
Virtual Doppelgänger: On the Performance, Isolation, and Scalability of
Para- and Paene- Virtualized Systems

Stephen Soltesz*, Marc E. Fiuczynski*, Larry Peterson*, Michael McCabe+, Jeanna Matthews+
*Department of Computer Science, Princeton University
+Department of Computer Science, Clarkson University

Abstract
Paravirtualization, popularized by the Xen hyper-

visor, is quickly expanding into commodity mar-
kets, with many in the IT sector considering it for
a variety of purposes. It is appropriate for many
usage scenarios, yet for those requiring strong iso-
lation and good performance and high scalability
there is at least one often overlooked alternative,
which we call paenevirtualization 1 Paenevirtual-
ized systems are general-purpose, time-shared OSs
retrofitted with abstractions to provide both name-
space isolation and resource isolation. Examples
of such systems include HP UX 11i Secure Re-
source Partitions, and Solaris 10 Zones, Virtuozzo
for Linux, and Linux Vservers.

Both approaches to virtualization provide better
isolation than traditional time-shared systems, but
to a regular user, there is little tangible difference
between the two; at a superficial level, one appears
as a virtual doppelgänger of the other. Of course
there are differences, and this paper digs below the
surface to report on their strengths and weaknesses
in terms of performance, scalability, and isolation.

1 Introduction

Operating systems face a fundamental tension
between providing isolation and sharing among
applications—they simultaneously support the il-
lusion that each application has the physical ma-
chine to itself, yet let applications share objects
(e.g., files, pipes) with each other. Today’s operating

1Paene is Latin for “nearly” and pronounced just like the
pasta.

systems designed for personal computers, adapted
from earlier time-sharing systems, typically provide
a relatively weak form of isolation (the process ab-
straction) with generous facilities for sharing (e.g.,
a global file system and global process ids). In
contrast, hypervisors strive to provide strong isola-
tion between virtual machines (VMs), providing no
more support for sharing between VMs than the net-
work provides between physical machines.

The point on the design spectrum supported by
any given system depends on the workload it is de-
signed to support. Workstation OSs generally run
multiple applications on behalf of a single user,
making it natural to favor sharing over isolation.
Hypervisors are often designed to let a single ma-
chine host multiple unrelated applications, possibly
running on behalf of independent organizations, as
might be the case in a hosting or utility data center.
In such a scenario, the applications have no need to
share information, and in fact, it is important they
have no impact on each other. Hence, hypervisors
heavily favor isolation over sharing. However, when
each virtual machine is running the same operating
system and the same user level applications, the cost
of this isolation can be unneccessarily high.

This paper investigates this tension between iso-
lation and sharing in systems designed for an emerg-
ing scenario requiring scalability in the number of
concurrently running VMs, especially where these
VMs have substantial similarities in their software
requirements. Examples of such scenarios include
web/db/game hosting centers, utility data centers,
and distributed hosting services such as Akamai and
PlanetLab. Our study considers two general ap-
proaches to virtualization: paravirtualization as ex-

1

emplified by Xen [1] and paenevirtualization as typ-
ified by Linux Vservers [10].

We have considerable experience with
Vservers—i.e., a general-purpose Linux OS
retrofitted with abstractions providing both name-
space and resource isolation—as we use it to
support a large number of researchers on Planet-
Lab [13, 2]. However, with the steep maturation of
Xen from research prototype to production quality
solution, there has been considerable momentum
to use Xen for all scenarios involving VMs. For
this reason, we take a closer look at Xen as an
alternative to Vserver. In terms of performance, we
find that Xen is a strong competitor to Vservers.
However, especially in temrs of network I/O, we
find that Vserver has the advantage due to the
high CPU overhead required in Xen to manage the
network. In terms of scalability, Vservers scale
further than Xen for simple tests and have better
response time when using a modest number of
concurrently running VMs.

The paper is organized as follows. Section 2
teases apart the different requirements that users
might place on virtual machine technology and
characterizes the nature of the isolation properties
of virtual machines, independently of how the un-
derlying technology actually implements it. Sec-
tion 3 compares reproduced performance results
from Xen 1.2 with subsequent generations of Xen,
and contrasts its performance with that attainable
with Linux Vservers. Section 4 then evaluates the
scalability of the two systems in the number of con-
currently running VMs. Finally, Section 6 offers
some concluding remarks.

2 Requirements

The purpose of virtual machine technology is to
provide isolation between individual VMs. This
section teases apart the different requirements that
users might place on virtual machines. The discus-
sion considers the full breadth of system-level sup-
port for virtual machines, from traditional OSs to
low-level hypervisors. For clarity, we settle on a
single set of terminology, drawn from the recent vir-

tual machine literature: we refer to the underlying
system as a virtual machine monitor (VMM) rather
than an OS, and the isolated containers running on
top of it as virtual machines rather than processes or
domains.

We first outline the usage scenarios of VMs to set
the context within which we compare and constrast
the different approaches to virtualization. Next, we
characterize the nature of the isolation provided by
virtual machines, considered independently of how
the underlying VMM is actually implemented. Fi-
nally, we discuss two different classes of VM tech-
nology from the standpoint of meeting the require-
ments of the usage scenarios demanding good per-
formance, high scalability, and strong isolation.

2.1 Usage Scenarios
Virtual machine technologies are poised to be
present throughout most computer systems. There
are a number of exciting ideas to use VMs to secure
work environments on laptops [18], ease manage-
ment and improve utilization of large compute clus-
ters, analyze unknown virus/work attacks in real-
time [17], and debug difficult to track down sys-
tem failures using time-travel [19]. However, to-
day VM technology is predominantely used by: (1)
programmers on workstations for software develop-
ment and testing purposes, (2) IT centers to con-
solidate dedicated servers onto more cost effective
hardware, and (3) hosting organizations to cost ef-
fectively sell virtual private servers at scale.

These real-world scenarios have similar require-
ments in terms of isolation between VMs—it needs
to be strong. However, they differ substantially in
their need for scalability, performance and the abil-
ity to support multiple operating system environ-
ments. For example, programmers or testers are
unlikely to run a number of heavily loaded VMs
concurrently, and while they would prefer good per-
formance, their tolerance for poor performance is
likely to be high. On the other hand, they are likely
to depend heavily on the ability to support mulitple
operating system environments. In fact, the abil-
ity to run multiple software development and testing
environments on the same hardware is the primary

2

advantage of VM technlogy in this scenario.
As another example, IT centers tend to consoli-

date on the order of a dozen physical servers into
VMs running on a more cost effective system. They
rely on the ability to run multiple VMs concurrently
(one per service), but in many environments, the
load on each service may be relatively light. For
example, a small company may maintain their web
server, mail server, DNS server, and ftp server all
on one physical machine. By placing each service
in its own VM, they can limit the impact of a soft-
ware failure to one service and also simplify the ad-
ministration of each service. In this scenario, there
would be little benefit to sharing due to the user-
level server software, but it is likely that multiple
services would run on the same operating sytem.

In a third scenario, organizations selling virtual
private servers at scale (e.g., web hosting compa-
nies, Akamai, PlanetLab, and so on.) likely have
many copies of the same server software and un-
derlying operating systems represented in their mix
of VMs. They seek to benefit from an economy
of scale and need to reduce the marginal cost per
customer VM. Thus they are likely to be extremely
sensitive to issues of scalability and performance as
they try to carefully oversubscribing their physical
infrastructure with as many VMs as possible with-
out reducing overall quality of service.

Of these three scenarios, we focus primarily on
the third which stresses the underlying virtual ma-
chine technology to its limits along the performance
and scalability axes. While it is non-trivial to ensure
isolation between VMs, the real challenge is to pro-
vide isolation and high performance and scalability.

2.2 Isolation Landscape

Isolation between VMs involves two largely inde-
pendent dimensions: resource isolation and name-
space isolation. Note that we do not use the term
fault isolation in our characterization of VMMs, in-
stead taking the view that fault isolation is implied
by resource isolation: a VMM that provides re-
soruce isolation protects all correctly running VMs
from both greedy and faulty VMs. After all, a fault

that crashes the machine robs all VMs of the re-
sources they expect.

Resource isolation corresponds to the VMM’s
ability to isolate the resource consumption of one
VM from that of another VM; undesired inter-
actions between VMs is sometimes called cross-
talk [9]. Providing resource isolation generally in-
volves careful scheduling and allocation of physical
machine resources (e.g., cycles, memory, link band-
width, disk space), but can also be influenced by
VMs sharing logical resources, such as file descrip-
tors and memory buffers. A VMM that supports
strong resource isolation might guarantee that a VM
will receive 100 million cycles per second (Mcps)
and 1.5Mbps of link bandwidth, independent of any
other applications running on the machine. On
the other hand, a VMM that supports weak re-
source isolation might let VMs compete with each
other for cycles and bandwidth on a demand-driven
(best-effort) basis. Many hybrid approaches are
also possible. For instance, a VMM may main-
tain strong performance isolation between classes of
VMs while enforcing weaker isolation within each
class (e.g., to support a low priority class of appli-
cations that are allowed to consume excess cycles).

In contrast, namespace isolation refers to the ex-
tent to which the VMM limits access to (and infor-
mation about) logical objects, such as files, mem-
ory addresses, port numbers, user ids, process ids,
and so on. A VMM that supports strong name-
space isolation does not reveal the names of files or
process ids belonging to another VM, let alone let
one VM access or manipulate such objects. In con-
trast, a VMM that supports weak namespace iso-
lation might support a shared namespace (e.g., a
global file system), augmented with an access con-
trol mechanism that limits the ability of one VM to
manipulate the objects owned by another VM.

The level of namespace isolation supported by a
VMM affects at least two aspects of application pro-
grams. The first is configuration independence, that
is, whether names (e.g., of files) selected by one
VM possibly conflict with names selected by an-
other VM. The second aspect is security; if one VM
is not able to see or modify data and code belong-

3

ing to another VM, then this increases the likelihood
that a compromise to one VM does not affect others
on the same machine.

Taken together, these two dimensions of isolation
provide a simple map of the design space, with dif-
ferent VMMs (OSs) corresponding to each possibil-
ity:

• Traditional timesharing systems offer both
weak performance isolation and weak name-
space isolation.

• Single-user multimedia systems offer strong
resource isolation but weak namespace isola-
tion.

• A traditional timesharing system augmented
with support for security contexts, as exempli-
fied by BSD jails [8], offer weak resource iso-
lation and strong namespace isolation.

• A VMM designed for application hosting cen-
ters typically offer both strong resource isola-
tion and strong namespace isolation.

It is important to keep in mind that this section
puts forward just one possible view of the isola-
tion landscape. There are certainly other criteria by
which VMM strategies can be evaluated. For exam-
ple, some VMMs offer the advantage of supporting
more than one OS environment. As another exam-
ple, a VMM can be characterized by its ability to
migrate VMs between physical machines to avoid
scheduled downtimes (e.g., for hardware mainte-
nance) or to load-balance VMs. Finally, VMMs can
be characterized according to the size of its trusted
code base, the premise being that the less code there
is to assure, the more secure the system is likely to
be. While a VM that compromises the VMM is able
to gain access to another VM’s state—and hence,
compromise the level of security supported by the
VMM—there are many other security threats (e.g.,
physical access to the machines) that must first be
addressed before this particular security issue be-
comes critical. Instead, we purely focus on isola-
tion as it relates to performance and scalability, and
return to these other criteria in Section 6.

2.3 Design Choices
Based on the current state of VMM research,
it appears that two technologies are best posi-
tioned to support good performance, high scalabil-
ity, and strong isolation: paravirtualizing systems
such as Xen [1] and Denali [20], and paenevirtualiz-
ing systems—i.e., a general-purpose OS retrofitted
with abstractions providing namespace and resource
isolation—such as Linux Vservers [10], Solaris 10
(Zones + PRM), and Virtuozzo for Linux [16].

Figure 1 illustrates the architecture of these vir-
tualization approaches at a Birdseye level. Shown
on the left, a hypervisor-based VMM runs separate
copies of a conventional operating system kernel in-
side each VM; paravirtualizing hypervisors achieve
greater scalability by modifying the OS running in
each VM to make it aware that the hypervisor is
beneach it. Shown on the right, a paenevirtualized
system supports multiple UNIX VMs using a single
OS kernel, with each VM appearing to the user as
a separate UNIX system. The homogeneous nature
of paenevirtualized VMs simplifies the underlying
kernel’s task of managing a large number of such
VMs.

Hypervisor

User
Software

... ...

Physical HardwarePhysical Hardware

PARAvirtualization

Operating System

PAENEvirtualization

User
Software

User
Software

OS OS OS

User
Software

User
Software

User
Software

Figure 1: Doppelgänger nature of para- and paene-
virtualized systems. At a birdseye level the main
difference between these two systems is the trusted
computing base. Paravirtualized systems let users run
their own untrusted operating system within a VM,
paenevirtualized systems do not.

The difference between paenevirtualized UNIX
and traditional UNIX systems is the means by
which the kernel verifies whether a process is au-
thorized to perform a given action. The traditional
multiuser UNIX model of an omnipotent root and

4

a number of less privileged user accounts is insuffi-
cient for paenevirtualized UNIX; every VM requires
some superuser-like privileges, such as the ability to
install packages, but must be denied others, such as
the ability to load modules into the kernel. Paenevir-
tualized UNIX systems typically split the privileges
traditionally granted to root into a number of finer-
grained capabilities, and provide only a subset of
those capabilities to the “root” inside a user-owned
VM. By careful consideration of the capabilities
needed to perform different roles associated with
UID zero, it is possible to provide root within a
VM with those capabilities that are necessary for
maintaining the VM (e.g., manipulation of file own-
ership and permission), while removing those that
could potentially affect other VMs on the same ma-
chine (e.g., loading a kernel module).

When ignoring performance, isolation, and scal-
ability, a difference between paravirtualized and
paenevirtualized systems is the trusted computing
base (TCB). For paravirtualized systems, the TCB
is the small underlying VMM. The OS running
in each VM can be untrusted—i.e., in scenarios
where customer may use their own custom OS. For
paenevirtualized systems, only conventional user-
level applications are untrusted, everything else is
part of the TCB. It is important to note this differ-
ence, as prior evaluations of paravirtualized systems
primarily demonstrate isolation between VMs using
untrusted applications rather than untrusted OSs.
Section refx shows that untrusted OSs running in
a paravirtualized VM can successfully launch layer-
below attacks, undercutting a previously established
reason for using paravirtualized systems.

Finally, to understand many of the results re-
ported in subsequent sections, it is helpful to recog-
nized that paravirtualization is often achieved by du-
plicating resources (e.g., each VM has its own copy
of the OS), whereas paenevirtualization is often
achieved by hiding or masking resources (e.g., each
VM is able to see only a subset of the file system).
In other words, paenevirtualization achieves name-
space isolation by layering a set of filters on top of
the underlying logical resources, and it achieves re-
source isolation by layering a set of limits on top

the underlying physical resource schedulers and al-
locators. In effect, this paper reports the differences
between duplicating and hiding various components
of the OS.

3 Performance

This section compares the performance of a paravir-
tualized system (Xen + XenoLinux) and a paenevir-
tualized Linux Kernel (PLK). As a reference point,
we run many of the benchmarks used to evaluate
those systems also on a stock Linux kernel. We re-
peat a number of the single VM benchmarks as de-
scribed in Barham et. al. [1] and Clark et. al [3],
which illustrate the base performance of these two
systems. These experiments run within a single VM
and exercise the whole system to characterize the
relative performance of the two approaches for a
range of server-type workloads.

Our Xen configuration consists of Xen 2.0.7
with XenoLinux based on a patched version of the
vanilla 2.6.12 kernel from kernel.org in both the
host (dom0) and guest domain (domU) for which
results have not yet been reported elsewhere. Un-
less otherwise stated, the results reported for Xen
are for a single guest domain. Our PLK config-
uration consists of a Linux 2.6.12 kernel patched
with changes from FC4-1398, Vserver 2.0.1 and
a new CPU scheduler developed at Princeton. To
account for the difference between different vari-
ations of 2.6.12 used by XenoLinux and PLK, we
also present the base performance numbers of stock
FC4-1398 2.6.12 Linux kernels. The Linux dis-
tribution populating the filesystem is the latest re-
lease of Fedora Core 2, thereby letting us focus
on comparing the architectural difference between
para- and paene- virtualization. Where possible, we
use the exact same filesystem to avoid variances due
to using different portions of the disk.

All experiments are evaluated on an Intel
SE7505VB2 motherboard with a 3.06Ghz Xeon
uniprocessor, 4GB RAM, Intel E1000 GigE Ether-
net, and a single Seagate Barracuda ST3200822A
200GB 7.2k RPM ATA-100 IDE disk. The Xeon
processor has a 512KB L2 and 1MB L3 cache and

5

Linux PLK Xeno
Config FC4 Linux
select TCP 5.91 5.92 4.60
mmap latency (32MB) 425.00 428.00 1300.00
mmap latency (64MB) 846.00 844.00 2575.00
fork process 127.57 130.90 378.08
exec process 462.58 488.23 697.42
sh process 1565.57 1711.90 1741.60
CS (2p/ 0K) 1.76 1.87 3.12
CS (2p/16K) 1.85 1.96 3.12
CS (2p/64K) 2.07 2.09 3.29
CS (8p/16K) 2.37 2.52 3.92
CS (8p/64K) 11.24 11.87 14.07
CS (16p/16K) 3.31 3.41 4.88
CS (16p/64K) 23.65 26.35 28.10
prot fault 0.68 0.69 1.07
page fault 2.31 2.35 4.00

Table 1: lmbench latency OS benchmarks - times in
µs

hyperthreading disabled. To compare performance
between Xen 1.0 and Xen 2.0, we also repeat the
base performance evaluation on the identical hard-
ware used by Clark et. al. to reproduce the results
reported by Barham et. al.

3.1 Base Operating Systems Benchmarks
We ran the development benchmark subset of
McVoy’s lmbench [11] version 3.0-a3 tool, as
those experiements target particular OS subsystems.
For 17 of the 30 lmbench DEVELOPMENT mi-
crobenchmarks, the performance of PLK, Xeno-
Linux, and stock Linux are nearly identical; i.e.,
within the margin of error. Table 1 shows the results
of the latency microbenchmarks for which there is
a performance discrepancy between stock Linux,
PLK, and XenoLinux.

The first row in Table 1 shows that latency to han-
dle TCP select is a bit faster for XenoLinux when
compared to stock Linux and PLK. This is the only
case where XenoLinux has lower latency, which
happens to be due to minor code path difference be-
tween the vanilla 2.6.12 and FC4-1398 2.6.12 ker-
nels.

The next two rows show mmap latencies for
32MB and 64MB files. As can be seen the laten-
cies scale wrt to the size of the file, rather than there
being a constant overhead for XenoLinux. While
this makes perfect sense, we were initially surprised
because previous discussions with respect to this
benchmark made it seem like it would be a constant
overhead of a few tens of microseconds.

The following three rows in Table 1 show the per-
formance of fork process, exec process, and sh pro-
cess across the systems. XenoLinux is slower when
compared to stock Linux. Barham et al. [1] describe
why this is the expected behavior for XenoLinux:
hypercalls to the VMM update a large number of
page tables. PLK is nearly identical for the fork sh
benchmark, a bit slower for exec process, and only
a bit faster than XenoLinux for sh process. Techni-
cally, PLK should more closely match stock Linux
for these latter two benchmarks and we are still in-
vestigating what causes the additional delay.

The next seven rows in Table 1 show context
switch overhead between different numbers of pro-
cesses with different working set sizes. As ex-
plained by Barham et al. [1], the 1µs to 4µs over-
head for these microbenchmarks are due to hyper-
calls from XenoLinux into the VMM to change the
page table base. In contrast, there is little overhead
between the stock and paenevirtuailzed versions of
Linux.

Finally, for protection fault and page fault han-
dling, XenoLinux is more than 1.4x slower than
stock Linux, which is also due to Xen VMM hy-
percalls. For PLK the cost for these operations are
essentially identically to stock Linux.

Table 2 shows the results of the bandwidth
based microbenchmarks for which there is a per-
formance discrepancy between stock Linux, PLK,
and XenoLinux. The first three rows show an odd
theme: XenoLinux drastically outperforms both
stock Linux and PLK for strictly user-level bench-
marks. The differences between these should be
much smaller. We have run these benchmarks with
sufficient warm up iterations to factor out cache
effects and page fault effects and continue to get
the same results. Not shown in the table are the

6

Linux PLK Xeno
Config FC4 Linux
bcopy (libc) 597.70 583.08 729.12
bcopy (hand) 585.72 571.82 744.62
mem write 834.60 795.22 1038.00
mem read 2237.14 1910.02 1933.02
pipe 1993.80 1906.32 2294.30
AF UNIX 2838.82 2768.52 2668.70
file reread 1739.16 1656.12 1809.22
mmap reread 2241.82 1922.36 1942.62

Table 2: lmbench bandwidth OS benchmarks - in
Mbytes/sec

bandwidth numbers for the host domain (dom0)
under Xen. For the bcopy (libc) benchmarks, it
falls right in between PLK and XenoLinux—i.e.,
660Mbytes/sec. The cause for this is not well un-
derstood. One difference between these systems is
that XenoLinux uses a 100HZ clock, whereas PLK
and stock Linux use a 1000HZ clock2. Clock in-
terrupts in conventional Linux would need to be on
the order of 8µs to account for the difference in per-
formance. However, that does not account for the
difference between the results for host versus guest
domain results for Xen. Further investigation into
these discrepancies is required.

The bottom four rows listed in Table 2 do in-
volve the operating system and in XenoLinux’s case
the hypervisor. Here the results are mixed. There
are two takeaways from these results: (1) overall
the performance of XenoLinux is remarkably good
compared with stock Linux and PLK, (2) yet mi-
crobenchmarks seldom are indicators of overall sys-
tem behavior for real workloads [4].

3.2 Network Performance
We examine TCP performance over a private Gi-
gabit Ethernet LAN that is unloaded. We use a
HP DL320 server with a 3.4GHz Xeon uniproces-
sor system that generally is faster than our test sys-
tem. This lets us measure receive and transmit per-

2We were negligent not to eliminate this difference, but are
out of time to correct for the submission.

Linux PLK Xeno
Config FC4 Linux

rcv snd rcv snd rcv snd
TCP Win 16K 524 593 524 593 348 425
TCP Win 32K 888 938 888 938 678 815
TCP Win 64K 941 941 941 941 787 867
TCP Win 128K 941 941 941 941 888 915
TCP Win 256K 941 941 941 941 902 929

Table 3: iperf performance with TCP windows sizes
ranging from 16K to 256Kbytes.

formance independently to a machine that can both
source and sync data faster than our test system. The
iperf benchmark was used to perform these mea-
surements. Both sender and receiper applications
were configured to use different TCP window sizes,
and iperf selects the appropriate socket buffer size
that is larger than the max bandwidth delay product.
The results presented are a median of four tests run-
ning for 10 seconds, transferring between 400MB-
1GB.

Table 3 presents the results using the default
MTU of 1500 bytes. Both stock FC4 Linux and
PLK achieve line GigE rate with a TCP window size
of 64Kbytes. In contrast, XenoLinux approaches
GigE rates only with large window sizes.

While this might seem unremarkable, achieving
near GigE rates is a significant achievement for
XenoLinux on Xen 2.0. This is because packets
flow from the GigE NIC to the host domain that
then forwards them to the XenoLinux guest domain.
In this way the Xen 2.0 hypervisor no longer needs
to replicate iptables-like forwarding support, as was
done in Xen 1.0.

Guest
OS

Virtual Devices
Hypervisor

...

Physical Hardware

Control
Interface

User
Software

Guest
OS

User
Software

Guest
OS

Control
Plane

Software
...

Physical Hardware

User
Software

Dom0 OS
Device
Drivers

Control
Plane

Software

Guest
OS

User
Software

Guest
OS

Hypervisor

Figure 2: Xen 1.0 vs. Xen 2.0 architecture.

7

Figure 2 depicts the high-level architectural de-
sign of Xen 1.0 and Xen 2.0, and illustrates the path
packets take through the system. The salient differ-
ence between these two generations of Xen is the
move of device drivers out of the hypervisor. For
Xen 1.0 the Guest OSs (such as XenoLinux) use
Xen-aware device drivers to access phyical devices.
In contrast, for Xen 2.0 privileged Guest OSs (typi-
cally dom0) can use their native device drivers via a
safe hardware interface exported by the hypervisor;
however, unprivileged Guest OSs use special front-
end device drivers that communicate with dom0 to
access the disk or receive network packets. Fraser
et al. [5] describe the new I/O architecture for Xen
2.0. A key contribution of their architecture is the
combination of high performance with resilience to
device driver faults, the need for which is motivated
by Swift et. al. [15, 14].

The Xen 2.0 I/O architecture resembles a conven-
tional microkernel model with device drivers run-
ning in separate VMs (address spaces), as exempli-
fied by QNX [7]. Hand et al. [6] argue that VMMs
are microkernels done right. Certainly it seems that
Xen’s cut across the software stack is at the right
level and achieves remarkable performance.

Nonetheless, the approach imposes a non-trivial
amount of overhead. Menon et al. [12] profile Xen
2.0 to characterize the overhead of their new model
under high-bandwidth scenarios. They report that
on the receive path the TLB miss rate—defined as
the ratio of the number of misses to the number
of instructions executed—is an order of magnitude
higher (14x - 25x) when compared to stock Linux.
Their results also show that there are no specific
hotspots, but rather the TLB misses in the driver do-
main are spread across the entire TCP receive code
path. The bottom line is that for a GigE bandwidth
benchmark Xen fully utilizes the 2.4GHz Xeon test
system and cannot achieve GigE line rate to Xeno-
Linu, while stock Linux has cycles to spare under
the same load.

In contrast, we observe that Xen on a 3.06GHz
Xeon CPU can nearly operate at link rate. In the
future, PlanetLab nodes will be operating as multi-
homed routes with GigE NICs. For this reason, we

are very interested what kind of forwarding rates
can be achieved using Xen and Vserver with two
GigE NICs. We developed a very simply TCP for-
ward proxy that reads packets from one socket and
writes (forwards) them as quickly as possible to an-
other socket. Running this application on Xeno-
Linux with two GigE NICs we observe a forward-
ing rate of 417Mbits/sec with a 128K TCP window.
In contrast Linux and PLK can forward packets at
GigE link rate (941Mbits/sec) with a 64K TCP win-
dow.

3.3 Relative Benchmark Performance
Overall the single guest performance of XenoLinux
is remarkably good with it matching or even best-
ing base Linux in most cases. Data demonstrat-
ing this for Xen1 versus Linux 2.4 was presented
in [1] and independently verified in [3]. In Fig-
ure 3, we update this data for Linux 2.6 and Xen
2 including measurements of osdb, dbench, a Linux
kernel compile, FourInARow,a CPU intensive com-
ponent of Freebench and the full geometric mean of
all the Freebench tests. This data was taken on the
same hardware platfrom as [3] specifically a Dell
2650 dual processor 2.4 GHz Xeon server with 2
GB RAM and a Maxtor 36 GB 15000 RPM SCSI
drive. Xen guests are allocated 128 MB of mem-
ory and a 2 GB LVM backed virtual block device.
Each score reports the average of 10 trials and the
standard deviation of the trials is shown with error
bars. For the most part, the data confirms that newer
versions of Xen retain their excellent performance
relative to base Linux. However, there are some in-
teresting details.

First, for some benchmarks, especially dbench,
performance is significantly worse in domain0 than
in a regular guest VM. This reflects the fact in do-
main0, one processor is running both the benchmark
code and handling the disk I/O. While for a regular
guest OS, the benchmark code and the disk I/O han-
dling use different processors. To illustrate this, we
include measurements on Xen2 with SMP disabled.
This forces the 1 guest case to run both the bench-
marking code and disk I/O as in the domain 0 case.
(Note: we disabled SMP by using “xm pincpu” to

8

Figure 3: Relative performance of Linux and XenoLinux. Four sets of measurements for each benchmark are
shown for each benchmark - Linux 2.6 UP has SMP disabled, Xen2 dom0 with SMP enabled, Xen2 guest domU with
SMP enabled and Xen2 guest domU with SMP disabled. All scores are the average of 10 runs of the benchmark with
standdard deviation shown with error bars.

ping both domain0 and the 1 guest to the same CPU.

Second, Xen is actually slightly better then base
Linux for most of the tests run. It certainly
seems counterintuitive that introducing a virtualiza-
tion could improve performance. However, we be-
lieve that there are several things are work here.
For Xen, the LVM-backed VBD is optimized for
throughput rather than latency while Linux is op-
timized more for latency. For these benchmarks,
we expect that optimization for throughput is more
effective. Also, on Xen, all I/O is going through
two elevator sorting algorithm and the lower level
deeper queue allows for more pipelining of paral-
lel requests. A recent paper by Fraser et al. [5]
also describes an oscillatory behavior of Linux 2.4
memory system when doing bulk writes. The Xen
implementation avoids this problem. It is some-
what surprising that Xen would show an advantage
on a CPU intensive application like FourInARow.
However, we saw the same slight advantage for all
benchmarks in the Freebench suite. We summarize
these by including the geometric mean of all the
Freebench suite in the figure as well.

4 Scalability

This section evaluates the scalability of Xen and
Vservers. We first evaluate how many active VMs
can be instantiated on each system. Then we repeat
a number of the scalability benchmarks reported by
Barham et. al. [1] and compare the performance of
the two systems. All experiments are evaluated on
the same hardware as described in Section 3.

4.1 Phone Booth Packing

Phone booth packing is a contest of cramming as
many people as possible into a booth designed for
one person. We have a similar benchmark to deter-
mine the upper limit of packing concurrently active
VMs onto a single physical host. It essentially is a
footprint benchmark measured in terms of available
disk and memory space. We evaluate the virtual-
ization approaches in two dimensions: guaranteed
reservation vs. overbooking. For guaranteed reser-
vation the underlying VMM admits only the num-
ber of VMs that it can guarantee the availability of
a reserved amount of resources. For overbooking,
the VMM admits more VMs and services them on

9

a best effort basis. The assumption being that in
the common case VMs will utilize far less resources
than their maximim limits permit.

With guaranteed reservations (i.e., 100MB mem-
ory and 1GB disk space) both systems scale simi-
larly, as the limiting factor is available memory and
disk space—you can only cut a pie so often. The
real challenge is in reducing the footprint of individ-
ual VMs when overbooking the physical resources.

In general, for hypervisor-based systems there
is an inherent overcommittment of virtual mem-
ory pages and disk blocks to each VM. To reduce
the memory footprint, such systems need to reduce
duplicate state–introduced by each VM running a
Guest OS and its applications–after the fact. While
there are several proposed techniques to reduce du-
plicate memory pages [18, 17], each comes with
its own drawbacks. For example, content-based
page sharing techniques [18] compute hash val-
ues by scanning pages to identify duplicate pages
and then uses CoW virtual memory mechanisms
to reduce the memory footprint. Similarly, the
delta-virtualization techniques described by Vrable
et. al. [17] are very specialized for short-running
applications (operating at the level of seconds or
minutes)—not the usage scenarios we are investi-
gating.

These memory footprint optimization techniques
could also be applied to paenevirtualized systems
to reduce memory footprint. However, their pri-
mary benefit is to reduce the text segments of com-
mon applications. When properly configured, this
is something that paenevirtualized systems already
do inherently. For example, on PlanetLab and other
Linux Vserver-based systems (such as Lycos Eu-
rope), the filesystem is shared using a file-level
CoW scheme. Many of the common executables
and shared libraries are thereby shared on disk be-
tween VMs (vservers). More importantly, their in-
odes are the same and file paths appear the same
across VMs. This setup lets the dynamic loader map
them into virtual memory such that they are shared
read-only across processes, even those that run in
separate VMs.

Squeezing as many VM’s filesystem onto a disk

as possible, though, is more an exercise in frugal-
ity and ease of use rather than in reducing dupli-
cate state. The ideal case for Xen might be to use
file-backed virtual block devices (fVBD). A fVBD
can be configured as a sparse file, which lets one
nicely overbook the amount of disk space. However,
the current implementation of the backing store for
fVBDs caches I/O in the host domain, i.e., it be-
haves more like a RAM-disk that eventually persists
the data to the backing store. This in fact provides
remarkable performance, yet it does not meet the
kind durability requirements that databases, email
systems, etc. require—people typically are not
happy when a disk looses their data. For this rea-
son, one needs to use LVM-backed VBDs on Xen as
the storage devices for VMs. One could start with a
small LVM extent and then dynamically increase it
when the VM requires more disk space. For exam-
ple, a XenoLinux guest OS using ext3 could dynam-
ically resize its filesystem in response to the LVM
being resized. Yet this requires explicit cooperation
by the guest OS.

In contrast, overbooking disk space is very sim-
ple with the (previously mentioned) file-level CoW
scheme used by Linux Vservers. Each vserver
filesystem is essentially a subtree of the overall
filesystem, into which a vserver is confined us-
ing the chroot system call. The file-level CoW
scheme reduces the otherwise 150Mbyte footprint
required for a small Fedora Core 2 installation down
to a 12Mbyte. Vservers provides a simple disk-
space and inode-count limit placed on each vserver
to prevent it from completely consuming all of the
system’s space or inodes. For example, on Planet-
Lab we routinely put 250-300 vserver VMs onto a
single node and give each VM a 5GB disk quota,
while the underlying disk itself is only 100-150GB
large.

To end this discussion with some emperical data,
we examined XenoLinux and Vservers’ ability to
instantiate a large number of VMs concurrently.
Barham et al. [1] showed that it is possible to host
roughly 128 VMs running SPEC INT2000 using
XenoLinux. This is not a real-world workload cor-
responding to any of the scenarios we discussed in

10

Section 2. Instead, we configured a number VMs
with Apache version 2.0.46 web servers in its de-
fault configuration. With Vserver we stopped when
we reached 1024 VMs running Apache on our hard-
ware configuration—we could have gone further.
Note that each in its default configuration Apache
creates up to 8 httpd processes. On the same hard-
ware with Xen we only succeeded to install and run
80 VMs each limited to 48MB. We did not use the
balloon driver with which we probably could have
instantiated 1.5x-3x more, which nonetheless would
have been 5x-7x lower compared to PLK.

4.2 VM Concurrency
This section compares the performance of running
multiple VMs concurrently. Our focus is on running
multiple instances of SPEC WEB99, similar to the
configuration used by Barham et al.

Achieving good SPEC WEB99 scores equires
both high throughput and bounded latency. When
a client request gets stalled due toa badly delayed
disk read, then the connection will be classed as
non-conforming and will not contribute to the score.

Figure 4 shows the results of running 1, 4, 16
copies of the SPEC WEB99 benchmark in parral-
lel on our uniprocessor machine. For both PLK
and XenoLinux each instance of SPEC WEB99 ex-
ercises a separate Apache server isolated into its
own VM. Different TCP port numbers were used
for each web server to enable the copies to be run in
parallel.

Note that in Figure 4 the base case (V1) –running
a single instance of Apache for SPEC WEB99 on
Linux Vserver– is significantly better than the cor-
responding base case for stock Linux reported by
Barham et al. Based on our experience, stock Linux
is faster than PLK in this case. Given that our
Xen (X1) base case roughly mirrors their prior re-
sults (550 conforming clients), we speculate that the
bulk of this performance difference is due to horri-
ble overhead imposed by the 2.4.x based LinuxSMP
system in handling the multiple Apache processes.

The better overall performance of PLK is pri-
marily due to the lower overhead imposed by the
paenevirtualization approach. As a result, there sim-

V1 X1 V4 X4 V16 X16
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0

100

200

300

400

500

600

700

800

900

1000

1100

1200
Scalability of VServer running SPECWeb99

Simultanious VMs Under Test

A
gg

re
ga

te
 sc

or
e

of
 c

on
fo

rm
in

g
co

nn
ec

tio
ns

Figure 4: Web server performance

ply is more CPU left to serve clients. In contrast,
as revealed in Section 3.2, at GigE data rates there
are few cycles left even for one XenoLinux to pro-
cess client requests. The performance for Xen cer-
tainly would be better if we enabled SMP. How-
ever, in comparison to PLK, this would only have
masked the CPU overhead imposed by paravirtual-
ization and their microkernel-style I/O architecture
for Guest OSs.

Note that PLK’s CPU scheduler is identical to
the Linux scheduler, augmented only to limit the
amount of CPU a VM (vserver) can maximally con-
sume. As we scale from 1 to 16 VMs, it ensures that
each Apache server obtains a fair share of the CPU.

5 Isolation

Barham et. al. [1] wanted to do a backoff between
Xen and other systems, but they lacked a freely
available paenevirtualized Linux solution free avail-
able. In this section we discuss the isolation proper-
ties of PLK and compare it with Xen.

As one simple example, we ran a Quake III game
server in one VM for both Xen and PLK and mea-
sured the latency to the server from another system
on the local LAN. We then instantiated 9 antiso-
cial VMs each running a CPU hog (infinite loop).
Xen’s borrowed virtual time scheduler does a good
job at isolating the Q3 server from the CPU hogs,

11

with latencies varying between 1-15 milliseconds.
As mentioned previously, PLK’s CPU scheduler is
identical to the Linux scheduler, augmented only
to limit the amount of CPU a VM (vserver) can
maximally consume. It can schedule the processes
of each vserver at a fine grain and treats the Q3
server processes as an interactive process. The
Linux scheduler is optimized for interactive pro-
cesses, giving such higher priority over CPU bound
processes. Consequently, even with CPU hogging
processes running in 9 different vservers, the round
trip packet latencies to the server remain below one
millisecond most of the time3.

PLK can also properly resource isolates VMs
running fork-bombs and other antisocial processes.
However, it currently lacks support to isolate pro-
cesses that cause excessive disk I/O (e.g., a sus-
tained dd). We are working on adding such a disk
I/O resource controller that acts as a filter to ensure
that all vservers (VMs) obtain a fair share of the I/O
bandwidth.

Barham et al. point out that Linux cannot run
multiple instances of Postgresql due to conflicts in
the SysV IPC name-space. On PLK this problem
no longer exists, as the SysV IPC name-space is vir-
tualized for each Vserver security context. Conse-
quently, we can run multiple instances of OSDB;
however, we ran out of time to complete those mea-
surements in time for the submission.

6 Conclusion

Paravirtualization, popularized by the Xen hyper-
visor, is quickly expanding into commodity mar-
kets, with many in the IT sector considering it for
a variety of purposes. In this paper, we have com-
pared the performance of Xen to Linux Vservers
which represents a viable option to Xen for many
usage scenarios that require both strong isolation
and good performance and high scalability. Linux
Vservers are one example of a class of systems that
we call paenevirtualization systems. Paenevirtu-

3Our scheduler implementation was finished two weeks ago
and we suspect a minor bug in the token bucket handling that
causes 90 millisecond hick ups every four seconds.

alization systems are general-purpose, time-shared
OSs retrofitted with abstractions to provide both
namespace isolation and resource isolation. We find
that the performance of Xen is quite competitive
with Linux Vservers offering a substantial advan-
tage in lower overhead for network intensive ap-
plications. While paenevirtualization systems do
not offer some advantages of paravirtualization such
as the ability to support multiple OS environments,
we conclude that for many environments, especially
those that are oversubscribing their physical infras-
tructure with as many VMs as possible without re-
ducing overall quality of service, paenevirtualized
systems are a more attractive alternative.

References
[1] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the Art of Virtualization. In Proc. 19th
SOSP (Lake George, NY, Oct 2003).

[2] BAVIER, A., BOWMAN, M., CULLER, D., CHUN, B., KARLIN,
S., MUIR, S., , , AND AND, T. S. Operating System Support
for Planetary-Scale Network Services. In Proc. 1st NSDI (San
Francisco, CA, Mar. 2004).

[3] CLARK, B., DESHANE, T., DOW, E., EVANCHIK, S., FIN-
LAYSON, M., HERNE, J., AND MATTHEWS., J. Xen and the
art of repeated research. In Proc. USENIX ’04, Freenix Track
(Jul 2004).

[4] DRAVES, R. P., BERSHAD, B. N., AND FORIN, A. F. Using
Microbenchmarks to Evaluate System Performance. In Proc.
3rd Workshop on Workstation Operating Systems (Apr 1992),
pp. 154–159.

[5] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., AND WILLIAMSON, M. Safe Hardware access
with the Xen Virtual Machine Monitor. In Proc. First OASIS (Oct
2004).

[6] HAND, S., WARFIELD, A., FRASER, K., KOTSOVINOS, E.,
AND MAGENHEIMER, D. Are Virtual Machine Monitors Mi-
crokernels Done Right? In Proceedings of the Tenth Workshop
on Hot Topics in Operating Systems (HotOS X) (Santa Fe, New
Mexico, June 2005).

[7] HIDLEBRAND, D. An architectural overview of QNX. In Proc.
UKERNEL (Apr 1992), pp. 113–126.

[8] KAMP, P.-H., AND WATSON, R. N. M. Jails: Confining the
Omnipotent Root. In Proc. 2nd Int. SANE Conf. (Maastricht, The
Netherlands, May 2000).

[9] LESLIE, I. M., MCAULEY, D., BLACK, R., ROSCOE, T.,
BARHAM, P. T., EVERS, D., FAIRBAIRNS, R., AND HYDEN,
E. The Design and Implementation of an Operating System to
Support Distributed Multimedia Applications. IEEE J. Sel. Ar-
eas Comm. 14, 7 (1996), 1280–1297.

12

[10] LINUX VSERVERS PROJECT.
http://linux-vserver.org/.

[11] MCVOY, L., AND STAELIN, C. lmbench: Portable Tools for Per-
formance Analysis. In Proc. USENIX ’96 (Jan 1996), pp. 279–
294.

[12] MENON, A., SANTOS, J., TURNER, Y., JANAKIRAMAN, G.,
AND ZWAENEPOEL, W. Diagnosing Performance Overheads in
the Xen Virtual Machine Environment. In Proc. 1st VEE (Jun
2005).

[13] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE,
T. A Blueprint for Introducing Disruptive Technology into the
Internet. In Proc. HotNets–I (Princeton, NJ, Oct 2002).

[14] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., AND
LEVY, H. M. Recovering device drivers.

[15] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. pp. 207–222.

[16] SWSOFT. Virtuozzo Technology.
http://www.sw-soft.com/en/products/virtuozzo/.

[17] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT,
E., SNOEREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scal-
ability, Fidelity, and Containment in the Potemkin Virtual Hon-
eyfarm. In Proc. 20th SOSP (Brighton, UK, Oct 2005).

[18] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. In Proc. 5th OSDI (Boston, MA, Dec
2002), pp. 181–194.

[19] WHITAKER, A., COX, R., AND GRIBBLE, S. Configuration
Debugging as Search: Find the Needle in the Haystack. In Proc.
6th OSDI (San Francisco, CA, Dec 2004), pp. 181–194.

[20] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
Performance in the Denali Isolation Kernel. In Proc. 5th OSDI
(Boston, MA, December 2002), pp. 195–209.

13

