
Processes 1

Processes 1

Chapter 3:

Processes

2

Outline

 Overview.

 Process Scheduling.

 Operations on Processes.

 Interprocess Communication.

 Examples of IPC Systems.

 Communication in Client-Server Systems.

Processes 2

3

Process Concept

 The name of CPU activities varies in different systems:
 Batch system – jobs.

 Time-shared systems – user programs or tasks.

 Textbook uses the terms job and process almost
interchangeably, but prefers process.

 However, much of operating-system theory and
terminology was developed during the batch era.

 Job (such as job scheduling) would be used to avoid
misunderstanding.

4

Process Concept (cont’d)

 Process (active):

 A program (passive) in
execution.

 Execution must progress in
sequential fashion.

 A process in memory includes:

 Text section: the program
code.

 Stack: contains temporary
data (local variable, function parameters

…).

 Data section: contains global
variables.

 Heap: used for dynamical
memory allocation.

 Program counter: the address
of next instruction.

 Register context Process in memory

Processes 3

5

Process Concept (cont’d)

 A program is not a process:

 A program is a passive entity; a list of instruction stored
on disk.

 A process is an active entry.
 A program becomes a process when an executable file is loaded into

memory.

 Two (or more) processes may be associated with the same
program.

 For example, a user may invoke many copies of the web
browser program.

 Each of these is a separate process.
 While the text sections are equivalent, the data, heap, and

stack sections vary.

6

Process State

 The state of a process is defined by the current activity of that

process.

 Each process may be in one of the following states:

 New: the process is being created.

 Running: instructions are being executed.

 Waiting: the process is waiting for some event to occur.

 Such as an I/O completion.

 Ready: the process is waiting to be assigned to a process.

 Terminated: the process has finished execution.

 Only one process can be running on any processor at any

instance.

 Many processes may be ready and waiting.

Processes 4

7

Process State (cont’d)

Diagram of Process State

8

Process Control Block

 Process control block (PCB): a
representation of a process in
the operating system.

 Information associated with
each PCB:

 Process state.

 Program counter.
 The address of next

instruction.

 CPU registers.

 CPU scheduling
information.
 Process priority.

 Memory-management
information.

 Accounting information.
 E.g., amount of CPU time.

 I/O status information.
 Allocated devices, files, and

so on.

Different processes have different PCB
information.

Processes 5

CPU Switches From Process to Process

10

Threads

 So far, we focus on single-thread process.

 Only one task can be performed at one time.

 For example, a single-thread word program can not run the
spell checker when the user simultaneously type in
characters.

 Most modern operating system allow multiple-thread

execution.

 A process can have multiple threads of execution and thus
can perform more than one task at a time.

Processes 6

11

Process Scheduling

 Multiprogramming:

 To have some process running at all time.

 To maximize CPU utilization.

 Time sharing:

 To switch the CPU among processes so frequently.

 Users can interact with each program while it is running.

 To do so … we need …

 Process scheduler:
 Select an available process for execution on the CPU.

 The rest have to wait until the CPU is free and can be rescheduled.

12

Scheduling Queues and Schedulers

 The operating system usually contains a lot of queues (FIFO).

 Contain pointers to the first and final PCBs in the list
(queue).

 Each PCB includes a pointer field that points to the next
PCB in the queue.

 Job queue:
 Processes are initially spooled to a mass-storage device (e.g., a disk),

where they are kept for later execution.

 Job scheduler later selects processes from this pool and load them into
memory for execution.

 Often in batch system. On some operating systems, job queue
and job scheduler may be absent.

 Such as UNIX and MS Windows.

 Just put every new process in memory for execution.

Processes 7

13

Scheduling Queues and Schedulers (cont’d)

 Ready queue:
 Contain the processes residing in main memory.

 Those processes are ready and waiting to execute.

 Operating systems also include other queues.

 Device queue:
 A list of processes waiting for a particular I/O device.

 For instance, there are many processes make requests to a disk.

14

Scheduling Queues and Schedulers (cont’d)

Ready Queue And Various I/O Device Queues

Processes 8

15

Scheduling Queues and Schedulers (cont’d)

Processes migrate among the various queues.

A new process is initially put in
the ready queue (ready state).

Eventually, it will be selected
(dispatched) for execution (running state).

The process may issue
an I/O request, and

switches to the waiting state.

The process may create a
new child process and wait

for the child process’s
termination (waiting state).

The process may be removed
from the CPU by an interrupt,
and be put back in the ready

queue (ready state).
When the process terminates, it is removed from all
Queues and has its PCB and resources deallocated.

16

Scheduling Queues and Schedulers (cont’d)

 A process migrates among the various scheduling queues

throughout its lifetime.

 The operating system must select process from these queues in
some fashion.

 Two main schedulers:

 Job scheduler (or long-term scheduler) – selects which processes
should be brought into the ready queue.

 CPU scheduler (or short-term scheduler) – selects which process
should be executed next and allocates CPU.

 The primary difference between the schedulers: frequency of

execution.

 Often, the short-term scheduler executes at leas once every 100
ms.

 The long-term scheduler executes much less frequently.

Processes 9

17

Scheduling Queues and Schedulers (cont’d)

 The short-term scheduler must be fast.
 If it takes 10 ms to decide to execute a process for 100 ms, then

10 / (10 + 100) = 9% of the CPU is being wasted for scheduling
the work.

 However, because of the longer interval between executions, the
long-term scheduler can afford to take more time to decision.

 The long-term scheduler controls the degree of multiprogramming.

 In general, processes can be described as either I/O bound or CPU
bound.
 A I/O-bound process spends more of its time doing I/O.
 A CPU-bound process uses more of its time doing

computations.
 A good long-term scheduler should select a good process mix of

I/O-bound and CPU-bound processes that the system will be
balanced.

18

Scheduling Queues and Schedulers (cont’d)

 For systems with no long-term schedulers:

 The stability of the systems may depend on the self-
adjusting nature of human users.
 If the performance declines to unacceptable levels on a multi-users

system, some users will simply quit.

 Some operating systems may introduce a medium-term
scheduler.

 It removes processes from memory and thus reduce the
degree of multi-programming (swap out).

 Later, the processes can be reintroduced into memory for
execution (swap in).

 Swapping may improve the process mix.
 Or for better memory management.

Processes 10

19

Scheduling Queues and Schedulers (cont’d)

Addition of medium-term scheduling to the queueing diagram.

 Medium-term scheduler can be added if degree of multiple

programming needs to decrease

 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only

one process to run, others suspended

 Due to screen real estate, user interface limits iOS provides

for a

 Single foreground process- controlled via user interface

 Multiple background processes– in memory, running, but

not on the display, and with limits

 Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback

 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks

 Service can keep running even if background process is

suspended

 Service has no user interface, small memory use

Processes 11

21

Context Switch

 When CPU switches to another process, the system must
save the context of the old process and load the saved
context for the new process.

 E.g., interrupts cause the operating system to change a
CPU from its current task to run a kernel routine.

 Such a switching is known as a context switch.

 The context is represented in the PCB of the process.

 The value of the CPU registers.

 The process state.

 Program counter.

 …

22

Context Switch (cont’d)

 Context-switch time is overhead; the system

does no useful work while switching.

 Dependent on hardware support.

 Some processors provide multiple sets of
registers.

 Multiple contexts loaded at once

 A context switch simply requires changing the pointer to
the current register set.

Processes 12

23

Operations on Processes

24

Process Creation

 A process may create several new processes, via a create-
process system call.

 The creating process is called a parent process, and the
new processes are called the children of that process.

 New processes may in turn create other processes, forming
a tree of processes.

 Most operating system (UNIX and MS Windows) identify
processes according to a unique process identifier (pid).

 Usually an integer number

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

Processes 13

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

systemd is a system and service manager for Linux operating
systems. When run as first process on boot (as PID 1), it acts
as init system that brings up and maintains user space services.

26

Process Creation (cont’d)

 On UNIX, the ps command can be used to obtain the

information of all process.

 You may use pstree to see a tree of processes

 pstree –np

 pstree –p 1

Processes 14

27

Process Creation (cont’d)

 When parent process holds certain resources (files, I/O devices).

 Parent and children share all resources.

 Children share subset of parent’s resources.

 Parent and child share no resources.

 When a process creates a new process, two possibilities exist in

terms of execution:

 Parent and children execute concurrently.

 Parent waits until children terminate.

 There are also two possibilities in terms of the address space of

the new process:

 Child duplicate of parent.

 Child has a program loaded into it.

28

Process Creation (cont’d)

 UNIX examples:

 Fork() system call creates new process (POSIX).

 The new process consists of a copy of the address space
of the original process.

 Both process continue (concurrently) execution at the
instruction after the fork().

 But … how to distinguish?
 The return code for the fork() is zero for the new (child) process.

 The process identifier (PID) of the child is returned to the parent.

Processes 15

29

Process Creation (cont’d)

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

pid_t pid;

pid = fork(); /* fork another process */
if (pid < 0) { /* error occurred */

printf("Fork Failed\n");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf ("Child Complete\n");
exit(0);

}
}

fork_test.c

30

Process Creation (cont’d)

 Typically, the exec() (or its family, such as execlp()) system call
(POSIX) is used after a fork() by one of the two processes
to replace the process’s memory space with a new
program.
 For example, the child process overlays its address space with UNIX

command /bin/ls using the execlp() system call.

 The parent can wait for the child process to complete with
the wait() system call (POSIX).
 When the child process completes, the parent process resumes from

the call to wait.

 exit() system call: cause normal process termination
(POSIX).

Processes 16

31

Process Creation (cont’d)

32

Process Termination

 Process executes last statement and asks the operating system to
delete it by using the exit() system call.

 Can return a status value (typically an integer) to its parent process
(via the wait() system call).

 Process’ resources are deallocated by operating system.

 Parent may terminate execution of children processes (kill() or

abort()) when:

 Child has exceeded allocated resources.

 Task assigned to child is no longer required.

 If parent is exiting.

 Some operating system do not allow child to continue if its parent
terminates.

 All children terminated - cascading termination.

Processes 17

Creating a Separate Process via Windows API

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)

 If one web site causes trouble, entire browser can hang or
crash

 Google Chrome Browser is multiprocess with 3 different

types of processes:

 Browser process manages user interface, disk and
network I/O

 Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened
 Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

 Plug-in process for each type of plug-in

Processes 18

35

Interprocess Communication

36

Cooperating Processes

 Processes may be independent processes or cooperating

processes.

 Independent process cannot affect or be affected by the
execution of another process.

 Cooperating process can affect or be affected by the execution
of another process.

 Reasons for process cooperation:

 Information sharing.

 Computation speed-up.

 Can be achieved only if the system have multiple CPUs.

 Modularity.

 Convenience.

 Users may work on many tasks (or sub-tasks) at the same time.

Processes 19

37

Cooperating Processes (cont’d)

 Interprocess communication (IPC) is a mechanism that

allows cooperating processes to exchange data and

information.

 Two typical models of IPC:

 Shared memory.
 A region of memory is shared by cooperating processes.

 Processes can exchange information by reading and writing
data to the region.

 Message passing.
 Communication takes place by means of messages exchanged

between the processes.

 Both of the models are common and implemented in
many operating systems.

38

Cooperating Processes (cont’d)

 Message passing is useful for exchanging smaller amounts of

data.

 Because no conflicts need be avoided.

 Usually slow, because message-passing systems are generally
implemented as system calls.

 Require the more time-consuming task of kernel intervention.

 Shared memory allows maximum speed and convenience of

communication.

 It can be done at memory speeds when within a computer.

 Is faster than message passing.

 Once shared memory is established, all accesses are treated as
routine memory access.

 No assistance from the kernel is required.

Processes 20

Cooperating Processes (cont’d)

(a) Message passing. (b) shared memory.

40

Shared-Memory Systems

 A process creates a shared-memory region residing in its

address space.

 Other processes that wish to communicate using this

shared-memory segment must attach it to their address

space.

 Then, they can exchange information by reading and writing

data in the shared area.

 The processes are responsible for ensuring that they are not

writing to the same location simultaneously.

 Chapter 5 will discuss synchronization to synchronize
concurrent accesses.

Processes 21

41

Shared-Memory Systems (cont’d)

 Shared memory as a producer-consumer problem:

 producer process produces information that is consumed
by a consumer process.

 A buffer (shared memory) can be filled by the producer and
emptied by the consumer.

 Two types of buffers:

 unbounded-buffer places no practical limit on the size of
the buffer.
 The consumer may have to wait for new items.

 But the producer can always produce new items.

 bounded-buffer assumes that there is a fixed buffer size.
 The consumer may have to wait for new items.

 The producer have to wait if the buffer is full.

42

Shared-Memory Systems (cont’d)

 Implementation:  The buffer is implemented as a

circular array:

 in=(in++)%BUFFER_SIZE

 out=(out++)%BUFFER_SIZE

 At most BUFFER_SIZE-1 items in

the buffer at the same time.

 Empty: in == out

 Full: ((in+1)%BUFFER_SIZE)

== out

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

in points to the next free position.
out points to the first full position.

buffer

0 1 BUFFER_SIZE-1

Processes 22

43

Shared-Memory Systems (cont’d)

 The producer process:

 The consumer process

item nextProduced;

while (true) {
/* Produce an item */
while (((in = (in + 1) % BUFFER_SIZE) == out)

; // do nothing
buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;

}

item nextConsumed

while (true) {
while (in == out)

; /* do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

}

44

POSIX Shared Memory Example

 A process must first create a shared memory segment using
the shmget() system call (Shared Memory GET).

 segment_id = shmget(IPC_PRIVATE, size,

S_IRUSR | S_IWUSR);

set to IPC_PRIVATE to create

a new shared-memory segment.

Size in bytes of the
shared memory

The permission, S_IRUSR | S_IWUSR
indicates that the owner may read or write.

Return an integer identifier for
the shared-memory segment.

Processes 23

DSS Team 45

POSIX Shared Memory Example (cont’d)

shm_perm

shm_segsz

shm_atime

shm_dtime

shm_ctime

shm_cpid

shm_lpid

shm_nattach

shm_pages

attaches

0

shmary

SHMMNI-1

struct shmid_ds

Table of allocated

memory segments

attachments

cyclic list of struct

vm_area_struct

http://www.tldp.org/LDP/lpg/node68.html

DSS Team 46

POSIX Shared Memory Example (cont’d)

 structure shmid_ds in “include/linux/shm.h”

struct shmid_ds {

struct ipc_perm shm_perm; /* operation perms */

int shm_segsz; /* size of segment (bytes) */

__kernel_time_t shm_atime; /* last attach time */

__kernel_time_t shm_dtime; /* last detach time */

__kernel_time_t shm_ctime; /* last change time */

__kernel_ipc_pid_t shm_cpid; /* pid of creator */

__kernel_ipc_pid_t shm_lpid; /* pid of last operator */

unsigned short shm_nattch; /* no. of current attaches */

unsigned short shm_unused; /* compatibility */

void *shm_unused2; /* ditto - used by DIPC */

void *shm_unused3; /* unused */

};

Processes 24

47

POSIX Shared Memory Example (cont’d)

 Processes that wish to access a shared-memory segment
must attach it to their address space using the shmat()

(Shared Memory Attach) system call.

 shared_memory = (char *) shmat(segment_id,

NULL, 0);

The integer identifier of the shared-
memory segment being attached.

Mode flag: 0 allows both reads
and writes to the shared region.

A location where the shared memory will be attached,
if NULL, the system chooses a suitable address at which to

attach the segment.

A pointer, points to the beginning
location of the attached shared memory.

Cast it as a character string.

48

POSIX Shared Memory Example (cont’d)

 Then, the process can access the shared memory as a

routine memory access using the pointer returned from
shmat().

 sprintf(shared_memory, “hello”);

 Other processes sharing this segment would see the

updates to the shared memory segment.

Processes 25

49

POSIX Shared Memory Example (cont’d)

 When a process no longer requires access to the shared-

memory segment, it detaches the segment from its address

space.

 shmdt(shared_memory);

 Finally, a shared-memory segment can be removed from the
system with the shmctl() system call.

 Shmctl(segment_id, IPC_RMID, NULL);

Pass the pointer of the shared-
memory region to detach.

Destroy the shared segmentThe integer identifier of the
shared-memory segment.

50

#include <stdio.h> // shm_test.c
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{

/* the identifier for the shared memory segment */
int segment_id;
/* a pointer to the shared memory segment */
char* shared_memory;
/* the size (in bytes) of the shared memory segment */
const int segment_size = 4096;

/* allocate a shared memory segment */
segment_id = shmget(IPC_PRIVATE, segment_size, S_IRUSR | S_IWUSR);

/* attach the shared memory segment */
shared_memory = (char *) shmat(segment_id, NULL, 0);

/* write a message to the shared memory segment */
sprintf(shared_memory, "Hi there!");

/* now print out the string from shared memory */
printf("*%s\n", shared_memory);

/* now detach the shared memory segment */
shmdt(shared_memory);

/* now remove the shared memory segment */
shmctl(segment_id, IPC_RMID, NULL);

return 0;
}

POSIX Shared Memory Example (cont’d)

Processes 26

POSIX Shared Memory Example -- producer

POSIX Shared Memory Example -- consumer

Processes 27

53

Message-Passing Systems

 Processes communicate with each other without
resorting to shared variables.

 The communication actions are synchronized.

 Useful in a distributed (network) environment.

 A message-passing facility provides at least two
operations:
 send(message)

 receive(message)

 message size can be fixed or variable.
 fixed-sized messages are easy to implement, but makes the

programming task difficult.

 Variable-sized messages require a more complex system-
level implementation, but the programming task becomes
simpler.

54

Message-Passing Systems (cont’d)

 Processes that want to communicate must have a way to refer to

each other.

 Direct-symmetry-communication:

 processes that want to communicate must explicitly name the
recipient or sender of the communication.

 send(P, message) – send a message to process P.

 receive(Q, message) – receive a message from process Q.

 Direct-asymmetry-communication:

 Only the sender names the recipient.

 send(P, message) – send a message to process P.

 receive(id, message) – receive a message from any process;
the variable id is set to the name of the sender.

Processes 28

55

Message-Passing Systems (cont’d)

 The disadvantage in both of these hard-coding schemes (symmetric

and asymmetric).
 Changing the identifier of a process may necessitate examining all

other processes.
 All references to the old identifier must be modified to the new

identifier.

 Indirect communication:
 The messages are sent to and received from mailboxes, or

ports.
 Each mailbox has a unique identification.
 A process can communicate with some other process via a

number of different mailboxes.
 A mailbox may be owned either by a process of by the operating

system.

 send(A, message) – send a message to mailbox A.
 receive(A, message) – receive a message from mailbox A.

56

Message-Passing Systems (cont’d)

 In indirect communication scheme, a communication link

has the following properties:

 A link is established between a pair of processes only if
both members of the pair have a shared mailbox.

 A link may associated with associated with more than two
processes.

 Between each pair of communicating processes, there may
be a number of different links.

Processes 29

57

Message-Passing Systems (cont’d)

 A practical problem of mailbox sharing:

 P1, P2, and P3 share mailbox A.

 P1, sends; P2 and P3 receive.

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes.

 Allow only one process at a time to execute a receive
operation.

 Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

58

Message-Passing Systems (cont’d)

 There are different design options for implementing the send()

and receive() primitives.

 Blocking (synchronous) send: the sending process is blocked until
the message is received by the receiving process or by the mail
box.

 Nonblocking (asynchronous) send: the sending process sends the
message and resumes operation.

 Blocking receive: the receiver blocks until a message is
available.

 Nonblocking receive: the receiver retrieves either a valid
message or a null.

 Different combinations of send() and receive() are possible.

 E.g., rendezvous: send() and receive() are blocking, a trivial

solution to the producer-consumer problem.

Processes 30

59

Message-Passing Systems (cont’d)

 Buffering:

 Whether communication is direct or indirect, messages
exchanged by communicating processes reside in a
temporary queue.

 Queue can be:
 Zero capacity: can not have any messages waiting in it.

 The sender must block until the recipient receives the message.

 Bounded capacity: the queue has finite length n.

 If the queue is full, the sender must block until space is available
in the queue.

 Unbounded capacity: the sender never blocks.

60

Message Based Communication-Linux

 commnunicating with messages

 Processes can

 send messages to the message queues.

 receive messages from the message queues.

 FIFO like

 Messages are received in the same order in which they are
entered in the message queue.

 struct msqid_ds

 Linux uses the structure msqid_ds to handle the message
queues.

 Below operations are used to handle a message queue.

 msgget(), msgsnd(), msgrcv(), msgctl()

Processes 31

61

message queues

msg-perm

msg_first

msg_last

msg_stime

msg_rtime

msg_ctime

wwait

rwait

msg_cbytes

msg_qnum

msg_qbytes

msg_lspid

msg_lrpid

msg_next

msg_type

msg_spot

msg_ts

msg_next

msg_type

msg_spot

msg_ts

msg_next

msg_type

msg_spot

msg_ts

Data DataData

0

msgary

MSGMNI-1

struct msqid_ds struct msg

62

msqid_ds

 http://tldp.org/LDP/lpg/node32.html

 structure msqid_ds in “include/linux/msg.h”

struct msqid_ds {

struct ipc_perm msg_perm;

struct msg *msg_first; /* first message on queue */

struct msg *msg_last; /* last message in queue */

__kernel_time_t msg_stime; /* last msgsnd time */

__kernel_time_t msg_rtime; /* last msgrcv time */

__kernel_time_t msg_ctime; /* last change time */

struct wait_queue *wwait;

struct wait_queue *rwait;

unsigned short msg_cbytes; /* current number of bytes on queue */

unsigned short msg_qnum; /* number of messages in queue */

unsigned short msg_qbytes; /* max number of bytes on queue */

__kernel_ipc_pid_t msg_lspid;/* pid of last msgsnd */

__kernel_ipc_pid_t msg_lrpid;/* last receive pid */

};

http://tldp.org/LDP/lpg/node32.html

Processes 32

63

msqid_ds (cont’d)

 http://tldp.org/LDP/lpg/node31.html

 structure msg in “include/linux/msg.h”

struct msg {

struct msg *msg_next; /* next message on queue */

long msg_type;

char *msg_spot; /* message text address */

time_t msg_stime; /* msgsnd time */

short msg_ts; /* message text size */

};

Example- mserver.c mclient.c

 mserver.c
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <string.h>

#include <sys/errno.h>

#include <stdio.h>

#include <stdlib.h>

#define MSGKEY 75

#define ACK "msgserv received the following message: "

struct msgform {

long mtype;

char mtext[2048];

} sndbuf, rcvbuf, *msgp;

int msgid;

64

http://tldp.org/LDP/lpg/node31.html

Processes 33

mserver.c (cont’d)
main()

{

// extern int errno;

int i, rtrn;

msgid = msgget(MSGKEY, 0777|IPC_CREAT);

for(;;) {

msgp = &rcvbuf;

msgrcv(msgid, msgp, 2048, 1, 0);

printf("\n%s\n", rcvbuf.mtext);

msgp = &sndbuf;

strcpy(sndbuf.mtext, ACK);

strcat(sndbuf.mtext, rcvbuf.mtext);

msgp->mtype = 10;

rtrn=msgsnd(msgid, msgp, sizeof(sndbuf.mtext), 0);

if (rtrn == -1) {

printf("\n msgsnd() system call failed, Error # = %d\n", errno);

exit(0);

}

}

} 65

mclient.c

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <string.h>

#include <stdio.h>

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#define MSGKEY 75

struct msgform {

long mtype;

char mtext[2048];

} sndbuf, rcvbuf, *msgp;

66

Processes 34

mclient.c (cont’d)

main()

{ int i, c, msgid;

int rtrn, msgsz;

msgid = msgget(MSGKEY, 0777);

msgp = &sndbuf;

msgp->mtype = 1;

printf("\n Enter your message to be delivered to the server:\n");

for (i = 0; ((c=getchar())!=EOF); i++)

sndbuf.mtext[i] = c;

msgsz = i + 1;

rtrn = msgsnd(msgid, msgp, msgsz, 0);

if (rtrn == -1) {

printf("\n msgsnd() system call failed, error # = %d\n", errno);

exit(0);

}

msgp = &rcvbuf;

msgrcv(msgid, msgp, 2048, 10, 0);

printf("\n%s\n", rcvbuf.mtext);

} 67

Examples of IPC Systems - Mach

 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

port_allocate()

 Send and receive are flexible, for example four options if mailbox full:

 Wait indefinitely

 Wait at most n milliseconds

 Return immediately

 Temporarily cache a message

Processes 35

Examples of IPC Systems – Windows

 Message-passing centric via advanced local

procedure call (LPC) facility

 Only works between processes on the same
system

 Uses ports (like mailboxes) to establish and
maintain communication channels

 Communication works as follows:
 The client opens a handle to the subsystem’s connection

port object.

 The client sends a connection request.

 The server creates two private communication ports
and returns the handle to one of them to the client.

 The client and server use the corresponding port handle to
send messages or callbacks and to listen for replies.

Local Procedure Calls in Windows

Processes 36

DSS Team 71

ipcs, ipcrm in Linux

 ipcs command

 provides information on the ipc facilities for which the
calling process has read acccess.

 options
 -s: shows information about current semaphores.

 -m: shows information about current shared memory.

 -q: shows information about current message queues.

 ipcrm command

 removes the resource specified by id.

 synopsis
 ipcrm [shm | msg | sem] id

72

Communication in Client-Server

Systems

Processes 37

73

Sockets

 A socket is defined as an endpoint for communication.

 A socket is identified by an IP address and a port number.
 The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8.

 A pair of processes communicating over a network employ
a pair of sockets – one for each process.
 The server waits for incoming client requests by listening to

a specified port.
 Once a request is received, the server accepts (constructs) a

connection from the client socket to complete the
connection.

 Why port?
 A way to communicate is to know the process ID of the

hosts.
 However, IDs change frequently.
 Each port represents a network services.
 All ports below 1024 are considered well known.

 http – 80, telnet – 23, ftp – 21 …
 Special IP address 127.0.0.1 (loopback) to refer to system on

which a process is running

74

Sockets (cont’d)

To initiate a request for a connection,
a client process is assigned a port

by the host computer

This port is an arbitrary
Number greater than 1024.

Packets are delivered to the appropriate
process based on the destination IP

and port number

Processes 38

75

Java Sockets Example

 Java provides three different types of sockets:

 Connection-oriented (TCP) sockets – implemented with
the Socket class.

 Connectionless (UDP) sockets – implemented with the
DatagramSocket class.

 Multicast sockets – implemented with MulticastSocket
class.

 Example Server:

 Use connection-oriented TCP sockets.

 Listen to port 6013.

 When a client request is received, the server returns the
data and time to the client.

76

Java Sockets Example (cont’d)

import java.net.*;

import java.io.*;

public class DateServer

{

public static void main(String[] args) {

try {

ServerSocket sock = new ServerSocket(6013);

// now listen for connections

while (true) {

Socket client = sock.accept();

// we have a connection

PrintWriter pout = new PrintWriter(client.getOutputStream(), true);

// write the Date to the socket

pout.println(new java.util.Date().toString());

// close the socket and resume listening for more connections

client.close();

}

} catch (IOException ioe) {

System.err.println(ioe);

}

}

}

DateServer.java

This class implements server sockets

Listens for (and block till) a connection

to be made to this socket and accepts it.

Return a socket that the server can
use to communicate with the client.

The server closes the socket to the client
and resumes listening for more requests.

Processes 39

77

Java Sockets Example (cont’d)

import java.net.*;

import java.io.*;

public class DateClient

{

public static void main(String[] args) {

try {

// this could be changed to an IP name

// or address other than the localhost

Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();

BufferedReader bin = new BufferedReader(new

InputStreamReader(in));

String line;

while((line = bin.readLine()) != null)

System.out.println(line);

sock.close();

} catch (IOException ioe) {

System.err.println(ioe);

}

}

}

Create a socket and request a
connection with the server on

port 6013

DateClient.java

78

Java Sockets Example (cont’d)

 The IP address 127.0.0.1 is a special IP address

known as the loopback.

 it is referring to itself.

 The example runs the client and server on the same
host to communicate using the TCP/IP protocol.

Processes 40

79

UNIX sockets

 communication via a network

 The socket programming supports communication between
processes via a network as well as locally on a computer.

 long-established services

 It allows network applications to be programmed using the
long-established UNIX concept of file descriptors.

 two types

 UNIX domain sockets

 INET domain sockets

80

Remote Procedure Calls

 The remote procedure call (RPC) was designed as a way to

abstract the procedure-call mechanism for use between

systems with network connections.

 Allow a client to invoke a procedure on a remote host as it
would invoke a procedure locally.

 Is a message-based communication because the

communicating processes are executing on separate

systems.

 The message are well structured and are thus no longer just

packets of data.

Processes 41

81

Remote Procedure Calls (cont’d)
 The RPC takes place by providing a stub on the client side.

 Stub: client-side proxy for the actual procedure on the server.

 The server-side stub receives this message, unpack the
marshalled parameters, and performs the procedure on the
server.

 A separate stub exists for each separate remote procedure.

 On Windows, stub code compile from the specification written in
MIDL (Microsoft Interface Definition Language)

 RPC operations:

1. When the client invokes a remote procedure, the PRC system
calls the appropriate stub, passing it the required parameters.

2. The stub locates the port on the server and marshals the
parameters, and then transmits a message to the server.

3. Server has a similar stub that receives this message and invokes
the procedure.

4. If necessary, return values are passed back to the client using
the same technique.

82

Remote Procedure Calls (cont’d)

 Parameter marshalling:

 Different systems use different data representation.
 Big/little-endian: use the high/low memory address to store the most

signification byte.

 Many RPC systems define a machine-independent
representation of data.
 For example, external data representation (XDR).

 Parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the
server.

 On the server side, the XDR data are unmarshalled and
converted to the machine-dependent representation for the
server.

Processes 42

83

Remote Procedure Calls

 Problem 1 – RPCs can fail, or be executed more than once, as a
result of network errors.

 The operating system have to ensure that messages are acted on
exactly once, rather than at most one.

 For at most once:

 Each message is attached a timestamp (in the sender side).

 The server keep a large history of all the timestamps of messages
it has already processed to detect repeated messages.

 For exactly once:

 the server must acknowledge to the client that the RPC call was
received and executed.

 The client must resend each RPC call periodically until it receives
the ACK for that call.

 Of course, the server must implement the “at most once”
protocol.

84

Remote Procedure Calls (cont’d)

 Problem 2 – How does a client know the port numbers on

the server?

 Approach 1: the information may be predetermined, in the
form of fixed port addresses.
 The server can not change the port number of the requested service.

 Approach 2: the operating system provides a matchmaker
daemon on a fixed RPC port.
 A client then sends a message containing the name of the RPC to the

matchmaker requesting the port address of the RPC it needs to
execute.

 More flexible, but requires the extra overhead.

Processes 43

85

Remote Procedure Calls (cont’d)

Remote Method Invocation

 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a

remote object

Processes 44

Marshalling Parameters

88

Appendix – How to use man

 Typical syntax:

man [section] command_or_function

 Section:

1. User commands.

2. System calls and error numbers .

3. Functions in the C libraries.

4. Device drivers.

5. File formats.

6. Games and other diversions.

7. Miscellaneous information.

8. System maintenance and operation commands.

9. Kernel interface documentation.

