
1

1

CMP 436/774

Introduction to

Java Enterprise Edition

Fall 2013

Department of Mathematics

and Computer Science

Lehman College, CUNY

2

Java Enterprise Edition

 Developers today increasingly recognize the need for distributed,

transactional, and portable applications that leverage the speed,

security, and reliability of server-side technology.

 Enterprise applications provide the business logic for an
enterprise. They are centrally managed and often interact with
other enterprise software.

 In the world of information technology, enterprise applications
must be designed, built, and produced for less money, with
greater speed, and with fewer resources.

 The aim of the Java EE platform is to provide developers with a

powerful set of APIs while shortening development time, reducing

application complexity, and improving application performance.

2

Java Enterprise Edition (cont’d)

 The Java Platform, Enterprise Edition (Java EE) builds upon the

Java SE platform and provides a set of technologies for

developing and running portable, robust, scalable, reliable and

secure server-side applications.

 EE technologies are loosely divided into two categories:

 Web application technologies

 Enterprise application technologies

 Depending on your needs, you may want to use certain

technologies from either category. For example, makes use of

Servlet, JSP/EL, and JSTL "web" technologies (or JSF), as well as

EJB and JPA "enterprise" technologies.

3

Java Enterprise Edition (cont’d)

4

3

Java EE Components

 Applets: GUI app’s executed in a web browser. They use the Swing API

to provide powerful user interfaces.

 Applications: programs executed on a client. Typically GUIs or batch-

processing programs that have access to all the facilities of the Java EE

middle tier.

 Web applications: applications executed in a web container and

respond to HTTP requests from web clients.

 Made of servlets, servlet filters, JSP pages, and JSF.

 Servlets also support web service endpoints

 Enterprise Java Beans: container-managed components for processing

transactional business logic. They can be accessed locally and

remotely through RMI (or HTTP for SOAP and RESTful web services).

5

Java EE Application

 In a Java EE application:

 The model -- business layer functionality represented by JavaBeans or

EJBs

 The view -- the presentation layer functionality represented by JSPs or

JSFs in a web application

 The controller -- Servlet mediating between model and view

 Must accommodate input from various clients including HTTP requests

from web clients, and…

 WML from wireless clients

 XML documents from suppliers

 etc.

  MVC Architecture (or termed Design Pattern)

6

4

MVC Architecture

 Model:

 Represents the business data and any business logic that govern access
to and modification of the data. The model notifies views when it changes
and lets the view query the model about its state. It also lets the
controller access application functionality encapsulated by the model.

 View:

 The view renders the contents of a model. It gets data from the model
and specifies how that data should be presented. It updates data
presentation when the model changes. A view also forwards user input to
a controller.

 Controller:

 The controller defines application behavior. It dispatches user requests
and selects views for presentation. It interprets user inputs and maps
them into actions to be performed by the model. In a web application,
user inputs are HTTP GET and POST requests. A controller selects the
next view to display based on the user interactions and the outcome of
the model operations.

Source: Java BluePrints - J2EE Patterns, MVC

http://java.sun.com/blueprints/patterns/MVC-detailed.html

7

MVC Architecture (cont’d)

8

5

MVC- an example (based on JDBC)

9

MVC- an example (based on JPA)

10

6

MVC- an example (Spring framework)

11

JSF Flow of Control

12

submit form

POST request balance.jsf
Find

Bean

return

value
Choose

Page

Run Action

Controller Method

forward result1.xhtml

 result2.xhtml

...

 resultN.xhtml

Run Setter

Methods

Business

Logic

results

balance.xhtml
Uses <h:commandButton …

 action="#{bankForm.findBalance}"/>

and <h:inputText value="#{bankForm.customerId}"/>

Uses

#{bankForm.someProperty}

to display bean properties

When form first displayed, getCustomerId is

called. If it is non-empty, it becomes initial

value of the textfield.

When form submitted, textfield value passed to setCustomerId.

This is the method listed in the action of

h:commandButton (e.g., findBalance)

The results get stored in the placeholder. E.g., a

Customer that corresponds to the customer ID is found

and placed in an instance variable of main bean.

This could be #{bankForm.customerId}, where customerId was passed in by

the user, or it could be #{bankForm.customer.balance}, where getCustomer

returns the Customer object found by the business logic, and getBalance

returns that customer’s bank account balance.

If bean is request-scoped, instantiate

it. But for other scopes (e.g., session),

you might use existing bean instance.

7

Web Application

 A web application is a dynamic extension of a web or application

server. Types of web applications:

 Presentation-oriented

 generates interactive web pages containing various types of markup language

(HTML, XHTML, XML, and so on) and dynamic content in response to requests.

 Service-oriented

 A service-oriented web application implements the endpoint of a web service.

 In Java EE platform, web components provide the dynamic extension

capabilities for a web server.

 Web components are either Java servlets, web pages, web service

endpoints, JSP pages, or JSFs

13

View layer in Web Application

 Display information according to client types

 Display result of business logic (Model)

 Not concerned with how the information was obtained, or from where

(since that is the responsibility of Model)

14

8

Model layer in Web Application

 Models the data and behavior behind the business process

 What it’s responsible for:

 Performing DB queries

 Calculating the business process

 Processing orders

 Encapsulation of data and behavior which are independent of

presentation

15

Controller in Web Application

 Serves as the logical connection between the user's interaction and the

business services on the back end servers

 Responsible for making decisions among multiple presentations

 e.g. User's language, locale or access level dictates a different

presentation.

 A request enters the application through the control layer, which will

decide how the request should be handled and what information should

be returned

16

9

Containers

 Java EE is a set of specifications implemented by different containers.

 Containers are Java EE runtime environments that provide certain

services to the components they host such as lifecycle management,

dependency injection, security, etc.

17

GlassFish AS Container

18

10

JSP, Servlets, and JSF

 JavaServer Pages (JSP) technology allows you to easily create

web content that has both static and dynamic components.

 JSP technology makes available all the dynamic capabilities of
Java Servlet technology but provides a more natural approach to
creating static content.

 Servlets are Java classes that dynamically process requestsand

construct responses.

 Servlets are best suited for service-oriented applications (web service

endpoints are implemented as servlets) and the control functions of a

presentation-oriented application, such as dispatching requests and

handling non-textual data.

 JavaServer Faces (JSF) and Facelets are used for building interactive

web applications.

 Java Server Faces and Facelets pages are more appropriate for generating

text-based markup, such as XHTML, and are generally used for

presentation–oriented applications.

19

JAVA EE Services and APIs

 JPA: Standard API for object-relational mapping (ORM).

 JMS: allows components to communicate asynchronously through

messages.

 Java Naming and Directory Interface (JNDI): used to access naming

and directory systems.

 JTA: a transaction API

 JAX-WS (SOAP based), JAX-RS (RESTful HTTP based)

20

11

JPA

 Objects vs. Entities

 Objects are instances that just live in memory.

 Entities are objects that live shortly in memory and persistently in a

database.

 JPA maps objects to a database via metadata that can be supplied

using annotations or in an XML descriptor

 Annotations: The code of the entity is directly annotated with all sorts of

annotations described in the javax.persistence package.

 Entity example in the next page

21

@Entity

@Table(name = "category")

@XmlRootElement

@NamedQueries({

 @NamedQuery(name = "Category.findAll", query = "SELECT c FROM Category c"),

 @NamedQuery(name = "Category.findById", query = "SELECT c FROM Category c WHERE c.id = :id"),

 @NamedQuery(name = "Category.findByName", query = "SELECT c FROM Category c WHERE c.name =

:name")})

public class Category implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Basic(optional = false)

 @Column(name = "id")

 private Short id;

 @Basic(optional = false)

 @NotNull

 @Size(min = 1, max = 45)

 @Column(name = "name")

 private String name;

 @OneToMany(cascade = CascadeType.ALL, mappedBy = "categoryId")

 private Collection<Product> productCollection;

 public Category() {

 }

 public Category(Short id) {

 this.id = id;

 }

22

12

JPA cont’d

 Relational model (i.e. RDBMS) vs. Object Oriented model (i.e. Java)

 Object-Relational Mapping (ORM)

 Java Persistence API (JPA)

 An API on top of JDBC

 Can access and manipulate relational data from Enterprise Java Beans

(EJBs), web components, and Java SE applications

 Includes an entity manager API to perform DB-related operations like

CRUD

 Includes JPQL, an object-oriented query language

23

EJB

 Server-side components

 Encapsulate business logic

 Take care of transactions and security

 Used in building business layers to sit on top of the persistence layer

and as an entry point for presentation-tier technologies such as JSP,

JSF

 Can be built by annotating a POJO that will be deployed into a

container

24

13

Type of EJBs

 Session beans and Message-driven Beans (MDBs)

 Session Beans are used to encapsulate high-level business logic and

can be

 Stateful: the state of the bean is maintained across multiple method calls.

The "state" refers to the values of its instance variables. Because the client

interacts with the bean, this state is often called the conversational state.

Stateful session bean contains conversational state, which must be retained

across method invocations for a single user

 Stateless: contains no conversational state between invocations, and any

instance can be used for any client

 Singleton: A single session bean is shared between clients and supports

concurrent access

25

