
1

1

CMP 436/774

Introduction to

JMS (Java Message Service)

MDB (Message Driven Bean)
 Refereces

 Main Reference R1 (chapters 22, 25, 47, 48)

Fall 2012

Department of Mathematics

and Computer Science

Lehman College, CUNY

What Is Messaging? (1)

 Messaging is a method of communication between software

components or applications.

 A messaging system is a peer-to-peer facility:

 A messaging client can send messages to, and receive messages
from, any other client.

 Each client connects to a messaging agent that provides facilities for
creating, sending, receiving, and reading messages.

 Messaging enables distributed communication that is loosely coupled.

A component sends a message to a destination, and the recipient can

retrieve the message from the destination.

 The sender and the receiver do not have to be available at the
same time in order to communicate. In fact, the sender does not
need to know anything about the receiver; nor does the receiver
need to know anything about the sender.

 The sender and the receiver need to know only which message
format and which destination to use.

2

2

What Is Messaging? (2)

 Messaging differs from tightly coupled technologies, such as Remote

Method Invocation (RMI), which require an application to know a remote

application’s methods.

 Messaging also differs from electronic mail (email), which is a method

of communication between people or between software applications

and people. Messaging is used for communication between software

applications or software components.

3

JMS API

 The Java Message Service is a Java API that allows applications to

create, send, receive, and read messages.

 JMS API defines a common set of interfaces and associated
semantics that allow programs written in the Java programming
language to communicate with other messaging implementations.

 It also strives to maximize the portability of JMS applications
across JMS providers in the same messaging domain.

 The JMS API enables communication that is not only loosely coupled

but also

 Asynchronous: A JMS provider can deliver messages to a client as
they arrive; a client does not have to request messages in order
to receive them.

 Reliable: The JMS API can ensure that a message is delivered
once and only once. Lower levels of reliability are available for
applications that can afford to miss messages or to receive
duplicate messages.

4

3

JMS API Work with the Java EE Platform

 When the JMS API was introduced in 1998, its most important purpose

was to allow Java applications to access existing messaging-oriented

middleware (MOM) systems, such as MQSeries from IBM. Since that

time, many vendors have adopted and implemented the JMS API, so a

JMS product can now provide a complete messaging capability for an

enterprise.

 Beginning with the 1.3 release of the Java EE platform, the JMS API

has been an integral part of the platform, and application developers

can use messaging with Java EE components.

5

Message Driven Bean (MDB)

 A message-driven bean is an enterprise bean that allows Java EE

applications to process messages asynchronously.

 Message-driven beans can implement any messaging type. Most

commonly, they implement the Java Message Service (JMS)

technology.

 This type of bean normally acts as a JMS message listener, which
is similar to an event listener but receives JMS messages instead
of events.

 The messages can be sent by any Java EE component
(an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use
Java EE technology.

 Message-driven beans can process JMS messages or other kinds
of messages.

6

4

JMS Application Architecture

 A typical JMS application is composed of the following parts.

 A JMS provider is a messaging system that implements the JMS
interfaces and provides administrative and control features. An
implementation of the Java EE platform includes a JMS provider.

 JMS clients are the programs or components, written in the Java
programming language, that produce and consume messages.
Any Java EE application component can act as a JMS client.

 Messages are the objects that communicate information between
JMS clients.

 Administered objects are preconfigured JMS objects created by an
administrator for the use of clients. The two kinds of JMS
administered objects are destinations and connection factories,
which are described in JMS Administered Objects.

7

JMS Queue and Connection Factory

 The following figure illustrates the way these parts interact.

 Administrative tools allow you to bind destinations and connection
factories into a JNDI namespace.

 A JMS client can then use resource injection to access the
administered objects in the namespace and then establish a
logical connection to the same objects through the JMS provider.

8

5

Messaging Domains

 Before the JMS API existed, most messaging products supported either

the point-to-point or the publish/subscribe approach to messaging. The

JMS specification provides a separate domain for each approach and

defines compliance for each domain. A stand-alone JMS provider can

implement one or both domains. A Java EE provider must implement

both domains.

 In fact, most implementations of the JMS API support both the point-to-

point and the publish/subscribe domains, and some JMS clients

combine the use of both domains in a single application. In this way, the

JMS API has extended the power and flexibility of messaging products.

 JMS provides common interfaces that enable you to use the JMS API in

a way that is not specific to either domain.

9

Point to Point (PTP) Messaging Domain

 A point-to-point (PTP) product or application is built on the concept of

message queues, senders, and receivers. Each message is addressed

to a specific queue, and receiving clients extract messages from the

queues established to hold their messages. Queues retain all

messages sent to them until the messages are consumed or until the

messages expire.

10

6

Publish/Subscribe Messaging Domain

 In a publish/subscribe (pub/sub) product or application, clients

address messages to a topic, which functions somewhat like a bulletin

board.

 Publishers and subscribers are generally anonymous and can
dynamically publish or subscribe to the content hierarchy.

 The system takes care of distributing the messages arriving from
a topic’s multiple publishers to its multiple subscribers.

 Topics retain messages only as long as it takes to distribute them
to current subscribers.

11

Programming with the Common Interfaces

 JMS API allows you to use the same code to send and receive

messages under either the PTP or the pub/sub domain.

 The destinations that you use remain domain-specific, and the behavior

of the application will depend in part on whether you are using a queue

or a topic.

 However, the code itself can be common to both domains, making
your applications flexible and reusable.

12

7

Messaging Consumption

 Messaging products are inherently asynchronous: There is no

fundamental timing dependency between the production and the

consumption of a message.

 Messages can be consumed in either of two ways:

 Synchronously: A subscriber or a receiver explicitly fetches the
message from the destination by calling the receive method.
The receive method can block until a message arrives or can time
out if a message does not arrive within a specified time limit.

 Asynchronously: A client can register a message listener with a
consumer. A message listener is similar to an event listener.
Whenever a message arrives at the destination, the JMS provider
delivers the message by calling the listener’s onMessage method,
which acts on the contents of the message.

13

JMS API Programming Model

 The basic building blocks of a JMS application consist of

 Administered objects: connection factories and destinations

 Connections

 Sessions

 Message producers

 Message consumers

 Messages

14

8

Simple JMS Project (JMSProject)

 JMSProject

 The simple message application has the following components:

 JMSClient: An application client that sends a simple message to a
queue

 Simple MDB EJB MessageReceiver.java : A message-driven bean
that asynchronously receives and processes the message that are
sent to the queue

 Message queue myQueue is created as a JMS resource by
JMSProject.

15

JMS Project –Enterprise App(1)

16

9

JMS Project –Enterprise App (2)

17

Creating Message Queue

18

10

Enter JNDI name

19

JMS Property

20

11

glassfish-resources.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE resources PUBLIC "-//GlassFish.org//DTD GlassFish Application Server 3.1
Resource Definitions//EN" "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">

<resources>

 <admin-object-resource enabled="true" jndi-name="jms/myQueue" object-type="user"
res-adapter="jmsra" res-type="javax.jms.Queue">

 <description/>

 <property name="Name" value="myQueue"/>

 </admin-object-resource>

</resources>

21

Create JMS Connection Factory(1)

22

12

Create JMS Connection Factory(2)

23

Create JMS Connection Factory(3)

 Do not enter properties. Click Finish

24

13

glassfish-resources.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE resources PUBLIC "-//GlassFish.org//DTD GlassFish Application Server 3.1
Resource Definitions//EN" "http://glassfish.org/dtds/glassfish-resources_1_5.dtd">

<resources>

 <admin-object-resource enabled="true" jndi-name="jms/myQueue" object-type="user" res-
adapter="jmsra" res-type="javax.jms.Queue">

 <description/>

 <property name="Name" value="myQueue"/>

 </admin-object-resource>

 <connector-resource enabled="true" jndi-name="jms/myQueueConnectionFactory" object-
type="user" pool-name="jms/myQueueConnectionFactory">

 <description/>

 </connector-resource>

 <connector-connection-pool associate-with-thread="false" connection-creation-retry-
attempts="0" connection-creation-retry-interval-in-seconds="10" connection-definition-
name="javax.jms.QueueConnectionFactory" connection-leak-reclaim="false" connection-leak-
timeout-in-seconds="0" fail-all-connections="false" idle-timeout-in-seconds="300" is-
connection-validation-required="false" lazy-connection-association="false" lazy-connection-
enlistment="false" match-connections="true" max-connection-usage-count="0" max-pool-
size="32" max-wait-time-in-millis="60000" name="jms/myQueueConnectionFactory" ping="false"
pool-resize-quantity="2" pooling="true" resource-adapter-name="jmsra" steady-pool-size="8"
validate-atmost-once-period-in-seconds="0"/>

</resources>

 25

Enterprise Application Client (1)

26

14

Enterprise Application Client (2)

 Make sure JMSProject is selected (Add to Enterprise Application

option)

27

Enterprise Application Client (3)

 Right Click Main, select Insert Code then Select Send JMS

Message

28

15

Enterprise Application Client (4)

29

Enterprise Application Client (5)

30

16

Message Driven Bean (1)

31

Message Driven Bean (2)

32

17

Message Driven Bean (3)

33

