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1. Introduction  
 

1.1. Multithreading 

 

Multithreading refers to the ability of an OS to support multiple, concurrent paths of execution within a 

single process. To distinguish processes from threads, the unit of scheduling and dispatching is usually 

referred to as a thread (or termed lightweight process), while the unit of resource ownership is usually 

referred to as a process (or task) 

 

In a multithreaded environment, a process is defined as the unit of resource allocation and a unit of 

protection. The following are associated with processes (process context): 

 

• A virtual address space that holds the process image (code, data, stack, heap) 

• Protected access to processors and possibly to other processes (for inter-process communications), 

files, and I/O resources (devices and channels such as DMAs) 

 

Within a process, there may be one or more threads, each with the following (thread context) 

• A thread execution state (Running, Ready, etc.) 

• A saved thread context when not running; one way to view a thread is as an independent program 

counter operating within a process 

• An execution stack 

• Some per-thread static storage for local variables 

• Access to the memory and resources of its process, shared with all other threads in that process 

(global data) 
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Figure 1.1: Process vs. Thread 

 

In a multithreaded environment, there is still a single process control block and user address space 

associated with the process, but now there are separate stacks for each thread, as well as a separate control 

block for each thread containing register values, priority, and other thread-related state information. 

 

In an OS that supports threads, scheduling and dispatching is done on a thread basis; hence, most of the 

state information dealing with execution is maintained in thread-level data structures. There are, however, 

several actions that affect all of the threads in a process and that the OS must manage at the process level. 

For example, suspension involves swapping the address space of one process out of main memory to 

make room for the address space of another process. Because all threads in a process share the same 

address space, all threads are suspended at the same time. Similarly, termination of a process terminates 

all threads within that process. 

 

1.2 General Thread States 

 

 As with processes, the key states for a thread are Running, Ready, and Blocked. Generally, it does not 

make sense to associate suspend states with threads because such states are process-level concepts. In 

particular, if a process is swapped out, all of its threads are necessarily swapped out because they all share 

the address space of the process (Note, however, some thread implementation may use the term 

suspended).  

 

There are four basic thread operations associated with a change in thread state: 

• Spawn (new): Typically, when a new process is spawned, a thread for that process is also spawned. 

Subsequently, a thread within a process may spawn another thread within the same process, providing 

an instruction pointer and arguments for the new thread. The new thread is provided with its own 

register context and stack space and placed on the ready queue. 

• Block: When a thread needs to wait for an event, it will block (saving its user registers, program 

counter, and stack pointers). The processor may now turn to the execution of another ready thread in 

the same or a different process. 

• Unblock: When the event for which a thread is blocked occurs, the thread is moved to the Ready 

queue. 

• Finish: When a thread completes, its register context and stacks are de-allocated. 

 

1.3. Example showing benefits of multithreading 
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Example: Single threaded RPC calls vs. Multithreaded RPC Calls 

 
Figure 1.2: Single threaded RPC calls 

 

An application performs two remote procedure calls (RPCs) 2 to two different hosts to obtain a combined 

result. In a single-threaded program, the results are obtained in sequence, so the program has to wait for a 

response from each server in turn.  Rewriting the program to use a separate thread for each RPC results in 

a substantial speedup. Note that if this program operates on a uniprocessor, the requests must be generated 

sequentially and the results processed in sequence; however, the program waits concurrently for the two 

replies. In SMP, the thread can run simultaneously. 

 

 

 
Figure 1.3: Multi-threaded RPC calls 
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Figure 1.4: Interleaved executions of multi-threads 

 

On a uniprocessor, multiprogramming enables the interleaving of multiple threads within multiple 

processes. In the example shown above, three threads in two processes are interleaved on the processor. 

Execution passes from one thread to another either when the currently running thread is blocked or when 

its time slice is exhausted. 

 

1.4. Thread Synchronization 

 

All of the threads of a process share the same address space and other resources, such as open files. Any 

alteration of a resource by one thread affects the environment of the other threads in the same process. It 

is therefore necessary to synchronize the activities of the various threads so that they do not interfere with 

each other or corrupt data structures. For example, if two threads each try to add an element to a doubly 

linked list at the same time, one element may be lost or the list may end up malformed. The issues raised 

and the techniques used in the synchronization of threads are, in general, the same as for the 

synchronization of processes.  

 

2. Thread Implementation Approaches 

 

There are two broad categories of thread implementation: user-level threads (ULTs) and kernel-level 

threads (KLTs) (known as kernel-supported threads or lightweight processes). 

 

2.1 Pure User Level Threads (Many to One (M:1) model for CPU scheduling) 
 

 
 

Figure 2.1: Pure user level threads (many to one mapping model) 

An M:1 model implies that all application-level threads map to a single kernel-level scheduled entity; the 

kernel has no knowledge of the application threads. With this approach, context switching can be done 

very quickly and, in addition, it can be implemented even on simple kernels which do not support 

threading. One of the major drawbacks however is that it cannot benefit from the hardware acceleration 



5 

 

on multi-core processors or multi-processor computers: there is never more than one thread being 

scheduled at the same time. It is used by GNU Portable Threads and Solaris Green Thread. 

In a pure ULT facility, all of the work of thread management is done in user address space (by application 

and threads library) and the kernel is not aware of the existence of threads. Any application can be 

programmed to be multithreaded by using a threads library, which is a package of routines for ULT 

management. The threads library contains code for creating and destroying threads, for passing messages 

and data between threads, for scheduling thread execution, and for saving and restoring thread contexts. 

 

By default, an application begins with a single thread and begins running in that thread. This application 

and its thread are allocated to a single process managed by the kernel. At any time that the application is 

running (the process is in the Running state), the application may spawn a new thread to run within the 

same process. Spawning is done by invoking the spawn utility in the threads library. Control is passed to 

that utility by a function call. The threads library creates a data structure (in user address space) for the 

new thread and then passes control to one of the threads within this process that is in the Ready state, 

using some scheduling algorithm. When control is passed to the library, the context of the current thread 

is saved, and when control is passed from the library to a thread, the context of that thread is restored. The 

context essentially consists of the contents of user registers, the program counter, and stack pointers. 

 

 
Figure 2.2: Relationships between ULT States and Process States 

 

All the activities for thread management take place in user space and within a single process. The kernel 

is unaware of this activity. The kernel continues to schedule the process as a unit and assigns a single 

execution state (Ready, Running, Blocked, etc.) to that process.  

 

The following examples should clarify the relationship between thread scheduling and process scheduling 

(refer to Figure 2.2). Suppose that process B is executing in its thread 2; the states of the process and two 

ULTs that are part of the process are shown above. Each of the following is a possible occurrence: 
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1. The application executing in thread 2 makes a system call that blocks B: For example, an I/O call 

is made. This causes control to transfer to the kernel. The kernel invokes the I/O action, places 

process B in the Blocked state, and switches to another process. Meanwhile, according to the data 

structure maintained by the threads library, thread 2 of process B is still in the Running state. It is 

important to note that thread 2 is not actually running in the sense of being executed on a 

processor; but it is perceived as being in the Running state by the threads library (see figure (b)). 

 

2. A clock interrupt passes control to the kernel and the kernel determines that the currently running 

process (B) has exhausted its time slice. The kernel places process B in the Ready state and 

switches to another process. Meanwhile, according to the data structure maintained by the threads 

library, thread 2 of process B is still in the Running state (see figure (c)). 

 

3. Thread 2 has reached a point where it needs some action performed by thread: Thread 2 enters a 

Blocked state, and thread 1 makes transition from Ready to Running. The process itself remains 

in the Running state (see figure (d)). When the kernel switches control back to process B 

execution resumes in thread 2. Also note that a process can be interrupted, either by exhausting its 

time slice or by being preempted by a higher priority process, while it is executing code in the 

threads library. Thus, a process may be in the midst of a thread switch from one thread to another 

when interrupted. When that process is resumed, execution continues within the threads library, 

which completes the thread switch and transfers control to another thread within that process. 

 

There are a number of advantages to the use of ULTs instead of KLTs, including the following: 

1. Thread switching does not require kernel mode privileges because all of the thread management 

data structures are within the user address space of a single process. Therefore, the process does 

not switch to the kernel mode to do thread management. This saves the overhead of two mode 

switches (user to kernel; kernel back to user). 

2. Scheduling can be application specific. One application may benefit most from a simple round-

robin scheduling algorithm, while another might benefit from a priority-based scheduling 

algorithm. The scheduling algorithm can be tailored to the application without disturbing the 

underlying OS scheduler. 

3. ULTs can run on any OS. No changes are required to the underlying kernel: to support ULTs. 

The threads library is a set of application-level functions shared by all applications.  

 

There are two distinct disadvantages of ULTs compared to KLTs: 

1. In a typical OS, many system calls are blocking. As a result, when a ULT executes a system call, 

not only is that thread blocked, but also all of the threads within the process are blocked. 

2. In a pure ULT strategy, a multithreaded application cannot take advantage of multiprocessing. A 

kernel assigns one process to only one processor at a time. Therefore, only a single thread within 

a process can execute at a time. In effect, we have application-level multiprogramming within a 

single process. While this multiprogramming can result in a significant speedup of the application, 

there are applications that would benefit from the ability to execute portions of code 

simultaneously. 

 

There are ways to work around these two problems. For example, both problems can be overcome by 

writing an application as multiple processes rather than multiple threads. But this approach eliminates the 

main advantage of threads: Each switch becomes a process switch rather than a thread switch, resulting in 

much greater overhead. Another way to overcome the problem of blocking threads is to use a technique 

referred to as jacketing . The purpose of jacketing is to convert a blocking system call into a non-blocking 

system call. For example, instead of directly calling a system I/O routine, a thread calls an application-
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level I/O jacket routine. Within this jacket routine is code that checks to determine if the I/O device is 

busy. If it is, the thread enters the Blocked state and passes control (through the threads library) to another 

thread. When this thread later is given control again, the jacket routine checks the I/O device again. 

 

2.2 Summary on ULTs (M:1 model) 

 

User-level threads (ULT): Many-to-one thread mapping 

• Implemented by user-level runtime libraries 

• Create, destroy, schedule, synchronize threads at user-level 

• Saving and restoring thread contexts 

• OS is not aware of user-level threads 

• OS thinks each process contains only a single thread of control 

Advantages 

• Does not require OS support; Portable 

o Can run on any OS 

• Can tune scheduling policy to meet application demands 

o You can create several scheduling policies in your thread library 

o Use one that is appropriate for your users (e.g. FIFO, SJF), rather than using a general 

purpose scheduler 

o Unfortunately: cooperative scheduling (non-preemptive). Why? 

• Lower overhead thread operations since no system calls 

o Thread switching does not require kernel mode 

o All thread management data structures in user address space 

 

Disadvantages 

• Cannot utilize multiprocessors 

o OS assigns one process to only one processor at a time 

o In ULT scheme, OS only manages processes 

• Entire process blocks when one thread blocks 

o Your thread library does not know if a read file operation will block (perform I/O to the 

disk) or not (read from memory).  

o Reason: OS does not inform the application that the system call is blocked 

o Hence, the thread library cannot switch running another thread 

o (e.g.,) 1 process in the system created 10 threads in the process, and thread-1 calls 

read(file), and file is not in memory. When thread-1 is waiting, the thread library cannot 

switch to another thread. CPU is underutilized! 

 

2.3 Pure Kernel-level Threads (1 to 1 Model for CPU scheduling) 

 



8 

 

 
 

Figure 2.3: Pure kernel level threads (one to one mapping) 

 

 

In 1:1 (Pure Kernel-level threading) model, threads are created by the user. Threads are in 1-1 

correspondence with schedulable entities in the kernel. This is the simplest possible threading 

implementation. Win32 used this approach from the start Windows NT/XP/2000. Windows 7 is based on 

the same model (with better processor affinity for better utilizing SMP architecture). On Linux, the usual 

C library implements this approach (via the NPTL or older LinuxThreads). The same approach is used by 

Solaris (from 9 and later versions) and FreeBSD. 

 

In a pure KLT facility, all of the work of thread management is done by the kernel. There is no thread 

management code in the application level, simply an application programming interface (API) to the 

kernel thread facility. Windows is an example of this approach. The kernel maintains context information 

for the process as a whole and for individual threads within the process. 

 

Scheduling by the kernel is done on a thread basis. This approach overcomes the two principal drawbacks 

of the ULT approach. First, the kernel can simultaneously schedule multiple threads from the same 

process on multiple processors. Second, if one thread in a process is blocked, the kernel can schedule 

another thread of the same process. Another advantage of the KLT approach is that kernel routines 

themselves can be multithreaded. 

 

The principal disadvantage of the KLT approach compared to the ULT approach is that the transfer of 

control from one thread to another within the same process requires a mode switch to the kernel.  

 

Uniprocessor DEC-VAX thread performance: 

• Overhead for creating thread: ULT (37), KLT(948), Process(11,300) (Note: number represents 

unit time) 

• Overhead for handling wait signal: ULT (37), KLT(441), Proces (1,840) 

 

2.4. Summary on KLTs (1:1 model) 

 

Kernel-level threads (KLT): One-to-one thread mapping 
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• OS provides each user-level thread with a kernel thread (e.g., Linux pthread implementation) 

• Each kernel thread scheduled independently 

• Thread operations (creation, scheduling, synchronization) performed by OS 

 

Advantages 

• Each kernel-level thread can run in parallel on a multiprocessor 

• When one thread blocks, other threads from process can be scheduled 

Disadvantages 

• Higher overhead for thread operations (10-30x slower) 

o Requires a mode switch to the kernel 

o (e.g., ) running a user code, time-slice expires, change to kernel mode to perform thread 

scheduling 

• OS must scale well with increasing number of threads 

 

 

2.5. Combined Approaches (M:N Threading Model; or Hybrid Threading Model (M:N) && (1:1)) 

M:N maps some M number of application threads onto some N number of kernel entities, or "virtual 

processors." This is a compromise between kernel-level ("1:1") and user-level ("N:1") threading. In 

general, "M:N" threading systems are more complex to implement than either kernel or user threads, 

because changes to both kernel and user-space code are required. In the M:N implementation, the 

threading library is responsible for scheduling user threads on the available schedulable entities; this 

makes context switching of threads very fast, as it avoids system calls. However, this increases 

complexity and the likelihood of priority inversion as well as suboptimal scheduling without extensive 

(and expensive) coordination between the use-space thread scheduler and the kernel scheduler. 

 

 
Figure 2.4: Combined Approach (hybrid many-to-many and one-to-one mappings) 
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Figure 2.5: Process Structure in Traditional UNIX and Solaris 

 

Some operating systems provide a combined ULT/ KLT facility ( Figure 3 ). In a combined system, thread 

creation is done completely in user space, as is the bulk of the scheduling and synchronization of threads 

within an application. The multiple ULTs from a single application are mapped onto some (smaller or 

equal) number of KLTs. The programmer may adjust the number of KLTs for a particular application and 

processor to achieve the best overall results. In a combined approach, multiple threads within the same 

application can run in parallel on multiple processors, and a blocking system call need not block the entire 

process. If properly designed, this approach should combine the advantages of the pure ULT and KLT 

approaches while minimizing the disadvantages. Solaris is a good example of an OS using this combined 

approach. The current Solaris version limits the ULT/KLT relationship to be one-to-one. 

 

2.6. Summary on Combined Approach (M:N thread Model;  M:N && 1:1 hybrid Model) 

• Application creates m threads 

• OS provides pool of n kernel threads 

• Few user-level threads mapped to each kernel-level thread 

Advantages 

• Can get best of user-level and kernel-level implementations 

• Works well given many short-lived user threads mapped to constant-size pool 

Disadvantages 

• Complicated (OS must export interfaces about the processors) 

• How to select mappings? 

• Users are lazy 

• How to determine the best number of kernel threads? 

• User specified 

• OS dynamically adjusts number depending on system load 

 

 

3. Relationship between Threads and Processes 
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Figure 3.1: Relationship between threads and processes 

 

The concepts of resource allocation and dispatching unit have traditionally been embodied in the single 

concept of the process—that is, as a 1:1 relationship between threads and processes. Recently, there has 

been much interest in providing for multiple threads within a single process, which is a many-to one 

relationship. However, as Figure 3.1 shows, the other two combinations have also been investigated, 

namely, a many-to-many relationship and a one-to-many relationship.  

 

The idea of having a many-to-many relationship between threads and processes has been explored in the 

experimental operating system TRIX. In TRIX, there are the concepts of domain and thread. A domain is 

a static entity, consisting of an address space and “ports” through which messages may be sent and 

received. A thread is a single execution path, with an execution stack, processor state, and scheduling 

information. 

 

As with the multithreading approaches discussed so far, multiple threads may execute in a single domain, 

providing the efficiency gains discussed earlier. However, it is also possible for a single user activity, or 

application, to be performed in multiple domains. In this case, a thread exists that can move from one 

domain to another. 

 

4. Case Studies 

 

Processes supported by different OS environments differ in a number of ways, including the following: 

• How processes are named 

• Whether threads are provided within processes 

• How processes are represented 

• How process resources are protected 

• What mechanisms are used for inter-process communication and synchronization 

• How processes are related to each other 

 

4.1. Windows Thread Implementation 
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The native process structures and services provided by the Windows Kernel are relatively simple and 

general purpose, allowing each OS subsystem to emulate a particular process structure and functionality. 

Important characteristics of Windows processes are the following: 

 

• Windows processes are implemented as objects. 

• A process can be created as new process, or as a copy of an existing process. 

• An executable process may contain one or more threads. 

• Both process and thread objects have built-in synchronization capabilities. 

 

4.1.1. Windows Kernels and APIs 

As with most operating systems, Windows and UNIX both have kernels. The kernel provides the base 

functionality of the operating system. The major functionality of the kernel includes process management, 

memory management, thread management, scheduling, I/O management, and power management. It runs 

on the 7th major version revision of the NT kernel. XP, Vista, Windows 7 all run on the NT 

kernel (for example, Windows 7 has the version number NT 6.1). See more details about 

Windows History (http://en.wikipedia.org/wiki/History_of_Microsoft_Windows). 

In UNIX, the API functions are called system calls. System calls are a programming interface common to 

all implementations of UNIX. The kernel is a set of functions that are used by processes through system 

calls. 

Windows has an API for programming calls to the executive. In addition to this, each subsystem provides 

a higher-level API. This approach allows Windows operating systems to provide different APIs, some of 

which mimic the APIs provided by the kernels of other operating systems. The standard sub-system APIs 

include the Windows API (the Windows native API) and the POSIX API (the standards-based UNIX 

API). 

4.2.2 Windows Subsystems 

A subsystem is a portion of the Windows operating system that provides a service to application 

programs through a callable API. Subsystems come in two varieties, depending upon the application 

program that finally handles the request: 

 Environment subsystems. These subsystems run in a user mode and provide functions through a 

published API. The Windows API subsystem provides an API for operating system services, GUI 

capabilities, and functions to control all user input and output. The Win32 subsystem and POSIX 

subsystem are part of the environment subsystems and are described as follows: 

o Win32 subsystem. The Win32 environment subsystem allows applications to benefit 

from the complete power of the Windows family of operating systems. The Win32 

subsystem has a vast collection of functions, including those required for advanced 

operating systems, such as security, synchronization, virtual memory management, and 

threads. You can use Windows APIs to write 32-bit and 64-bit applications that run on all 

versions of Windows. 
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o POSIX subsystem and Windows Services for UNIX. To provide more comprehensive 

support for UNIX programs, Windows uses the Interix subsystem. Interix is a multiuser 

UNIX environment for a Windows-based computer. Interix conforms to the POSIX.1 and 

POSIX.2 standards. It provides all features of a traditional UNIX operating system, including 

pipes, hard links, symbolic links, UNIX networking, and UNIX graphical support through the 

X Windows system. It also includes case-sensitive file names, job control tools, compilation 

tools, and more than 300 UNIX commands and tools, such as KornShell, C Shell, awk, and vi. 

Because it is layered on top of the Windows kernel, the Interix subsystem is not an emulation. 

Instead, it is a native environment subsystem that integrates with the Windows kernel, just as 

the Win32 subsystem does. Shell scripts and other scripted applications that use UNIX and 

POSIX.2 tools run under Interix. 

o Interix is the name of an optional, full-featured POSIX and Unix environment 

subsystem for Microsoft's Windows NT-based operating systems. Interix is a 

component of the Services for Unix (SFU). The most recent releases of Interix, 5.2 

and 6.0, are components of the Windows Server 2003 R2, Windows Vista Enterprise 

and Ultimate editions and Windows Server 2008 under the name SUA (Subsystem for 

Unix-based Applications). Version 6.1 is included in Windows 7 (Enterprise and 

Ultimate) and Windows Server 2008 R2 (all editions). 

Integral subsystems. These subsystems perform key operating system functions and run as a part of the 

executive or kernel. Examples are the user-mode subsystems, Local Security Authority subsystem 

(LSASS), and Remote Procedure Call subsystem (RPCSS). 

 

4.2.3 Processes and Threads  

In addition to being a preemptive multitasking operating system, Windows is also multithreaded, meaning 

that more than one thread of execution (or thread ) can execute in a single task at once. 

A process comprises: 

 A private memory address space in which the process's code and data are stored. 

 An access token against which Windows makes security checks. 

 System resources such as files and Windows (represented as object handles). 

 At least one thread to execute the code. 

A thread comprises: 

 A processor state including the current instruction pointer. 

 A stack for use when running in user mode. 

 A stack for use when running in kernel mode. 

Since processes (not threads) own the access token, system resource handles, and address space, threads 

do NOT have their own address spaces nor do they have their own access token or system resource 

handles. Therefore, all of the threads in a process SHARE the same memory, access token, and system 

resources on a "per-process" rather than a "per-thread" basis. In a multithreaded program, the programmer 
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is responsible for making sure that the different threads don't interfere with each other by using these 

shared resources in a way that conflicts with another thread's use of the same resource. 

The Windows kernel-mode process and thread manager handles the execution of all threads in a process. 

4.2.4. Sharing a Single Address Space--Synchronizing Access To Data  

Running each process in its own address space had the advantage of reliability since no process can 

modify another process's memory. However, all of a process's threads run in the same address space and 

have unrestricted access to all of the same resources, including memory. While this makes it easy to share 

data among threads, it also makes it easy for threads to step on each other. As mentioned before, 

multithreaded programs must be specially programmed to ensure that threads don't step on each other. 

A section of code that modifies data structures shared by multiple threads is called a critical section . It is 

important than when a critical section is running in one thread that no other thread be able to access that 

data structure. Synchronization is necessary to ensure that only one thread can execute in a critical section 

at a time. This synchronization is accomplished through the use of some type of Windows NT 

synchronization object. Programs use Windows synchronization objects rather than writing their own 

synchronization both to save coding effort and for efficiency: when you wait on a Windows NT 

synchronization object, you do NOT use any CPU time testing the object to see when it's ready. 

4.2.5. The Life Cycle of a Thread  

Each thread has a dispatcher state that changes throughout its lifetime. 

The most important dispatcher states are: 

 Running: only one thread per processor can be running at any time. 

 Ready: threads that are in the Ready state may be scheduled for execution the next time the kernel 

dispatches a thread. Which Ready thread executes is determined by their priorities. 

 Waiting: threads that are waiting for some event to occur before they become Ready are said to 

be waiting. Examples of events include waiting for I/O, waiting for a message, and waiting for a 

synchronization object to become unlocked. 

Intel has revealed that Windows 7 features new and improved multi-threading, which will help to improve 

power consumption and battery life. Previous versions of Windows often swapped threads around cores, 

which prevented them from entering lower power states and caused cache thrashing as separate cores 

raced to grab data processed by others.  

 

The Windows 7 kernel changes this by improving thread affinity, locking threads to particular cores in 

order to allow unused CPU cores to enter low power C-states when they’re not in use – called thread 

parking - providing the CPU and motherboard supports this of course.  
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Figure 4.1: Windows Process and Its Resources 

Thread Information Block (TIB) is a data structure that stores info about the currently running thread. 

This structure is also known as the Thread Environment Block (TEB). 

 

 
 

Figure 4.2: Thread Environment Block 

 

Figure 4.1 illustrates the way in which a process relates to the resources it controls or uses. Each process 

is assigned a security access token, called the primary token of the process. When a user first logs on, 

Windows creates an access token that includes the security ID for the user. Every process that is created 

by or runs on behalf of this user has a copy of this access token. Windows uses the token to validate the 

user’s ability to access secured objects or to perform restricted functions on the system and on secured 
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objects. The access token controls whether the process can change its own attributes. In this case, the 

process does not have a handle opened to its access token. If the process attempts to open such a handle, 

the security system determines whether this is permitted and therefore whether the process may change its 

own attributes.  

 

Also related to the process is a series of blocks that define the virtual address space currently assigned to 

this process.  The process cannot directly modify these structures but must rely on the virtual memory 

manager, which provides a memory-allocation service for the process.  

Finally, the process includes an object table, with handles to other objects known to this process. Figure 

4.1 shows a single thread. In addition, the process has access to a file object and to a section object that 

defines a section of shared memory. 

 

Windows makes use of two types of process-related objects: processes and threads. A process is an entity 

corresponding to a user job or application that owns resources, such as memory and open files. A thread is 

a dispatchable unit of work that executes sequentially and is interruptible, so that the processor can turn to 

another thread. 

 

 
Figure 4.3: Windows Process and Thread Objects 

 

Each Windows process is represented by an object whose general structure is shown in Figure 4.3. Each 

process is defined by a number of attributes and encapsulates a number of actions, or services, that it may 

perform. A process will perform a service when called upon through a set of published interface methods. 

When Windows creates a new process, it uses the object class, or type, defined for the Windows process 

as a template to generate a new object instance. At the time of creation, attribute values are assigned. 

Figure 4.3(b) depicts the object structure for a thread object. 

 

A Windows process must contain at least one thread to execute. That thread may then create other threads. 

In a multiprocessor system, multiple threads from the same process may execute in parallel. Note that 
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some of the attributes of a thread resemble those of a process. In those cases, the thread attribute value is 

derived from the process attribute value. For example, the thread processor affinity is the set of processors 

in a multiprocessor system that may execute this thread; this set is equal to or a subset of the process 

processor affinity (we will study processor affinity in chapter 5 CPU Scheduling). 

 

Note that one of the attributes of a thread object is context, which contains the values of the processor 

registers when the thread last ran. This information enables threads to be suspended and resumed. 

Furthermore, it is possible to alter the behavior of a thread by altering its context while it is suspended. 

 

Windows supports concurrency among processes because threads in different processes may execute 

concurrently (appear to run at the same time). Moreover, multiple threads within the same process may be 

allocated to separate processors and execute simultaneously (actually run at the same time).  
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A multithreaded process achieves concurrency without the overhead of using multiple processes. Threads 

within the same process can exchange information through their common address space and have access 

to the shared resources of the process. Threads in different processes can exchange information through 

shared memory that has been set up between the two processes. Multithreaded process is an efficient 

means of implementing a server application. For example, one server process can service a number of 

clients concurrently. 

 

 
Figure 4.4: Windows Thread States 
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4.2.6. Early Window NT's Threads and Fibers 

A thread is Windows NT's smallest kernel-level object of execution.  Processes in NT can consist of one 

or more threads.  When a process is created, one thread is generated along with it, called the primary 

thread.  This object is then scheduled on a system wide basis by the kernel to execute on a 

processor.  After the primary thread has started, it can create other threads that share its address space and 

system resources but have independent contexts, which include execution stacks and thread specific 

data.  A thread can execute any part of a process' code, including a part currently being executed by 

another thread.  It is through threads, provided in the Win32 application programmer interface (API), that 

Windows NT allows programmers to exploit the benefits of concurrency and parallelism.  

 

 

Figure 4.5: Windows NT Architecture 
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A fiber is NT's smallest user-level object of execution.  It executes in the context of a thread and is 

unknown to the operating system kernel.  A thread can consist of one or more fibers as determined by the 

application programmer. Some literature assumes that there is a one-to-one mapping of user-level objects 

to kernel-level objects, this is inaccurate.  Fibers are not preemptively scheduled. You schedule a fiber by 

switching to it from another fiber. The system still schedules threads to run. When a thread running fibers 

is preempted, its currently running fiber is preempted but remains selected. The selected fiber runs when 

its thread runs. Windows NT does provide the means for many-to-many scheduling.  However, NT's 

design is poorly documented and the application programmer is responsible for the control of fibers such 

as allocating memory, scheduling them on threads and preemption.  An illustrative example of early NT's 

thread implementation approach is shown in Figure 4.6.  

 

 
 

Figure 4.6: Windows NT Fibers and Threads 

4.3.1.  Solaris's LWPs and Threads 

A light weight process (LWP) is Solaris's smallest kernel-level object of execution.  A Solaris process 

consists of one or more light weight processes. In Solaris, a thread is the smallest user-level object of 

execution.  Like Windows NT's fiber, they are not executable alone.  A Solaris thread must execute in the 

context of a light weight process.  Unlike NT's fibers, which are controlled by the application programmer, 

Solaris's threads are implemented and controlled by a system library.  The library controls the mapping 

and scheduling of threads onto LWPs automatically.  One or more threads can be mapped to a light 

weight process.  The mapping is determined by the library or the application programmer.  Since the 

threads execute in the context of a light weight process, the operating system kernel is unaware of their 

existence.  The kernel is only aware of the LWPs that threads execute on.  An illustrative example of this 

design is shown in. 
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Figure 4.5: Solaris LWPs 

 

Solaris makes use of four separate thread-related concepts: 

• Process: This is the normal UNIX process and includes the user’s address space, stack, and 

process control block. 

• User-level threads: Implemented through a threads library in the address space of a process, these 

are invisible to the OS. A user-level thread (ULT) is a user-created unit of execution within a 

process. 

• Lightweight processes: A lightweight process (LWP) can be viewed as a mapping between ULTs 

and kernel threads. Each LWP supports ULT and maps to one kernel thread. LWPs are scheduled 

by the kernel independently and may execute in parallel on multiprocessors. 

• Kernel threads: These are the fundamental entities that can be scheduled and dispatched to run on 

one of the system processors. 

 

Figure 4.5 illustrates the relationship among these four entities. Note that there is always exactly one 

kernel thread for each LWP.  

 

4.3.2. Is LWP in kernel address space or in user address space?  
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It depends on implementation:  

• User address space: An LWP is visible within a process to the application. Thus, LWP data 

structures exist within their respective process address space. At the same time, each LWP is 

bound to a single dispatchable kernel thread, and the data structure for that kernel thread is 

maintained within the kernel’s address space. 

• Kernel address space: ULT library makes system call to request LWPs from the kernel. 

 

A process may consist of a single ULT bound to a single LWP. In this case, there is a single thread of 

execution, corresponding to a traditional UNIX process. When concurrency is not required within a single 

process, an application uses this process structure. If an application requires concurrency, its process 

contains multiple threads, each bound to a single LWP, which in turn are each bound to a single kernel 

thread. 

 

In addition, there are kernel threads that are not associated with LWPs. The kernel creates, runs, and 

destroys these kernel threads to execute specific system functions. The use of kernel threads rather than 

kernel processes to implement system functions reduces the overhead of switching within the kernel 

(from a process switch to a thread switch). 

 

 
Figure 4.6 (Revisit Figure 2.5): Process Structure in UNIX and Solaris 

 

 

Figure 4.6 compares, in general terms, the process structure of a traditional UNIX system with that of 

Solaris. On a typical UNIX implementation, the process structure includes the process ID; the user IDs; a 

signal dispatch table, which the kernel uses to decide what to do when sending a signal to a process; file 

descriptors, which describe the state of files in use by this process; a memory map, which defines the 

address space for this process; and a processor state structure, which includes the kernel stack for this 



23 

 

process. Solaris retains this basic structure but replaces the processor state block with a list of structures 

containing one data block for each LWP. 

 

The LWP data structure includes the following elements: 

• An LWP identifier 

• The priority of this LWP and hence the kernel thread that supports it 

• A signal mask that tells the kernel which signals will be accepted 

• Saved values of user-level registers (when the LWP is not running) 

• The kernel stack for this LWP, which includes  

 system call arguments,  

 - results, and  

 - error codes for each call level 

• Resource usage and profiling data 

• Pointer to the corresponding kernel thread 

• Pointer to the process structure 

 

 
 

Figure 4.7: Solaris Thread States (Solaris 10) 1:1 mapping between ULTs and LPWs 
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Figure 4.8: Solaris ULTs and LWT States (Solaris 8, 9) 

 

Let us assume L represents number of LWPs and U represents the number of ULTs. 

 

• No benefit to having L > U 

• If U > L, some threads may have to wait for an LWP to run 

o Active thread - executing on an LWP 

o Runnable thread - waiting for an LWP 

• Executing synchronous system call blocks LWP 

o Need at least k LWPs to allow k concurrent I/O operations 

• Blocking on synchronization mutex, condition variable) - LWP switches to run another thread 

• If N CPUs, need at least N LWPs to keep them all busy 

• Kernel may take away LWPs if some are idle for a long time, or allocate more LWPs as needed 

 

 

4.3.3. Combination of 1:1 and  M:N models 
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• Supports both bound and unbound threads 

o Bound threads - permanently mapped to a single, dedicated LWP 

o Unbound threads - may move among LWPs in set 

• Thread creation, scheduling, synchronization done in user space 

• Flexible approach, “best of both worlds” 

• Used in Solaris implementation of Pthreads and several other Unix implementations (IRIX, HP-

UX) 

 

4.3.4 Interrupt Handling(converting interrupts to kernel  threads) 

 

Most operating systems contain two fundamental forms of concurrent activity: processes and interrupts. 

Processes (or threads) cooperate with each other and manage the use of shared data structures by means 

of a variety of primitives that enforce mutual exclusion (only one process at a time can execute certain 

code or access certain data) and that synchronize their execution. Interrupts are synchronized by 

preventing their handling for a period of time. Solaris unifies these two concepts into a single model, 

namely kernel threads and the mechanisms for scheduling and executing kernel threads. To do this, 

interrupts are converted to kernel threads. 

 

The motivation for converting interrupts to threads is to reduce overhead. Interrupt handlers often 

manipulate data shared by the rest of the kernel. Therefore, while a kernel routine that accesses such data 

is executing, interrupts must be blocked, even though most interrupts will not affect that data. Typically, 

the way this is done is for the routine to set the interrupt priority level higher to block interrupts and then 

lower the priority level after access is completed. These operations take time. The problem is magnified 

on a multiprocessor system. The kernel must protect more objects and may need to block interrupts on all 

processors. 

 

 

When an interrupt occurs, it is delivered to a particular processor and the thread that was executing on 

that processor is pinned. A pinned thread cannot move to another processor and its context is preserved; it 

is simply suspended until the interrupt is processed. The processor then begins executing an interrupt 

thread. There is a pool of deactivated interrupt threads available, so that a new thread creation is not 

required. The interrupt thread then executes to handle the interrupt. If the handler routine needs access to 

a data structure that is currently locked in some fashion for use by another executing thread, the interrupt 

thread must wait for access to that data structure. An interrupt thread can only be preempted by another 

interrupt thread of higher priority. Experience with Solaris interrupt threads indicates that this approach 

provides superior performance to the traditional interrupt-handling strategy. 

4.3.4 M:N vs. 1:1 Mapping 

Solaris 8 ships with two threading libraries: many-to-many and one-to-one. The names refer to how the 

model maps Solaris threads to LWPs and kernel threads. By default, the many-to-many thread library is 

used in Solaris 8. In certain circumstances, this leads to thread starvation and even hangs (application 

crashes). From experience, it has been noted that Oracle and IBM WebSphere Application Server running 

on Solaris 8 seems particularly prone to these problems.  

By default, the many-to-many thread library is used on Solaris 8. Switching to the one-to-one library 

reduces the possibility of thread starvation and improves scalability. This improves the overall 

performance of the system. One-to-one is the default implementation in Solaris 9 and subsequent releases. 
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4.4 Linux Threads 

 

A process, or task, in Linux is represented by a task_struct data structure. The task_struct data structure 

contains information in a number of categories: 

• State: The execution state of the process (executing, ready, suspended, stopped, zombie). 

This is described subsequently. 

• Scheduling information: Information needed by Linux to schedule processes. A process can 

be normal or real time and has a priority. Real-time processes are scheduled before normal 

processes, and within each category, relative priorities can be used. A counter keeps track of 

the amount of time a process is allowed to execute. 

• Identifiers: Each process has a unique process identifier and also has user and group 

identifiers. A group identifier is used to assign resource access privileges to a group of 

processes. 

• Inter-process communication: Linux supports the IPC mechanisms found in UNIX SVR4, 

described (shared memory based, message based) 

• Links: Each process includes a link to its parent process, links to its siblings (processes with 

the same parent), and links to all of its children. 

• Times and timers:  Includes process creation time and the amount of processor time so far 

consumed by the process. A process may also have associated one or more interval timers. A 

process defines an interval timer by means of a system call; as a result, a signal is sent to the 

process when the timer expires. A timer may be single use or periodic. 

• File system: Includes pointers to any files opened by this process, as well as pointers to the 

current and the root directories for this process. 

• Address space: Defines the virtual address space assigned to this process. 

• Processor-specific context:  The registers and stack information that constitute the context 

of this process. 

 

 
Figure 4.9:  Linux Thread Creation 

 

Unique solution:  

• Does not recognize a distinction between threads and processes 

• User-level threads are mapped into kernel-level processes 

• These processes share the same group ID  

o To share resources and avoid the need  

o Avoid context switch when scheduler switches among processes in the same group 

• A new thread is created  a process is “cloned” (rather than forked) 



27 

 

o Some clone flags to define shared elements 

 

We have seen that modern versions of UNIX offer kernel-level threads. Linux provides a unique solution 

in that it does not recognize a distinction between threads and processes. Using a mechanism similar to 

the lightweight processes of Solaris, user-level threads are mapped into kernel-level processes. Multiple 

user-level threads that constitute a single user-level process are mapped into Linux kernel-level processes 

that share the same group ID. This enables these processes to share resources such as files and memory 

and to avoid the need for a context switch when the scheduler switches among processes in the same 

group. 

 

A new process is created in Linux by copying the attributes of the current process. A new process can be 

cloned so that it shares resources, such as files, signal handlers, and virtual memory. When the two 

processes share the same virtual memory, they function as threads within a single process via clone() 

system call. However, no separate type of data structure is defined for a thread.  

 

When the Linux kernel performs a switch from one process to another, it checks whether the address of 

the page directory of the current process is the same as that of the to-be-scheduled process. If they are, 

then they are sharing the same address space, so that a context switch is basically just a jump from one 

location of code to another location of code. Although cloned processes that are part of the same process 

group can share the same memory space, they cannot share the same user stacks. Thus the clone() call 

creates separate stack spaces for each process. 
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Figure 4.10:  Linux clone() system call flags 

 

4.4.1 Linux Thread Life-Cycle 

 

Running:  Corresponds to two states.  

• A Running process is either executing or  

•  It is ready to execute. 

Interruptible:  A blocked state, in which the process is waiting for an event, such as the end of an I/O 

operation, the availability of a resource, or a signal from another process. 

 

Uninterruptible:  

•  Another blocked state.  

•  The difference between the Interruptible state is that in this state, a process is waiting directly on 

hardware conditions and therefore will not handle any signals. 

Stopped:  

•  The process has been halted and can only resume by positive action from another process.  
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•  (e.g., ) A process that is being debugged can be put into the Stopped state. 

 

Zombie:  The process has been terminated but, for some reason, still must have its task structure in the 

process table. 

 

 
Figure 4.11:  Linux Process/Thread Model 

 

4.4.2 Native POSIX Thread Library (NPTL) 
• Thread creation is done through clone() system call: clone() allows a child task to share the 

address space of the parent task (process)  

• Linux refers to them as tasks rather than threads 

o In NPTL, all threads belong to a single process. NPTL threads are based on KSEs(kernel 

scheduling entities). A non-threaded process is also a KSE. A threaded process has more 

than one KSEs. All KSEs are scheduled by the kernel. 

o NPTL is based on fast mutual exclusion (futex) mechanism. 

o Not fully POSIX compliant 

o See the papers on OS course website about NPTL design and implantation. 

 
Figure 4.12: Linux Threads (1:1 Mapping) 
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Figure 4.13: Thread creation by clone() system call 
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Figure 4.14: Linux gettid() 

 

5. Summary on Thread Implementations on various Operating Systems 

There are many different and incompatible implementations of threading. These include both kernel-level 

and user-level implementations. However, they often follow more or less closely the POSIX Threads 

interface. 
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Kernel-level implementation examples 

 Light Weight Kernel Threads (LWKT) in various BSDs 

 M:N threading 

 Native POSIX Thread Library (NPTL) for Linux, an implementation of the POSIX Threads 

(pthreads) standard 

 Apple Multiprocessing Services version 2.0 and later, uses the built-in nanokernel in Mac OS 8.6 

and later which was modified to support it. 

 Microsoft Windows from Windows NT and later versions. 

User-level implementation examples 

 GNU Portable Threads 

 Solaris Green Thread 

 Netscape Portable Runtime (includes a user-space fibers implementation) 

Hybrid implementation examples 

 Scheduler activations used by the NetBSD native POSIX threads library implementation (an M:N 

model as opposed to a 1:1 kernel or userspace implementation model) 

 The OS for the Tera/Cray MTA 

 Microsoft Windows 7 (????? Because of fibers support??) 

Fiber implementation examples 

Fibers can be implemented without operating system support, although some operating systems or 

libraries provide explicit support for them. 

 Win32 supplies a fiber API (Windows NT 3.51 SP3 and later) 

 Ruby as Green threads 

6. Summary on user threads vs. kernel threads 

 

• User-level threads 

o created and managed by a threads library that runs in the user space of a process 

o a mode switch is not required to switch from one thread to another 

o only a single user-level thread within a process can execute at a time 

o if one thread blocks, the entire process is blocked 

• Kernel-level threads 

o threads within a process that are maintained by the kernel 

o a mode switch is required to switch from one thread to another 

o multiple threads within the same process can execute in parallel on a multiprocessor 

o blocking of a thread does not block the entire process 

• Process/related to resource ownership 

• Thread/related to program execution 
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Some operating systems distinguish the concepts of process and thread, the former related to resource 

ownership and the latter related to program execution. This approach may lead to improved efficiency and 

coding convenience. In a multithreaded system, multiple concurrent threads may be defined within a 

single process. This may be done using either user-level threads or kernel-level threads. User-level 

threads are unknown to the OS and are created and managed by a threads library that runs in the user 

space of a process. User-level threads are very efficient because a mode switch is not required to switch 

from one thread to another. However, only a single user-level thread within a process can execute at a 

time, and if one thread blocks, the entire process is blocked. Kernel-level threads are threads within a 

process that are maintained by the kernel. Because they are recognized by the kernel, multiple threads 

within the same process can execute in parallel on a multiprocessor and the blocking of a thread does not 

block the entire process. However, a mode switch is required to switch from one thread to another. 

 

 

 

 

 

 

 

 


