CMP 436/774

Introduction to
JMS (Java Message Service)
MDB (Message Driven Bean)

o Refereces

> Main Reference R1 (chapters 22, 25, 47, 48)

Fall 2012

Department of Mathematics
and Computer Science
Lehman College, CUNY

What Is Messaging? (1)

Messaging is a method of communication between software
components or applications.
» A messaging system is a peer-to-peer facility:
- A messaging client can send messages to, and receive messages
from, any other client.

- Each client connects to a messaging agent that provides facilities for
creating, sending, receiving, and reading messages.
Messaging enables distributed communication that is loosely coupled.
A component sends a message to a destination, and the recipient can
retrieve the message from the destination.

» The sender and the receiver do not have to be available at the
same time in order to communicate. In fact, the sender does not
need to know anything about the receiver; nor does the receiver
need to know anything about the sender.

» The sender and the receiver need to know only which message
format and which destination to use.

What Is Messaging? (2)

Messaging differs from tightly coupled technologies, such as Remote
Method Invocation (RMI), which require an application to know a remote
application’s methods.

0 Messaging also differs from electronic mail (email), which is a method
of communication between people or between software applications
and people. Messaging is used for communication between software
applications or software components.

JMS API

The Java Message Service is a Java API that allows applications to
create, send, receive, and read messages.

» JMS API defines a common set of interfaces and associated
semantics that allow programs written in the Java programming
language to communicate with other messaging implementations.

> It also strives to maximize the portability of JMS applications
across JMS providers in the same messaging domain.

o The JMS API enables communication that is not only loosely coupled
but also

» Asynchronous: A JMS provider can deliver messages to a client as
they arrive; a client does not have to request messages in order
to receive them.

> Reliable: The JMS API can ensure that a message is delivered
once and only once. Lower levels of reliability are available for
applications that can afford to miss messages or to receive
duplicate messages.

JMS API Work with the Java EE Platform

When the JMS API was introduced in 1998, its most important purpose
was to allow Java applications to access existing messaging-oriented
middleware (MOM) systems, such as MQSeries from IBM. Since that
time, many vendors have adopted and implemented the JMS API, so a
JMS product can now provide a complete messaging capability for an
enterprise.

Beginning with the 1.3 release of the Java EE platform, the JMS API
has been an integral part of the platform, and application developers
can use messaging with Java EE components.

Message Driven Bean (MDB)

A message-driven bean is an enterprise bean that allows Java EE
applications to process messages asynchronously.

Message-driven beans can implement any messaging type. Most
commonly, they implement the Java Message Service (JMS)
technology.

» This type of bean normally acts as a JMS message listener, which
is similar to an event listener but receives JMS messages instead
of events.

» The messages can be sent by any Java EE component
(an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use
Java EE technology.

» Message-driven beans can process JMS messages or other kinds
of messages.

JMS Application Architecture

A typical JMS application is composed of the following parts.

> A JMS provider is a messaging system that implements the JIMS
interfaces and provides administrative and control features. An
implementation of the Java EE platform includes a JMS provider.

> JMS clients are the programs or components, written in the Java
programming language, that produce and consume messages.
Any Java EE application component can act as a JMS client.

» Messages are the objects that communicate information between
JMS clients.

» Administered objects are preconfigured JMS objects created by an
administrator for the use of clients. The two kinds of JMS
administered objects are destinations and connection factories,
which are described in JMS Administered Objects.

JMS Queue and Connection Factory

The following figure illustrates the way these parts interact.

> Administrative tools allow you to bind destinations and connection
factories into a JNDI namespace.

» A JMS client can then use resource injection to access the
administered objects in the namespace and then establish a
logical connection to the same objects through the JMS provider.

Administrative Bind JNDI Namespace
Tool

O ¢
Inject Resource

JMS Client JMS Provider
Logical 3 _

Connection

Messaging Domains

Before the JMS API existed, most messaging products supported either
the point-to-point or the publish/subscribe approach to messaging. The
JMS specification provides a separate domain for each approach and
defines compliance for each domain. A stand-alone JMS provider can
implement one or both domains. A Java EE provider must implement
both domains.

In fact, most implementations of the JMS API support both the point-to-
point and the publish/subscribe domains, and some JMS clients
combine the use of both domains in a single application. In this way, the
JMS API has extended the power and flexibility of messaging products.

JMS provides common interfaces that enable you to use the JMS API in
a way that is not specific to either domain.

Point to Point (PTP) Messaging Domain

A point-to-point (PTP) product or application is built on the concept of
message queues, senders, and receivers. Each message is addressed
to a specific queue, and receiving clients extract messages from the
queues established to hold their messages. Queues retain all
messages sent to them until the messages are consumed or until the
messages expire.

Msg
Sends

Consumes

Client 1 —tMSG — * Client 2

Queue Acknowledges

10

Publish/Subscribe Messaging Domain

In a publish/subscribe (pub/sub) product or application, clients
address messages to a topic, which functions somewhat like a bulletin
board.

> Publishers and subscribers are generally anonymous and can
dynamically publish or subscribe to the content hierarchy.

» The system takes care of distributing the messages arriving from
a topic’s multiple publishers to its multiple subscribers.

» Topics retain messages only as long as it takes to distribute them
to current subscribers.

Subscribes
-~ .
Publishes ~_ Delivers —| Client2
Client 1 giMsg —

Msg

<—Subscribes <1 Client 3
Topic Delivers —

11

Programming with the Common Interfaces

JMS API allows you to use the same code to send and receive
messages under either the PTP or the pub/sub domain.

0 The destinations that you use remain domain-specific, and the behavior
of the application will depend in part on whether you are using a queue
or a topic.

» However, the code itself can be common to both domains, making
your applications flexible and reusable.

12

Messaging Consumption

Messaging products are inherently asynchronous: There is no
fundamental timing dependency between the production and the
consumption of a message.

0 Messages can be consumed in either of two ways:

» Synchronously: A subscriber or a receiver explicitly fetches the

message from the destination by calling the receive method.

The receive method can block until a message arrives or can time

out if a message does not arrive within a specified time limit.

Asynchronously: A client can register a message listener with a

consumer. A message listener is similar to an event listener.

Whenever a message arrives at the destination, the JMS provider
delivers the message by calling the listener's onMessage method,

which acts on the contents of the message.

13

JMS API Programming Model

The basic building blocks of a JMS application consist of

>
>
>

>

Administered objects: connection factories and destinations
Connections

Sessions #_Connection
Message producers ﬁ;ﬁﬁ Factory
Message consumers | [l
Messages Creates

Connection

Creates

Message Creates | . Creates | Message
Session
Producer | 3 Consumer
Sends To Creates Receives
From

g w B

Destination Destination

14

Simple JMS Project (JMSProject)

JMSProject

» The simple message application has the following components:

» JMSClient: An application client that sends a simple message to a
queue

» Simple MDB EJB MessageReceiver.java : A message-driven bean
that asynchronously receives and processes the message that are
sent to the queue

» Message queue myQueue is created as a JMS resource by

JMSProject.
Java EE Server
EJB Container
Msg — — MSQ — MDB .
o Queue Instances
Application
Client Sends Delivers

15

JMS Project —Enterprise App(1)

W New Project |
Steps Choose Project
1. Choose Project Categories: Projects:
zo [Java e t=rprise Application
1 JavaRx A Enterprise Application with Existing Sources
1 JavaWeb & EIB Module
0 aee & EJB Module with Existing Sources
. Cm &% Enterprise Application Client
i aven

: &% Enterprise Application Client with Existing Sources
.[] MetBeans Modules

1 samples

Description:

Creates a new enterprise application in a standard project. You can also create an EJ6 module
project and Web application project in the enterprise application. A standard project uses an
1IDE-generated Ant build script to build and run your projects.

Iz
M

ceack | Next> | Fiish Cancel | e |
[T

16

JMS Project —Enterprise App (2

New Enterprise Application x|
Steps Server and Settings

1. Choose Project
2. Name and Location

3. serverand settings Java EE Version: |Java EE & VI

I Enable Contexts and Dependency Injection

Server: IG\assFlsh Server 3+ LI Add...

¥ setSource Level to &

Recommendation: Source Level 6 should be used in Java EE 6 projects.

¥ Create EJB Module: IJMSPruJE:t—eJh

[~ ECreate \Web Application Module IJFVISPruJE:t-'.\'ar

< Back neis [Fnish | cancel | hep
I

17

Creating Message Queue

IMSPraject |

(ZAl Java EE Modules

corforatenties T
- EE Server Resources

IMSProject-gjb Steps Choose File Type

1. Choose File Type Project: [A mspraject =1
2 .
Categories: File Types:
Enterprise JavaBeans |t|# IDBC Connection Pool
Unit Tests [1DBC Resource
ML >
E JavaMail Session
GlassFish Descriptor
webLogic P
Other
Desaription:
wizard to create a new JMS Resource. The resource created will be either a Connector Resource or a
Admin Object Resource

< Back | MNext > I Finish Cancel Help

18

Enter JINDI name

IMSProject
(CA Java EE Modules
EE Server Resources

-@ MsProject-eib Steps

General Attributes - JMS Resource

2. General Attributes - JMS

1. Choose ... Enter the configuration information for the JMS Resource. Fields with an = mark are required.

Resource INDI Name: = fims fmyQueve
3. Properties

Enabled: Jtrue

Description: |

Choose Resource Type:*

Admin Object Resource
% javax.jms.Queue
 javax.jms.Topic

Connector Resource
 javax.jms.QueueConnectionFactory
" javax.jms. TopicConnectionFactory

£ javax.jms.ConnectionFactary

%amQ3 - Navigator X
< Back | Next > I Finish

Cancel |

Help

19

JMS Property

New JMS Resource

Steps JMS Properties

1. Choose ...

2. General Attributes - M5 Add additional configuration information for JMS Resource Type javax.jms.Queue.
Resource Hit the Enter key to save values in the Properties table,

3. Properties

Properties:

Name Value

myQueve

Add

Remove

1 <Back Next > | Fish |

Cancel

Help

20

10

glassfish-resources.xml

xml version="1.0" encoding="UTF-8"?>

IDOCTYPE resources PUBLIC "-//6GlassFish.org//DTD GlassFish Application Server 3.1
esource Definitions//EN" "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">

<resources>
<admin-object-resource enabled="true" jndi-name="jms/myQueue" object-type="user'
res-adapter="jmsra" res-type="javax.jms.Queue">
<description/>
<property name="Name" value="myQueue"/>
</admin-object-resource>
</resources>

Create JMS Connection Factory(1)
MSProject sorce | msboy [- &1~ | QDS FE|P SR (G N0 S P

Java EE Modules = = = = = =
1 <?xml| version="1.0" encoding="UTF-&"%>
Configuration Files

Server Resources 2| <IDOCTYPE resources PUBLIC "-//GlassFish.org//DTD GlassFish application Server 3.1 Re:

: glassfish-resources, xml 3 <resources>
IMSProject-ejb 4 <admin-ohject-resource enahled="true" jndi-name="]ns/mylueue” aohject-type="user” res—ac

'8 Libraries
‘Al Enterprise Beans Steps Choose File Type
|29 Configuration Files 1. Choose File Type .
" Project: IMSProject -
I0d Server Resources 2. IA _I
Categories: File Types:
+~[C1 Enterprise JavaBeans IDBC Connection Poal
2 urit Tests -5 108C Resource
00 L 5 B rce
(] GlassFish |hl JavaMail Session
1 Weblogic @ GlassFish Descriptor
-] Other
Description:

Wizard to create a new JMS Resource, The resource created will be either a Connector Resource or a
Admin Object Resource

‘oject - Navigator X

<gock |[mext= | Fneh Cancel Heln

Create JMS Connection Factory(2)

/4 MsProject

(Zd Java EE Modules

(Zd Configuration Files
(138l Server Resources

glassfish-resource. Steps

@ Msproject-eib
({3 source Packages
(& Libraries

(2 Configuration Files
i-[g Server Resources

{3l Enterprise Beans 3

Choose Resource Type:®

Admin Object Resource

Connector Resource

€ javax.jms.Queue

£ java.jms. Topic

@ S

€ javax.jms. TopicConnectionFactory

€ javax.jms.ConnectionFactory

== B =
[Sarce rowoy R E-6-|Q @ SRS % °0|lv ¥
|1 <?uml versinn="1.M" anrndina="IITF-R"?>
New JMS Resource X e
General Attributes - JMS Resource
e
1. Choose... Enter the configuration information for the JMS Resource. Fields with an = mark are required.
2. General Attributes - JMS
Resource JNDI Name:*® |]msfmyQueueConnechonFactnry
. Properties
Enabled: [true =1
Description: |

ASProject - Navigator X

<Back [Ned> | Finsh Cancel Help

23

Create JMS Connection Factory(3)

Do not enter properties. Click Finish

ew JMS Resource

Steps JMS Properties

1. Choose ...

2, General Attributes - M5 Add additional configuration information for JMS Resource Type javax.jms.QueueConnectionFactary.
Resource Hit the Enter key to save values in the Properties table.

3. Properties

Properties:
Name Value
Remove
e
<Back ext > Finish Cancel wep | [~
1 T
24

12

glassfish-resources.xml

xml version="1.0" encoding="UTF-8"?>
DOCTYPE resources PUBLIC "-//GlassFish.org//DTD 6lassFish Application Server 3.1
esource Definitions//EN" "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">
<resources>
<admin-object-resource enabled="true" jndi-name="jms/myQueue" object-type="user" res-
adapter="jmsra" res-type="javax.jms.Queue">
<description/>
<property name="Name" value="myQueue"/>
</admin-object-resource>
<connector-resource enabled="true" jndi-name="jms/myQueueConnectionFactory" object-
type="user" pool-name="jms/myQueueConnectionFactory">
<description/>
</connector-resource >
<connector-connection-pool associate-with-thread="false" connection-creation-retry-
attempts="0" connection-creation-retry-interval-in-seconds="10" connection-definition-
name="javax. jms.QueueConnectionFactory" connection-leak-reclaim="false" connection-leak-
timeout-in-seconds="0" fail-all-connections="false" idle-timeout-in-seconds="300" is-
connection-validation-required="false" lazy-connection-association="false" lazy-connection-
enlistment="false" match-connections="true" max-connection-usage-count="0" max-pool-
size="32" max-wait-time-in-millis="60000" name="jms/myQueueConnectionFactory" ping="false"
pool-resize-quantity="2" pooling="true" resource-adapter-name="jmsra" steady-pool-size="8"
validate-atmost-once-period-in-seconds="0"/>

</resources>
25
1 | . 7
W New Project x|
Steps Choose Project
1. Choose Project Categories: Projects:
2] Java Enterprise Application r
(O] JavaFx A Enterprise Application with Existing Sources
3] JavaWeb & EJB Module
-1 TavaEE @ EIB Module with Elsun Sources
-] Maven e pplication Client
Enterprise Application Client with Existing Sources
+[C1 MetBeans Modules &
[samples
Description:
Creates a new Enterprise application dlient preject in a standard IDE project. Standard
projects use an IDE-generated Ant build script to build, run, and debug the praject.
< Back | Mext > I Finish’ Cancel Help
26

13

Enterprise Application Client (2)

Make sure JMSProject is selected (Add to Enterprise Application

option)

., MsProject ISnume Hstory | [@ w-ﬁ‘-"a%g'lg b b %

2o dlv 8|2

A Java EE Modules

@ msprojectejb jar
23 Configuration Files
“.[8) MANIFEST.MF

{38 Server Resources

9 New Enterprise Application

1 <?xml wersion="1.0" encoding="UTF-8"7>
2 <IDOCTYPE resources PUBLIC " —//GlassFish.ora/ /D70 GlassFish spplication Server 3.1

Steps Server and Settings

Fes

x|

[glassfish-resources.xml
by IMSProject-eib 1. Choose Project
2. Name and Location
Source Packa
g ouree Packages 3. Serverand Settings
O3l Enterprise Beans
C8l configuration Files

Server Resources

roject - Navigator X

Add to Enterprise Application:

Libraries Server:

Java EE Version: |JavaEES *

[GiassFish server 3+

[~ Enable Contexts and Dependency Injection
[Set Source Level to 6

Recommendation: Source Level 6 should be used in Java EE 6 projects.

=] add..

Main Class: fimsclient. Main

<Back nest= [Fnish | cancel Help
Right Click Main, select Insert Code then Select Send JMS
Message
-&# MsClient Source | Hstory | B-0l-a % SR & & %]
B Source Packages
=[] jmscient 1/
: @%‘jaua 2 + To change this template, choose Taols | Templates
(3 TestPackages B + and open the template in the editor.
(8 Libraries 4 =/
{3 TestLibraries 5 package jmsclient:
(45 Configuration Files 6
i [8] MANIFEST.MF E ses
[application-ciient.xml 5 .
‘(1§ Server Resources .
. 9 + Bauthor ajung
A IMSProject 0
() Java EE Modules . .
! Configuration Files 11 public class Main {
4133 Server Resources 12
: dlassfish-resources.ml 13
% IMSProject-ejb 14 + @param args the command |ine arguments
-1 Source Packages 15
(& Libraries 16 public static void main(String[] args) {
Eerrse Seens 17 /4 TODO sode application logic here
[tion Fi
e i
19 Logger... =
20} toString()...
21 Override Method. ..

Add Property...

Call Enterprise Bean...
1ain - Navigator X = Use Database
mbers View =l . Send E-mail... |28
& van | search Resuts | Actiontems | output x

14

Enterprise Application Client (4)

+ To change this template, choose Tools | Templates
* and open the template in the editar.

Dackage imsclient;

" Project Destinations; I LI Add...
public class Main { % Server Destinations: [ims/myQueue =1
" Message Driven Bean: I LI
* @param args the Destiaton: |
Connection Factory: [ims fmyQueveConnectionFactory

DU|J|IC static void1
/7 1000 code apj

£

Service Locator Strategy

|

2

3

4

5

]

7 e
8 -
9 + Bauthor gjung
0 =
1

2

3
.

5

]

7

8

9

& Generate Inline Lookup Code

" Existing Class

oK | cancel Help

I = —rreE

igarch Results Action ttems OQutpar

29

Enterprise Application Client (5)

protected Object clonel) throws CloneMotSupportedExcention

Creates and returns a copy of this object. The precise meaning of "copy" may
depend on the class of the object. The general intent is that, for any object x, the
expression:

x.clone(} !=x
will be true, and that the expression:
%.clonel() getClass() == = .getClass()

will be true, but these are not absolute requirements. While it is typically the case
that:

worlnne() panalslx =l

0

createJWSHessageFor jmsMyQueue(Session sesszion, Object messageData) Message

Source History | iG]
(23 public class Mal

24 BResource (mal

2h private stat|

26 @BResource(nal

27 private stat

28

29 few

SDT + Mparam g

a1 «/

32 public stati

33 S T0D0

34 new Main

ki ¥

36

7 private Mes

38 S T0D0

39 TextMes:

40 tm. setTe

41 return tj

a2 h

43

44 private void
Connect i
Session

Action ltes

@ equalsiObject obj) baolean I
% finalize() void
© getClass() Class<?>
© hashCode() int
Qnotityl) void
notifydl i) void
d. Tolyi) (Object Data) woid
© toStrina() String
©waitl) void
Owaitllong timsout) vaid

©uwait(long timeout, int nanos) void =

Instance Membars; Prass 'Cirl+ SPACE’ Again for Al Ttems|——

=ssi

30

15

Message Driven Bean (1)

g vian Java

[TestPackages

& Libraries

(& Test Libraries

C4 Configuration File:

Qg Server Resources

A JIMSProject

[Java EE Modules
i % IMSProject-ej
i@® IMSClient.jar

(15 Configuration File:
i..[8] MANIFEST.MF

20 *
pal + Bauthor gjung

Steps

1. Choose File Type
2 ..

Choose File Type

Project: r@ IMSProject-eib

Categories:

File Types:

Bean Validation
Enterprise JavaBeans
Contexts and Dependency Inj

Session Bean
Timer Session Bean

Service Lacator

EEEEEEE

[=“38 Server Resources Java
vt Objects Caching Service Locator
a\.aa eans Dojec Session Beans For Entity Classes
Unit Tests Standard Deployment Descriptor
Source Packages Persistence
Libraries Web Services
Enterprise Beans XML
Configuration File: GlassFish
Server Resources |
C
Desdiption:
Creates a Message-Driven Enterprise JavaBean (EJ8) component based on the =t
Java Messaging System (JMS). A message-driven bean is typically used to
MSProject-gjb - Navigator X facilitate asynchronous transactional communication. A message-driven bean
= reacts tn messaaes and tvnically delenates the actial husiness lonic to session |
<bock [met> || Fnsh Cncel | b |
31
T s o s
x
File:
B Steps Hame and Location
ces
1. ChooseFieType EJ8 Name: [MessageReceiver
les 2. Name and Location
e
far Project: [IMSProject-ejb
Fille: Location: [source Packages =1
“MF
s Package: [mdb =l
eso
ses " Project Destinations: I ;I Add,
8- [ims/myqueue =1
ans
File:
“ces
C
arx
<Back nexis [Fnsh | cancel Help
T
32

16

Message Driven Bean (3)

@ mverride

30 public void onMessage(Message nessage] {

il TextMessage textMessage = (TextMessage) nessage:

a» try 4

3 Lagger. getlogger(MaszagePeceiver.class. gethanel()). log{Level . JNFO,

3 new StringBuilder("Received the following Message® “).aprend(

35 textMessage. getText (). toString());

i t catch (JHSException ex) {

37 Lagaer . getLogger(MeszagePeceiver.class. gethanel)) . logl

b Level,SE sonull, exd;

39 r

An 1

Search Resuls | Action tems | Output X | =

| GlassFish Server 3+ x | JuSProject run) x |

'Y INFO: ACDEPL10Z: Java Web Start services started for the app client JWSProject AMSClient,jar {contextRoot /'JMSPrUJeCl/JMSC;I
INFO: JHSProject was successful ly deployed in 355 milliseconds,

BB || InFD: ACDEPL104: Jove Web Stert services stopped for the app client JHSProject /JMSClient jar

= INFO: JM3013: end point determing destionation name, Res name: javax.ms.Queus, JNDI name: MessageReceiver descriptor name
INFO: ACOEPL103: Java Web Start services started for the app client JMSProject /JMSClient,jar {contextRoot: /JMSProject /JMSC

@ INFO: JMSProject was successful ly deployed in 460 milliseconds,

INFO: Received the following Message: | am sending a new message
INFO: ACDEPL104: Java Web Start services stopped for the app client JWSProject AIMSClient ,jar

INFO: JHSI13: end point determine destionation name, Res nams: javex, jms.Quese, JNDI name: MesssgeReceiwer descriptor name
INFO: ACDEPL10Z: Java Web Start services started for the app client JWSProject AIMSClient,jer (contextRoot: /JMSProject /JMSC
INFO: JHSProject was successful ly deployed in 491 milliseconds,

INFO: Received the following Hessage: | am sending a new message.........

1-1

: . -

33

17

