domains between the points is bounded by the topological invariant η and this
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is independent of n. (See Figure 2.) Then, including the width of the domains
containing the points ck1,n+1 and ck2,n+1, we have∣∣∣ ∫

γn+1

p

z
dz
∣∣∣ ≤ p((logK − log κ) + 2π(η + 1)).

Finally we have

|λn| ≤ p(
2πη + (logK − log κ) + 2π(η + 1)

κ
).

which proves that {En(z)}∞n=0 is contained in a compact subset in Ep,1. This com-
bined with Theorem 1.1 completes the proof of Theorem 1.2 for f ∈ T Ep,1.

13.2. Proof of Theorem 1.3. By hypothesis f has bounded geometry and by the
normalization of f , Ωf = {0, λ}, f(0) = 1 so that {0, 1, λ,∞} ⊂ Pf . Moreover the
iterates

gn = wµn ◦ f ◦ (wµn+1)−1

belong to M2.
Recall that Pf,n = wµn(Pf ) and because wµn fixes {0, 1,∞} for all n ≥ 0,
{0, 1,∞} ⊂ Pf,n. By equation (11),

gn(1) = wµn(f(1)) =
αne

βn

(αn − 1
αn

)eβn + 1
αn

∈ Pf,n.

so that

λn =
αn

(αn − 1
αn

)

and
{0, 1, λn, gn(1),∞} ⊆ Pf,n.

TheM2 here is parameterized by the asymptotic value λ and the coefficient β. The
compactness condition says that the parameter λn stays a bounded distance from 0
and 1 and that βn is bounded away from 0 and ∞.

In the case that λ = ∞, f is in T E0,1 so that all the functions in the Thurston
iteration have the form gn(z) = eβnz. From our normalization, we have

0, 1 = gn(0), gn(1) = eβn ∈ Pf,n+1.

As usual, we assume #(Pf ) ≥ 4 because if #(Pf ) = 3, then f(1) = 1 so that
gn(1) = 1 for all n ≥ 0 and therefore gn(z) = e2πmnz. The homotopy class of δn
is determined by η, the winding number about the origin in the complex analytic
sense. Thus mn = η for all n and gn = e2πiηz, which is fixed under Thurston iteration
so trivially lies in a compact subset in E0,1 ⊂M2.

Now still assuming that λ =∞, suppose that #(Pf ) ≥ 4 so that gn(1) 6= 1. When
f has bounded geometry, the spherical distance between 1 and gn(1) is bounded away
from zero. That is, there is a constant κ > 0 such that

κ ≤ |βn|, ∀n ≥ 0.
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Now we prove that the sequence {|βn|} is also bounded above. Again we compute

η =
1

2πi

∮
δn

1

w
dw =

1

2πi

∫
γn+1

g′n(z)

gn(z)
dz =

1

2πi

∫
γn+1

βndz.

The integral therefore depends only on the endpoints and we have

η =
1

2πi

∫
γn+1

βndz =
βn
2πi

(ck2,n+1 − ck1,n+1).

Since 0 is omitted, it cannot be periodic. Therefore, both ck2,n+1 6= ck1,n+1 ∈ Pf,n+1;
by bounded geometry therefore, there is a positive constant which we again denote
by κ such that

|ck2,n+1 − ck1,n+1| ≥ κ.

This gives us the estimate

|βn| ≤
2πη

|ck2,n+1 − ck1,n+1|
≤ 2πη

κ

which proves that {gn(z)}∞n=0 is contained in a compact family in E0,1 ⊂M2.
Finally, let us prove compactness of the iterates when λ 6=∞. In this case, since

λn =
αn

αn − 1
αn

∈ Pf,n+1

has a definite spherical distance from 0, 1 and ∞, bounded geometry implies there
are two constants 0 < k < K <∞ such that

k ≤ |αn|, |αn − 1| and |αn| ≤ K, ∀ n ≥ 0.

In this case, we also know that gn(1) 6= 1. Since gn(1) ∈ Pf,n+1, bounded geometry
implies that the constant k can be chosen such that

k ≤ |βn|, ∀n > 0.

Again we use the topological constraint of Lemma 12.3 to prove that {|βn|} is
also bounded from above. Let

Mn(z) =
αnz

(αn − 1
αn

)z + 1
αn

so that gn(z) = Mn(eβnz). The map Mn is a homeomorphism that fixes 0. Thus,

setting δ̃n = M−1
n (δn), the winding number about 0 of δ̃n is equal to the the winding

number of δn about 0. By Lemma 12.3 this is an integer η, independent of n.

Remark 13.1. We can consider Mn as a map from Ĉ \ {0,∞} → Ĉ \ {0, λn} so

so it induces an isomorphism from the fundamental group π1(Ĉ \ {0,∞}) to the

fundamental group π1(Ĉ \ {0, λn}). Then, because these fundamental groups are

isomorphic to the integers, the homotopy classes of δn and δ̃n are represented by the
same integer.
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Note that δ̃n is the image of γn+1 under g̃n(z) = eβnz. Since δ̃n is a closed curve in

Ĉ \ {0,∞}, η is the winding number of δ̃n about the origin in the complex analytic
sense, and we can compute

η =
1

2πi

∮
δ̃n

dw

w
=

1

2πi

∫
γn+1

g̃′n(z)

g̃n(z)
dz =

βn
2πi

(ck2,n+1 − ck1,n+1).

As above, ck2,n+1, ck1,n+1 ∈ Pf,n+1, and by bounded geometry there is a constant
k > 0 such that

|ck2,n+1 − ck1,n+1| ≥ k,

so that

|βn| ≤
2πη

|ck2,n+1 − ck1,n+1|
≤ 2πη

k
.

This inequality proves that {gn(z) = gαn,βn(z)} forms a compact subset in M2.
Thus, we have shown that in all cases bounded geometry implies the sequence
{gn} is in a compact subset inM2. This combined with Theorem 1.1 completes the
proof of Theorem 1.3.
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