
Summary on System V semaphore and POSIX semaphore

 One marked difference between the System V and POSIX semaphore implementations is

that in System V you can control how much the semaphore count can be increased or

decreased; whereas in POSIX, the semaphore count is increased and decreased by 1.

 POSIX semaphores do not allow manipulation of semaphore permissions, whereas System

V semaphores allow you to change the permissions of semaphores to a subset of the original

permission.

 Initialization and creation of semaphores is atomic (from the user's perspective) in POSIX

semaphores.

 From a usage perspective, System V semaphores are clumsy, while POSIX semaphores are

straight-forward

 The scalability of POSIX semaphores (using unnamed semaphores) is much higher than

System V semaphores. In a user/client scenario, where each user creates her own instances

of a server, it would be better to use POSIX semaphores.

 System V semaphores, when creating a semaphore object, creates an array of semaphores

whereas POSIX semaphores create just one. Because of this feature, semaphore creation

(memory footprint-wise) is costlier in System V semaphores when compared to POSIX

semaphores.

 It has been said that POSIX semaphore performance is better than System V-based

semaphores.

 POSIX semaphores provide a mechanism for process-wide semaphores rather than system-

wide semaphores. So, if a developer forgets to close the semaphore, on process exit the

semaphore is cleaned up. In simple terms, POSIX semaphores provide a mechanism for

non-persistent semaphores.

 To compile POSIX semaphore based Producer Consumer problem

gcc -o PC-posixSem buffer.h PC-posixSem.c –pthread

Then execute the program

./PC-posixSem 5 2 2 (for an example)

 To compile fileio1.c

gcc –o fileio1 fileio1.c

 Then execute the program

 ./fileio1 sourcefile copiedfile (Note: sourcefile needs to be a big file)

 .To compile fileio2.c

gcc –o fileio2 fileio2.c

 Then execute the program

 ./fileio2 sourcefile copiedfile (Note: sourcefile needs to be a big file)

 To compile fileioS.c

Then execute the program

 ./fileioS sourcefile copiedfile (Note: sourcefile needs to be a big file)

 To see the difference between sourcefile and copiedfile

o diff sourcefile copiedfile

