
OS Structures 1

OS Structures 1

Chapter 2:

OS Structures

2

Operating System Services (1)

 One set of operating-system services provides

functions that are helpful to the user (or user processes):

 User interface - almost all operating systems have a user
interface (UI).

 Command-line interface (CLI): require a program to allow
entering and editing of text commends.

 Graphics user interface (GUI): a window system with a
pointing device and a keyboard to enter commends.

 Batch: commands and directives are entered into files to be
executed.

 Program execution - the system must be able to load a
program into memory and to run that program, end
execution, either normally or abnormally.

OS Structures 2

3

Operating System Services (2)

 I/O operations - a user program may require I/O.
 For efficiency and protection, users cannot control I/O devices directly.

 The operating system must provide a means to do I/O.

 File-system manipulation - user programs need to
read/write/create/delete/search files and directories.
 The operating system provides permission management to allow or

deny access to files or directories.

 Communications – user processes may exchange information,
on the same computer or between computers over a network.
 Communications may be via shared memory or through message

passing.

 Error detection – the operating system needs to be constantly
aware of possible errors.
 And fix errors generated from hardware (disk fail) or software (arithmetic

error).

 Debugging facilities can enhance the user’s and programmer’s abilities
to efficiently use the system.

4

Operating System Services (3)

 For systems with multiple users (processes), another set
of operating-system functions exists for ensuring the
efficient operation of the system itself.

 Resource allocation - when multiple users or multiple
jobs running concurrently, resources must be allocated to
each of them.
 CPU, memory, file storage …

 Operating systems have CPU-scheduling routines to determine
the best way to use the CPU.

 Accounting - To keep track of which users use how much
and what kinds of computer resources.
 Usage statistics may be a valuable tool for researchers who

wish to reconfigure the system to improve computing services.

OS Structures 3

5

Operating System Services (4)

 Protection and security - a multiuser or networked
computer system may want to control use of user
information.

 Concurrent processes should not interfere with each
other.

 Protection involves ensuring that all access to system
resources is controlled.

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices
(e.g., network adapters) from invalid access attempts.

A View of Operating System Services

OS Structures 4

7

User Operating-System Interface – CLI

 Two ways to implement commands and command

interpreters:

 The command interpreter contains the code to execute the
command.

 For example, a command to delete a file may cause the
interpreter to jump to a section of its code that makes the
appropriate system call.

 The number of commands that can be given determines the
size of the interpreter.

 An alternative approach implements most commands
through system programs.

 The interpreter does not understand the command.

 It identify the command file and load it into memory for
execution.

8

CLI (cont’d)

 UNIX example: rm file.txt
 The interpreter search for a file called rm (/bin/rm).

 Load it into memory and execute it with the parameter
file.txt.

 The function rm is completely defined by the code in the file
/bin/rm.

 Programmers can add new commands to the system easily.

 The interpreter program can be small, and does not have
to be changed for new commands to be added.

 Used mostly among operating system, e.g., UNIX.

OS Structures 5

9

CLI (cont’d)

 CLI is sometimes implemented in kernel, sometimes by
systems program.

 An operating system can have multiple interpreters to
choose from, known as shells.
 For example, on UNIX and Linux systems, there are

Bourne/C/Korn …shell.

 The name 'shell' originates from shells being an outer layer of
interface between the user and the innards of the operating
system (the kernel).

 Most shells provide similar functionality with only minor
differences; most users choose a shell based upon personal
preference.

 E.g., the syntax of shell script.

10

GUI

 A GUI provides a desktop metaphor interface.

 Icons represent files, programs, actions, etc.

 A mouse click can invoke a program, select a file …

 GUI Timeline:

 Experimentally appeared in the early 1970s.

 Became widespread by Apple Macintosh computer (Mac OS) in the 1980s.

 Dominated by Microsoft Windows (3.1, NT, 95, 98, 2000, XP, Vista).

 UNIX systems have been dominated by command-line interface.

 Although there are various GUI interface available.

 X-Windows systems, K Desktop Environment (KDE) by GNU project
(open source – source code is in the public domain).

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath and

shells available

 Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

OS Structures 6

11

GUI (cont’d)

 Preference:

 Many UNIX users often prefer a command-line
interface.

 Most Windows user are pleased to use the
Windows GUI and seldom use the MS-DOS shell
interface.

 Nevertheless, many systems now include both CLI and

GUI interfaces.

Touchscreen Interfaces

 Touchscreen devices require

new interfaces.

 Mouse not possible or not

desired

 Actions and selection based on

gestures

 Virtual keyboard for text entry

 Voice commands.

OS Structures 7

13

System Calls

 Can be regarded as a programming interface to the

services provided by the OS.

 Called by user applications.

 Are generally available as routines, typically written in

a high-level language (C or C++).

 Also in low-level assembly language (for accessing

hardware).

14

System Calls (cont’d)

 System call sequence to copy the contents of one file

to another file.

System call to write
message on the screen

System call to
read data from keyboard

System calls to manipulate file system
and processes

System calls to write
message on the screen

and manipulate processes

Even a simple program makes heavy use of system calls!!

OS Structures 8

15

System Calls (cont’d)

 Programs mostly access system services via a high-
level application program interface (API) rather than
using system call directly.
 API specifies a set of functions (specifications) that are

available to programmers.

 The functions of the API invoke the actual system
calls on behalf of the programmer.

 Three most common APIs:
 Win32 (Win) API for Windows.

 POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X).

 Java API for the Java virtual machine (JVM).

Portable Operating System
Interface

System Calls (cont’d)

 Consider the ReadFile() function in the

 Win API—a function for reading from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

OS Structures 9

17

System Calls (cont’d)

 C program invoking printf() library call, which calls

write() system call.

System Calls (cont’d)

OS Structures 10

19

System Calls (cont’d)

 Why use APIs rather than system calls?

 Program portability — a program using an API can

be expected to compile and run on any system that
supports the same API.

 E.g., your Windows programs on various versions of
Windows.

 Programming with API is simpler than using
system calls.

20

System Calls (cont’d)

 As system calls are routines in kernel

space, using it causes a change in

privileges.

 How ?

 Via software interrupt (e.g.,
INT 0x80 assembly instruction

on Intel 368 arch of Linux
system).

 But before that …

 Similar to hardware interrupt, we
need a number (index) to indicate the
required system call, which is store in
the EAX register.

 System contains a table of code pointers.

 Using the system call number, we
jump to the address of the system call
for execution.

API helps us wrap all the details by simply invoking a library function.

OS Structures 11

21

System Calls (cont’d)

 How the operating system handles a user application invoking the
open() system call through API.

22

System Calls (cont’d)

 To link system call made available by the operating

system:

 The run-time library for most programming
languages provides a system-call interface.

 Typically, a number associated with each system call.

 System-call interface (or kernel) maintains a table
indexed according to these numbers.

 The system call interface invokes intended system call
in operating system kernel and returns status of the
system call and any return values.

OS Structures 12

23

System Calls (cont’d)

 With the help of API:

 The caller need know nothing about how the system
call is implemented.

 Just needs to obey API and understand what the
operating system will do as a result of that system
call.

 Details of the operating system are hidden from
programmer.

24

System Calls (cont’d)

 Often, more information is required than simply
identity of desired system call
 E.g., system call parameters.

 Three general methods used to pass parameters
to the OS:
 Simplest: pass the parameters in registers

 In some cases, may be more parameters than
registers.

 Parameters are stored in a block in memory, and address
of block passed as a parameter in a register.

 This approach taken by Linux and Solaris.

 Parameters are pushed onto a stack by the program and
popped off the stack by the operating system.

 Block and stack methods are popular because they do not
limit the number or length of parameters being passed.

OS Structures 13

25

System Calls (cont’d)

26

Types of System Calls

 Many of today’s operating system have hundreds of

system calls.

 Linux/ has more than 328 different system calls.
 http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

 Those system calls can be grouped roughly into five

major categories:

 Process control.

 File management.

 Device management.

 Information maintenance.

 Communications.

 Protection

OS Structures 14

Examples of Windows and Unix System Calls

28

Process Control

 end and abort:
 A running program needs to be able to halt its execution

either normally or abnormally.
 The operating system then transfers control to the

invoking command interpreter to read the next command.

 load and execute:
 A process executing one program may want to load and

execute another program.
 The existing process can be lost, saved, or allowed to

continue execution concurrently with the new process.
 Chapter 6 (synchronization) discusses coordination of

concurrent processes in great detail.

 wait time/event:
 Having created new processes, we may need to wait for

them to finish their execution.
 We may want to wait for a certain amount of time to pass.
 We may want to wait for a specific event to occur.

OS Structures 15

29

Process Control (cont’d)

 Two popular variations in process control:

 Single-tasking system: the MS-DOS operating system.

It has a command
interpreter that is
invoked when the
computer started.

The command
interpreter loads
the program into
memory and run

the process.

May writing over
most of itself to
give the process
as much memory

as possible.

When the process terminates,
the interpreter reloads itself
from disk and wait for the

next user commands.Only one process and can not create a new process

30

Process Control (cont’d)

 A multitasking system: the FreeBSD (derived from
Berkeley UNIX).

When a user logs on
to the system, the
shell is running.

To start a new process, the
shell execute a fork() system

call.

Then, the selected program
is loaded into memory via

exec() system call.

The shell can run the process
in the background and immediately

requests another command.

Multiple processes are
running concurrently.

Chapter 3 discusses the fork() and exec() system calls

OS Structures 16

31

File Management

 create and delete:

 Able to create and delete files/directories.

 open and close:

 Able to open and close a file.

 read, write, and reposition:

 Able to read, write, or skipping to the end/head of the
file.

 Other system calls for obtaining/setting file/directory

attributes.

32

Device Management

 The various resources (memory, disks, file, …)

controlled by the operating system can be thought of

as devices.

 To access a resource, a process has to:
 First request the device, to ensure exclusive use of it.

 Then we can read, write, and reposition the device.

 After we are finished with the device, we release it.

 The similarity between I/O devices and files is so great that many
operating systems (UNIX) merge the two into a combined file-
device structure.

 A set of system calls is used on files and devices.

 Sometimes, I/O devices are identified by special file names.

OS Structures 17

33

Information Maintanence

 Many system calls exist simply for the purpose of

transferring information between the user program and

the operating system.

 time and date return the current time and date of the

system.

 Other system calls can return the number of current
users, the amount of free memory or disk space, …

 Get and set processes attributes.

34

Communication

 There are two common models of interprocess
communication:
 Message-passing model:

 The communicating processes (may be on different computers)
exchange messages with one another to transfer
information.

 Client and server (daemon) architecture.
 Client: ask for connecting communication.
 Server: wait for connection.

 Require system calls to build up/terminate connection,
read, and write messages.

 Shared-memory model:
 Processes use shared memory create/attach system calls

to create and gain access to regions of memory owned by
other processes.

 They can then exchange information by reading and writing
data in the shared areas.

OS Structures 18

35

Communication (cont’d)

 Message passing:

 Is useful for exchanging smaller amounts of data,
because no conflicts need be avoided.

 Is easy to implement.

 Shared memory:

 Allows maximum speed of communication, since it
can be done at memory speeds when it takes place
within a computer.

 However, problems exist in the areas of protection
and synchronization between the processes sharing
memory.

36

System Programs

 A perspective of operating systems is a collection of

system programs.

 System programs provide a convenient environment for
program execution and development.

 Most users’ view of the operation system is defined by

system programs, not the actual system calls.

 Some of them are just user interfaces to system
calls!!

 Categories of system programs:

 File manipulation:

 Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

OS Structures 19

37

System Programs (cont’d)

 File modification:
 Text editors to create and modify files.

 Status information:

 Some ask the system for info - date, time, amount of available
memory, disk space, number of users

 Typically, these programs format and print the output to the
terminal or other output devices

 Some systems implement a registry - used to store and
retrieve configuration information

 Programming-language support:
 Compilers, assemblers, debuggers and interpreters sometimes

provided.

 Program loading and execution:

 Loaders to load assembled or compiled programs into memory
for execution.

38

System Programs (cont’d)

 Communications:
 Provide the mechanism for creating virtual connections among

processes, users, and computer systems.

 Background Services

 In addition to system programs, application programs
are supplied to solve common problems or perform
common operations.

 Web browsers, word processors, database systems,
games …

 The view of the operating system seen by most users is
defined by the application and system programs, rather
than the actual system calls.

OS Structures 20

System Programs (Cont.)

 Background Services

 Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling,
error logging, printing

 Run in user context not kernel context

 Known as services, subsystems, daemons

 Application programs

 Don’t pertain to system

 Run by users

 Not typically considered part of OS

 Launched by command line, mouse click, finger poke

40

Operating System Design

 Design and Implementation of OS not “solvable”, but some

approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 There is no unique solution to the problem of defining the
requirements for an operating system.

 Requirements can be affected by choice of hardware, type of
system.

 Handheld devices vs. PCs.

 Single process vs. multitasking.

 The requirement can be divided into user goals and system goals.

 User goals – operating system should be convenient to use, easy
to learn, reliable, safe, and fast.

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free, and
efficient.

OS Structures 21

41

Operating System Design (cont’d)

 One important principle of system design is the separation of policy from
mechanism.

 Policy: What will be done?

 Mechanism: How to do it?

 Example: timer is a mechanism for ensuring CPU protection, but
deciding how long the timer is to be se is a policy decision.

 Flexibility of the separation:

 Policies are likely to change across places or over time.

 The separation enables a change in policy to redefine certain
policy parameters rather than changing the underlying
mechanism(example – timer).

 Most of Windows services mix mechanisms with policies to enforce a
global look and feel.

 Specifying and designing an OS is highly creative task of software
engineering

42

Operating System Implementation

 Traditionally, operating systems have been written in assembly
language, then Algol, PL/1.

 Now, they are most written in higher-level languages such as C or
C++.

 The code can be written faster and is easier to understand and
debug.

 System is easier to port (to move to some other hardware).

 The Linux operating system is written mostly in C and is
available on a number of different CPUs.

 Modern C compiler techniques can perform complex analysis
and optimizations that produce excellent code.

 Actually usually a mix of languages

 Lowest levels in assembly

 Main body in C

 Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts

 More high-level language easier to port to other hardware

 But slower

 Emulation can allow an OS to run on non-native hardware

OS Structures 22

43

Operating System Implementation (cont’d)

 Moreover, major performance improvements in

operating systems (and other systems) are more likely

to be the result of better data structures and algorithms

than of excellent assembly-language code.

 Should pay more attentions on the memory manager

and the CPU scheduler.

 They are probably the most critical routines.

44

OS Structure: Simple Structure

 A common approach to implement an operating system
is to partition the task into small components.

 Rather than have one monolithic system!!

 These components are interconnected and meld into a
kernel.

 But…

 Simple structure:

 Many commercial system do not have well-defined
structures initially.

 Started as small, simple, and limited systems and
then grew beyond their original scope.

 For example, MS-DOS.

OS Structures 23

45

OS Structure: Simple Structure (cont’d)

The interfaces and
levels of functionality

are not well separated.

Application programs are
able to access the basic I/O
routines to access devices

MS-DOS layer structure.

Leave MS-DOS
vulnerable to

malicious
programs

46

OS Structure: Non Simple Structure

 UNIX – limited by hardware functionality, the original

UNIX operating system had limited structuring.

 The UNIX OS consists of two separable parts:

 System programs.

 The kernel.

Interfaces to the bare hardware
and system (application) programs

The kernel provides a lot of services,
combined into one monolithic level.

Very difficult to implement and maintain.

OS Structures 24

47

OS Structure: Layered Approach

 With the improvements of hardware and programming
techniques, operating systems can be broken into
pieces of components.
 That is modular operating systems.

 Information hiding: hide the internal implementation
detail of modules and provide external access
interfaces.

 One way of modular system: layered approach.
 The operating system is divided into a number of

layers (levels), each built on top of lower layers.
 The bottom layer (layer 0), is the hardware.
 The highest (layer N) is the user interface.

48

OS Structure: Layered Approach (cont’d)

Layer M consists of
data structures and
a set of routines that

can be invoked by
higher-level layers.

Layer M, in turn, can
invoke operations on
lower-level layers.

OS Structures 25

49

OS Structure: Layered Approach (cont’d)

 The main advantage of the layered approach:

 Simplicity of construction and debugging.

 Layer-by-layer debugging, starting from layer 0.

 If an error is found during the debugging of a particular
layer, the error must be on that layer.

 The major difficulty of the layered approach:

 Because only lower layers operations can be invoked,
appropriately defining the various layers is difficult.
 System services usually tangle together.

 Layered implementation tend to be less efficient.
 A function call on the top layer can lead to many lower-layer

calls.

 Function calls need to pass (redundant) parameters.

 Recently, fewer layers with more functionality are being
designed.

 Providing the advantages of modularization.

 Avoiding the difficulties of layer definition and interaction.

50

OS Structure: Layered Approach (cont’d)

 Example of tangled layers:

Memory management

Backing store

memory system requires the ability to use the back store.

CPU scheduler

CPU can be scheduled during disk I/O

Scheduler requires information of active processes in memory

OS Structures 26

Microkernel System Structure (1)

 Moves as much from the kernel into user space.

 Mach example of microkernel.

 Mac OS X kernel (Darwin) partly based on Mach

 Communication takes place between user modules using

message passing.

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space

communication

Microkernel System Structure (2)

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

OS Structures 27

53

OS Structure: Microkernel

 As operating systems expanded, the kernel became

large and difficult to manage.

 In the mid-1980s, CMU developed an operating system

called Mach that modularized the kernel using the

microkernel approach.

 Micro  removing all nonessential components from

the kernel and implementing them as system and
user-level programs (servers).

 Typically, microkernels provide process and memory
management, and a communication facility.

 The client program and services communicate
indirectly by exchanging message with the
microkernel.

54

OS Structure: Microkernel (cont’d)

 Benefits:

 Easier to include new operating system services to a
microkernel.

 Do not require modification of the kernel.

 The small kernel makes it easier to port to new
hardware architectures.

 More reliable and secure (less code is running in kernel

mode).

 Problems:

 Performance overhead of user space to kernel space
communication.

 Initial Windows NT (a micorkernel organization) 

Windows NT 4.0 (moving layers from user space to kernel

space).

OS Structures 28

55

OS Structure: Module

 A better methodology for operating-system design

involves using object-orient programming techniques

to create a modular kernel.

 Consists of a core kernel, and system service as kernel
modules (Linux, Solaris, etc.).

 Each module talks to the others over known interfaces

56

OS Structure: Module (cont’d)

 Moreover, modules (system services) can be linked into the
system either during boot time or during run time (that is,

loaded as needed within the kernel).

 Load different file system (ext2/3/4fs, FAT32 or NTFS) as
needed, to save main memory.

 The module structure is similar to layered (communicate with

interfaces) and microkernel approaches (a core), but with more
flexible.

 Any module can call any other module, but the
layered approach can not.

 Is efficient than microkernel approach because
modules are in the kernel space and do not need to
invoke message passing to communicate.

 The strategy of dynamically loadable modules is very
popular in modern UNIX-based operating systems, such as
Linux.

OS Structures 29

Hybrid Systems

 Most modern operating systems are actually not one pure

model.

 Hybrid combines multiple approaches to address

performance, security, usability needs

 Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality

 Windows mostly monolithic, plus microkernel for different

subsystem personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment.

 Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called

kernel extensions)

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

OS Structures 30

iOS

 Apple mobile OS for iPhone, iPad

 Structured on Mac OS X, added

functionality

 Does not run OS X applications natively

 Also runs on different CPU

architecture (ARM vs. Intel)

 Cocoa Touch Objective-C API for

developing apps

 Media services layer for graphics, audio,

video

 Core services provides cloud computing,

databases

 Core operating system, based on Mac OS

X kernel

Android

 Developed by Open Handset Alliance (mostly Google).

 Open Source

 Similar stack to IOS.

 Based on Linux kernel but modified.

 Provides process, memory, device-driver management

 Adds power management

 Runtime environment includes core set of libraries and

Dalvik virtual machine.

 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then

translated to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit),

database (SQLite), multimedia, smaller libc.

OS Structures 31

Android Architecture
Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

62

Virtual Machines

 Virtual machine software (such as

Vmware, Virtual Box) abstracts the
hardware of a single computer
into several different execution
environments (virtual machines).

 Creating the illusion that
each virtual machine is
running its own private
computer.

 Being able to share the
same hardware, yet run
several different operating
systems concurrently.

 Is difficult to implement due
to the effort required to
provide an exact duplicate
to the underlying machine.
 E.g., simulate dual mode

and disk system.

OS Structures 32

63

Virtual Machines (cont’d)

 Why virtual machines?

 Today, virtual machines are frequently used as a means of
solving system compatibility problems.

 E.g., Java virtual machine (JVM).

 A virtual-machine system is a perfect vehicle for
operating-systems research and development.

 System development is done on the virtual machine,
instead of on a physical machine and so does not disrupt
normal system operation or crash the whole system.

 Save money and time for application development.

 Virtual machines can help system developers develop an
application on different operating system.

64

VM Example – VMware

VMware runs as an application
on a host operating system

To concurrently run several
different guest operating

systems as virtual machines.

OS Structures 33

65

VM Example – JVM

 JVM for system compatibility.

 To make java programs compatible to different systems …

 The compiler produces an architecture-neutral bytecode output
(.class) file that will run on any JVM.

 JVM is a software on a host operating system.

 It abstracts computer and manages memory (garbage collection) to

increase the performance of Java programs.

JVM

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs.

 OS generate log files containing error information.

 Failure of an application can generate core dump file capturing

memory of the process.

 Operating system failure can generate crash dump file

containing kernel memory.

 Beyond crashes, performance tuning can optimize system

performance.

 Sometimes using trace listings of activities, recorded for

analysis

 Profiling is periodic sampling of instruction pointer to look for

statistical trends

Kernighan’s Law: “Debugging is twice as hard as writing the code

in the first place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to debug it.”

OS Structures 34

Performance Tuning

 Improve performance

by removing

bottlenecks.

 OS must provide

means of computing

and displaying

measures of system

behavior.

 For example, “top”

program or Windows

Task Manager.

DTrace

 DTrace tool in Solaris,

FreeBSD, Mac OS X allows

live instrumentation on

production systems.

 Probes fire when code is

executed within a provider,

capturing state data and

sending it to consumers of

those probes .

 Example of following

XEventsQueued system call

move from libc library to

kernel and back.

OS Structures 35

Dtrace (Cont.)

 DTrace code to record

amount of time each

process with UserID 101 is

in running mode (on CPU)

in nanoseconds.

Dtrace (Cont.)

Threads 70

OS Structures 36

strace (Linux)

Threads 71

strace (Linux)

Threads 72

 Strace is based on a facility called ptrace that is exported by

Linux and other operating systems. Ptrace can do many

complex things and is used, for example, by debuggers like

gdb to look into a running process. Strace uses it to instrument

a target process and “listen” to that process’s system calls.

 The ptrace mechanism makes it possible for strace to interrupt

the traced process every time a system call is invoked, capture

the call, decode it, and then resume the execution of the traced

process.

OS Structures 37

Operating System Generation

 Operating systems are designed to run on any of a class of

machines; the system must be configured for each specific

computer site.

 SYSGEN program obtains information concerning the

specific configuration of the hardware system.

 Used to build system-specific compiled kernel or system-

tuned

 Can general more efficient code than one general kernel

74

Operating System Generation (cont’d)

 The information must be
determined:

 CPU:

 What CPU is to be
used?

 Number of CPUs.

 Has extended
instruction sets or
floating point
arithmetic.

 Memory:

 Size.

 Devices:

 Type and model.

 Interrupt number.

 Operating-system
options:

 Maximum number of
processes to be
supported.

 CPU-scheduling
algorithm.

OS Structures 38

75

Operating System Generation (cont’d)

 Once the information is determined …
 Source code of the operating system can be modified

and completely compiled to produce a tailored
operating system.
 System generation is slower.
 But more specific to the underlying hardware.

 Or, the description can cause the selection of
modules from a precompiled library, which are
linked together to form the operating system.
 Because the system is not recompiled, system

generation is faster.
 The resulting system may be general.
 Easy to modify the generated system as the

hardware configuration changes (such as, add a new
hardware).

76

System Boot

 The generated operating system must be made available by
the hardware.

 How does the hardware know where the kernel is and how to
load that kernel??

 Booting – the procedure of starting a computer by loading the
kernel.
 Power up or reset.

 Need a bootstrap program to:
 Locate the kernel on the disk.
 Load it into memory.
 Start its execution.
 A simple code stored in ROM or EPROM.

 At a fixed location so that can be loaded and executed when
computer is on.

 But before that, it first initializes all aspects of the system:
 CPU registers, device controller, the contents of main memory …

OS Structures 39

77

System Boot (cont’d)

 Some computer systems (such as PCs) use a two-step booting

process:

 A simple bootstrap loader fetches a more complex boot program

from disk.

 Which in turn loads the kernel.

 The boot program stored in the boot block (a fixed location on

disk) is usually sophisticated and modifiable and is to load an (or

different) operating system into memory and begin its execution.

 Then the operating system is said to be running.

 Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options.

 Kernel loads and system is then running.

