
1

Chapter 14: File System Implementation

▪ File-System Structure

▪ File-System Operations

▪ Directory Implementation

▪ Allocation Methods

▪ Free-Space Management

▪ Efficiency and Performance

▪ Recovery

▪ Example: WAFL File System

Objectives

▪ Describe the details of implementing local file systems and

directory structures

▪ Discuss block allocation and free-block algorithms and trade-offs

▪ Explore file system efficiency and performance issues

▪ Look at recovery from file system failures

▪ Describe the WAFL file system as a concrete example

1

2

2

File-System Structure

▪ File structure

• Logical storage unit

• Collection of related information

▪ File system resides on secondary storage (disks)

• Provided user interface to storage, mapping logical to physical

• Provides efficient and convenient access to disk by allowing

data to be stored, located retrieved easily

▪ Disk provides in-place rewrite and random access

• I/O transfers performed in blocks of sectors (usually 512

bytes)

▪ File control block (FCB) – storage structure consisting of

information about a file

▪ Device driver controls the physical device

▪ File system organized into layers

Layered File System

3

4

3

File System Layers

▪ Device drivers manage I/O devices at the I/O control layer

• Given commands like “read drive1, cylinder 72, track 2, sector 10,

into memory location 1060” outputs low-level hardware specific

commands to hardware controller

▪ Basic file system given command like “retrieve block 123” translates

to device driver

▪ Also manages memory buffers and caches (allocation, freeing,

replacement)

• Buffers hold data in transit

• Caches hold frequently used data

▪ File organization module understands files, logical address, and

physical blocks

▪ Translates logical block # to physical block #

▪ Manages free space, disk allocation

File System Layers (Cont.)

▪ Logical file system manages metadata information

• Translates file name into file number, file handle, location by

maintaining file control blocks (inodes in UNIX)

• Directory management

• Protection

▪ Layering useful for reducing complexity and redundancy, but adds

overhead and can decrease performanceTranslates file name into file

number, file handle, location by maintaining file control blocks (inodes

in UNIX)

• Logical layers can be implemented by any coding method

according to OS designer

5

6

4

▪ Many file systems, sometimes many within an operating system

• Each with its own format (CD-ROM is ISO 9660; Unix has UFS,

FFS; Windows has FAT, FAT32, NTFS as well as floppy, CD,

DVD Blu-ray, Linux has more than 130 types, with extended file

system ext3 and ext4 leading; plus distributed file systems, etc.)

• New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

File System Layers (Cont.)

File-System Operations

▪ We have system calls at the API level, but how do we implement their

functions?

• On-disk and in-memory structures

▪ Boot control block contains info needed by system to boot OS from

that volume

• Needed if volume contains OS, usually first block of volume

▪ Volume control block (superblock, master file table) contains

volume details

• Total # of blocks, # of free blocks, block size, free block pointers or

array

▪ Directory structure organizes the files

• Names and inode numbers, master file table

7

8

5

File-System Implementation (Cont.)

▪ Per-file File Control Block (FCB) contains many details about

the file

• typically inode number, permissions, size, dates

• NFTS stores into in master file table using relational DB

structures

In-Memory File System Structures

▪ Mount table storing file system mounts, mount points, file system

types

▪ system-wide open-file table contains a copy of the FCB of each file

and other info

▪ per-process open-file table contains pointers to appropriate entries

in system-wide open-file table as well as other info

▪ The following figure illustrates the necessary file system structures

provided by the operating systems

▪ Figure 12-3(a) refers to opening a file

▪ Figure 12-3(b) refers to reading a file

▪ Plus buffers hold data blocks from secondary storage

▪ Open returns a file handle for subsequent use

▪ Data from read eventually copied to specified user process memory

address

9

10

6

In-Memory File System Structures

Directory Implementation

▪ Linear list of file names with pointer to the data blocks

• Simple to program

• Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use B+

tree

▪ Hash Table – linear list with hash data structure

• Decreases directory search time

• Collisions – situations where two file names hash to the same

location

• Only good if entries are fixed size, or use chained-overflow

method

11

12

7

Allocation Methods - Contiguous

▪ An allocation method refers to how disk blocks are allocated for files:

▪ Contiguous allocation – each file occupies set of contiguous blocks

• Best performance in most cases

• Simple – only starting location (block #) and length (number of

blocks) are required

• Problems include finding space for file, knowing file size, external

fragmentation, need for compaction off-line (downtime) or on-

line

Contiguous Allocation

▪ Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

13

14

8

Extent-Based Systems

▪ Many newer file systems (i.e., Veritas File System) use a modified

contiguous allocation scheme

▪ Extent-based file systems allocate disk blocks in extents

▪ An extent is a contiguous block of disks

• Extents are allocated for file allocation

• A file consists of one or more extents

Allocation Methods - Linked

▪ Linked allocation – each file a linked list of blocks

• File ends at nil pointer

• No external fragmentation

• Each block contains pointer to next block

• No compaction, external fragmentation

• Free space management system called when new block needed

• Improve efficiency by clustering blocks into groups but increases

internal fragmentation

• Reliability can be a problem

• Locating a block can take many I/Os and disk seeks

15

16

9

Linked Allocation

▪ Each file is a linked list of disk blocks: blocks may be scattered

anywhere on the disk

pointerblock =

▪ Mapping

Block to be accessed is the Qth block in the linked chain of blocks

representing the file.

Displacement into block = R + 1

LA/511

Q

R

Linked Allocation

18

19

10

File-Allocation Table

Allocation Methods - Indexed

▪ Indexed allocation

• Each file has its own index block(s) of pointers to its data blocks

▪ Logical view

index table

20

21

11

Example of Indexed Allocation

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Combined Scheme: UNIX UFS

22

27

12

Performance

▪ Best method depends on file access type

• Contiguous great for sequential and random

▪ Linked good for sequential, not random

▪ Declare access type at creation -> select either contiguous or linked

▪ Indexed more complex

• Single block access could require 2 index block reads then data

block read

• Clustering can help improve throughput, reduce CPU overhead

▪ For NVM, no disk head so different algorithms and optimizations

needed

• Using old algorithm uses many CPU cycles trying to avoid non-

existent head movement

• With NVM goal is to reduce CPU cycles and overall path needed

for I/O

Free-Space Management

▪ File system maintains free-space list to track available

blocks/clusters

• (Using term “block” for simplicity)

▪ Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

28

30

13

Free-Space Management (Cont.)

▪ Bit map requires extra space

• Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

▪ Easy to get contiguous files

Linked Free Space List on Disk

▪ Linked list (free list)

• Cannot get contiguous
space easily

• No waste of space

• No need to traverse the
entire list (if # free
blocks recorded)

31

32

14

Free-Space Management (Cont.)

▪ Grouping

• Modify linked list to store address of next n-1 free blocks in first
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

▪ Counting

• Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

 Keep address of first free block and count of following free
blocks

 Free space list then has entries containing addresses and
counts

Free-Space Management (Cont.)

▪ Space Maps

• Used in ZFS

• Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory ->
thousands of I/Os

• Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs

• Each metaslab has associated space map

 Uses counting algorithm

• But records to log file rather than file system

 Log of all block activity, in time order, in counting format

• Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

33

34

15

TRIMing Unused Blocks

▪ HDDS overwrite in place so need only free list

▪ Blocks not treated specially when freed

• Keeps its data but without any file pointers to it, until overwritten

▪ Storage devices not allowing overwrite (like NVM) suffer badly with
same algorithm

• Must be erased before written, erases made in large chunks
(blocks, composed of pages) and are slow

• TRIM is a newer mechanism for the file system to inform the
NVM storage device that a page is free

 Can be garbage collected or if block is free, now block can be
erased

Efficiency and Performance

▪ Efficiency dependent on:

• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of metadata structures

• Fixed-size or varying-size data structures

35

36

16

Efficiency and Performance (Cont.)

▪ Performance

• Keeping data and metadata close together

• Buffer cache – separate section of main memory for frequently

used blocks

• Synchronous writes sometimes requested by apps or needed

by OS

 No buffering / caching – writes must hit disk before

acknowledgement

 Asynchronous writes more common, buffer-able, faster

• Free-behind and read-ahead – techniques to optimize

sequential access

• Reads frequently slower than writes

Page Cache

▪ A page cache caches pages rather than disk blocks using virtual

memory techniques and addresses

▪ Memory-mapped I/O uses a page cache

▪ Routine I/O through the file system uses the buffer (disk) cache

▪ This leads to the following figure

37

38

17

I/O Without a Unified Buffer Cache

Unified Buffer Cache

▪ A unified buffer cache uses the same page cache to cache both

memory-mapped pages and ordinary file system I/O to avoid double

caching

▪ But which caches get priority, and what replacement algorithms to

use?

39

40

18

I/O Using a Unified Buffer Cache

Recovery

▪ Consistency checking – compares data in directory structure with

data blocks on disk, and tries to fix inconsistencies

• Can be slow and sometimes fails

▪ Use system programs to back up data from disk to another storage

device (magnetic tape, other magnetic disk, optical)

▪ Recover lost file or disk by restoring data from backup

41

42

19

Log Structured File Systems

▪ Log structured (or journaling) file systems record each metadata

update to the file system as a transaction

▪ All transactions are written to a log

• A transaction is considered committed once it is written to the log

(sequentially)

• Sometimes to a separate device or section of disk

• However, the file system may not yet be updated

▪ The transactions in the log are asynchronously written to the file

system structures

• When the file system structures are modified, the transaction is

removed from the log

▪ If the file system crashes, all remaining transactions in the log must

still be performed

▪ Faster recovery from crash, removes chance of inconsistency of

metadata

Example: WAFL File System

▪ Used on Network Appliance “Filers” – distributed file system

appliances

▪ “Write-anywhere file layout”

▪ Serves up NFS, CIFS, http, ftp

▪ Random I/O optimized, write optimized

• NVRAM for write caching

▪ Similar to Berkeley Fast File System, with extensive modifications

43

44

20

The WAFL File Layout

Snapshots in WAFL

45

46

21

The Apple File System

47

