
4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 1/7

Page Tables
From OSDev Wiki

The page tables (or page map levels) are used to map each virtual page to a corresponding
physical page. Zero or more virtual pages can correspond to the same physical page. The size
of a page depends on the processor mode (protected, compatibility or long mode), the
extensions used (e.g. PAE) and the virtual address bits supported by the processor (current
AMD64 processors support up to 48­bit virtual addresses).

Contents

1 Determining your page size
2 Recursive mapping
3 Protected/compatibility mode (32­bit) page map

3.1 Non­PAE mode
3.1.1 4 KiB pages
3.1.2 4 MiB pages

3.2 PAE mode
3.2.1 4 KiB pages
3.2.2 2 MiB pages

4 Long mode (64­bit) page map
4.1 48­bit virtual address space

4.1.1 4 KiB pages
4.1.2 2 MiB pages
4.1.3 1 GiB pages

5 See Also
5.1 Articles
5.2 Forum

Determining your page size

To determine the ideal page size, you can't just look at the overhead of the paging structures
alone.

Typically (for user space), each process has at least 3 areas with different characteristics:
executable, read only no­execute and read/write no­execute. When paging is used to enforce
this, you end up with padding from the actual end of each area up to the next page boundary.
You can assume that on average this padding will be 50% of the page size. For example, with
4096 byte pages and 3 areas you'd expect 6 KiB of RAM wasted per process due to padding,
and with 2 MiB pages you'd expect 3 MiB of RAM wasted per process.

Typically (for OSs like Windows and Linux) there's around 50 processes where most use very
little RAM and some use lots (X, browser, etc). If you assume 50 processes that use an average
of 10 MiB of RAM each; then (for 4 KiB pages in long mode) each process (on average) would
use a PML4, PDPT, PD and 5 page tables; or 32 KiB for all paging structures. For 2 MiB pages
each process (on average) would use a PML4, PDPT and a PD; or 12 KiB for all paging
structures.
That gives us some rough figures for comparison. For 50 processes where each process is an



4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 2/7

structures.
That gives us some rough figures for comparison. For 50 processes where each process is an
average of 10 MiB and has 3 different areas:

4 KiB paging will cost about 6 KiB for padding and 32 KiB for paging structures, or about
38 KiB of overhead per process
2 MiB paging will cost about 3 MiB for padding and 12 KiB for paging structures, or about
3084 KiB of overhead per process
4 KiB paging will cost about 1.86 MiB of overhead for all 50 processes combined
2 MiB paging will cost about 150.6 MiB of overhead for all 50 processes combined
With 500 MiB of RAM actually used by all processes; 1.86 MiB of total overhead works out
to about 0.37% more, which is almost nothing
With 500 MiB of RAM actually used by all processes; 150.6 MiB of total overhead works
out to about 23.15% more, which is massive

For performance (e.g. TLB misses) it's much harder to estimate the likely cost, as it depends
on how much of the paging structures remain in the cache (and how much has to be fetched
from RAM), how large the TLBs are (for both small pages and large pages), if the CPU caches
higher level structures (modern CPUs do), the working set of each process and its access
pattern, how often you switch between processes, etc...

However (for typical OSs with typical loads), I'd assume it's very unlikely that the performance
gains you get from using 2 MiB pages is going to justify having roughly 23% more RAM wasted.

Basically, 4 KiB pages (with 4 levels of paging structures) is starting to get a little small, but
the next step up (2 MiB pages with 3 levels of paging structures) is far too big to be practical
for most things.

To reduce the number of levels of paging structures, a better idea would be to also increase
the size of page directories, PDPTs, etc. For example, for 55­bit virtual addresses you could
have 64 KiB pages, 64 KiB page tables, 64 KiB page directories and 64 KiB PDPTs.
Unfortunately we have to wait for Intel (or AMD) to do something like that though.

~ Brendan (http://forum.osdev.org/viewtopic.php?p=198045#p198045)

Luckily though you can freely mix 4k, 2MiB and 1GiB pages. You don't have to use an uniform
page size for everything. So a process having 9MB of data can get 4 2MiB pages and make up
the rest with 4k pages. That saves paging structures, improves TLB usage and does not
increase the overhead at all.

Recursive mapping

To make it easier to change the current address space's page map, you can map an entry of
the highest page map level into itself.

Recursive mapping wastes some virtual address space. This table shows the relative space
used by the recursively mapped page table:

http://forum.osdev.org/viewtopic.php?p=198045#p198045


4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 3/7

Mode Page
size

Max page map
size

Used virtual
space

Total virtual
space

Ratio

Protected mode
(non­PAE)

4 KiB 4 MiB
4 MiB 4 GiB 1/1024 (0.1%)

4 MiB 4 KiB

Protected mode
(PAE)

4 KiB 8 MiB
1 GiB 4 GiB 1/4 (25%)

2 MiB 16 KiB

Long mode (48­bit)

4 KiB 512 GiB

512 GiB 256 TiB 1/512 (0.2%)2 MiB 1 GiB

1 GiB 2 MiB

The Recursive mapping column in the tables below shows the base address and offset to use
to get to a particular page map level when the page map is recursively mapped as the last

entry.

Protected/compatibility mode (32­bit) page map

In protected mode, the virtual address space is 32­bit (4 GiB) in size, regardless of whether
PAE is enabled or not.

Non­PAE mode

Without enabling PAE, the page map can reference physical pages with addresses up to 32­bit
(4 GiB).

4 KiB pages

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x1000 (4
KiB)

12
bits

­ 0x1 (1) ­  

1 PT 0x1000
(4
KiB)

0x40
0000

(4
MiB)

10
bits 1024 0x400 (1024)

0xFFC0
0000

+
0x1000
* PDi

2 PD 0x1000 (4
KiB)

0x10000
0000

(4
GiB)

10
bits

1024 0x10
0000

(1048576) 0xFFFF
F000

 

4 MiB pages

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x40 0000 (4
MiB)

22
bits

­ 0x1 (1) ­  

2 PD 0x1000 (4
KiB)

0x10000
0000

(4
GiB)

10
bits

1024 0x400 (1024) 0xFFC0 0000  



4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 4/7

PAE mode

With PAE, the page map can reference physical pages with addresses up to 36­bit (64 GiB).

4 KiB pages

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x1000 (4
KiB)

12
bits

­ 0x1 (1) ­  

1 PT 0x1000
(4
KiB)

0x20
0000

(2
MiB)

9
bits 512 0x200 (512)

0xC000
0000

+ 0x20
0000 *
PDi +
0x1000
* PTi

2 PD 0x1000
(4
KiB)

0x4000
0000

(1
GiB)

9
bits 512 0x40000 (262144)

0xC060
0000

+
0x1000
* PDi

3 PDP 0x20 (32
bytes)

0x10000
0000

(4
GiB)

2
bits

4 0x10
0000

(1048576) 0xC060
3000

 

2 MiB pages

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x20 0000 (2
MiB)

21
bits

­ 0x1 (1) ­  

2 PD 0x1000 (4 KiB)
0x4000

0000
(1
GiB)

9
bits 512 0x200 (512)

0xC000
0000

+ 0x20
0000 *
PDi

3 PDP 0x20 (32
bytes)

0x10000
0000

(4
GiB)

2
bits

4 0x800 (2048) 0xC060
0000

 

Long mode (64­bit) page map

In long mode, the virtual address space could in theory be 64­bit (16 EiB) in size, but individual
processors allow only a portion of that space to be addressed. The currently most common
processor implementations allow a 48­bit (256 TiB) address space. For such virtual addresses
bits 48­63 must be a copy of bit 47 (similar to sign extension), and this splits the virtual
address space in a higher half and a lower half.

48­bit virtual address space

4 KiB pages



4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 5/7

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x1000 (4
KiB)

12
bits

­ 0x1 (1) ­  

1 PT 0x1000
(4
KiB)

0x20
0000

(2
MiB)

9
bits 512 0x200 (512)

0xFFFF
FF80
0000
0000

+
0x4000
0000 *
PDPi +
0x20
0000 *
PDi +
0x1000
* PTi

2 PD 0x1000
(4
KiB)

0x4000
0000

(1
GiB)

9
bits 512 0x40000 (262144)

0xFFFF
FFFF
C000
0000

+ 0x20
0000 *
PDPi +
0x1000
* PDi

3 PDP 0x1000 (4
KiB)

0x80
0000
0000

(512
GiB)

9
bits

512 0x800
0000

(134217728)

0xFFFF
FFFF
FFE0
0000

+
0x1000
* PDPi

4 PML4 0x1000 (4
KiB)

0x10000
0000
0000

(256
TiB)

9
bits

512
0x10
0000
0000

(68719476736)

0xFFFF
FFFF
FFFF
F000

 

2 MiB pages



4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 6/7

Level Table Size Range Bits Entries Pages Recursive
mapping

0 (page) ­   0x20
0000

(2
MiB)

21
bits

­ 0x1 (1) ­  

2 PD 0x1000
(4
KiB)

0x4000
0000

(1
GiB)

9
bits 512 0x200 (512)

0xFFFF
FF80
0000
0000

+
0x4000
0000 *
PDPi +
0x20
0000 *
PDi

3 PDP 0x1000 (4
KiB)

0x80
0000
0000

(512
GiB)

9
bits

512 0x40000 (262144)

0xFFFF
FFFF
C000
0000

+ 0x20
0000 *
PDPi

4 PML4 0x1000 (4
KiB)

0x10000
0000
0000

(256
TiB)

9
bits

512 0x8000000 (134217728)

0xFFFF
FFFF
FFE0
0000

 

1 GiB pages

Level Table Size Range Bits Entries Pages Recursive mapping

0 (page) ­   0x4000
0000

(1
GiB)

30
bits

­ 0x1 (1) ­  

3 PDP 0x1000 (4
KiB)

0x80 0000
0000

(512
GiB)

9
bits

512 0x200 (512)

0xFFFF
FF80
0000
0000

+
0x4000
0000 *
PDPi

4 PML4 0x1000 (4
KiB)

0x10000
0000 0000

(256
TiB)

9
bits

512 0x40
000

(262144)

0xFFFF
FFFF
C000
0000

 

See Also

Articles

Paging
Page Frame Allocation

Forum

http://wiki.osdev.org/Paging
http://wiki.osdev.org/Page_Frame_Allocation


4/26/2017 Page Tables ­ OSDev Wiki

http://wiki.osdev.org/Page_Tables 7/7

Time for 2 MB pages? (http://forum.osdev.org/viewtopic.php?f=1&t=24292)

Retrieved from "http://wiki.osdev.org/index.php?title=Page_Tables&oldid=17790"
Category: Memory management

This page was last modified on 12 March 2015, at 15:10.
This page has been accessed 19,411 times.

http://forum.osdev.org/viewtopic.php?f=1&t=24292
http://wiki.osdev.org/index.php?title=Page_Tables&oldid=17790
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:Memory_management

