
Introduction to OS 1

Introduction to OS 1

Chapter 1 Introduction

2

What is an Operating System?

 A program that acts as an intermediary between a user of a

computer and the computer hardware.

 Various operating system goals:

 Mainframe operating systems: to optimize utilization of hardware.

 PC operating systems: to support complex games, business
applications …

 Handheld computers (laptop, smart phone, etc.): to help users
easily interface with the computer to execute programs.

 Some operating systems are designed to be convenient, others to

be efficient, and others some combination of the two.

Introduction to OS 2

3

Four Components of a Computer System (1)

 Computer system can be divided into four

components: hardware, the operating system, the

application programs, and the users.

4

Four Components of a Computer System (2)

 Hardware – provides basic computing resources.

 CPU, memory, I/O devices.

 Operating system – controls and coordinates use of hardware

among various applications and users

 Application programs – define the ways in which the system

resources are used to solve the computing problems of the users.

 Word processors, compilers, web browsers, database systems,
video games.

 Users – people, machines, other computers.

An operation system is similar to a government. It provides an
environment within which other (user) programs can do useful work.

Introduction to OS 3

5

Viewpoints From Users (1)

 PC: the OS is designed for one user only.

 Resources are monopolized.

 The goal is to maximize the work of the user.

 The OS is generally designed for ease of use, with some
attention paid to performance and non paid to resource utilization.

 Mainframe: the OS is designed for multiple users – accessing the

same computer through terminals.

 These users share resources.

 The OS is designed to maximize resource utilization – to
assure that all available CPU time, memory …

6

Viewpoints From Users (2)

 Workstation:

 Users sit at workstations connected to networks of other
workstations and servers – file, computer, print server.

 The OS is designed to compromise between individual usability
and resource utilization.

 Handheld computer: are standalone units for individual users.

 The OS is designed mostly for individual usability.

 But performance per amount of battery life is important as well.

 Computer with little (or no) user view: embedded home devices.

 The OS is designed to run without user intervention.

Introduction to OS 4

7

Viewpoints From Computers (3)

 OS for computer is the program involved with the hardware.

 OS is a resource allocator.

 Manages all resources.

 Decides between conflicting requests for efficient and fair
resource use.

 OS is a control program.

 Controls execution of programs to prevent errors and improper
use of the computer.

8

Operating System Definition (1)

 What is an operating system?

 No universally accepted definition.

 Bare computer (hardware) alone is not easy to use, so application

programs are developed.

 These programs require certain common operations, such as
those controlling the I/O device.

 These common functions of controlling and allocating resources
are then brought together into one piece of software: the
operating system.

Introduction to OS 5

9

Operating System Definition (2)

 OS is …

 “Everything a vendor ships when you order an operating system”

 But varies wildly, for example, text/graphic mode.

 A more common definition:

 “The one program running at all times on the computer” is the
kernel.

 Everything else is either a system program or an application

program.

 The matter of what constitutes an operating system has become

increasingly important.

 Antitrust of Microsoft windows.

 Microsoft included too much functionality in its operating systems
and thus prevented application vendors from competing.

10

Computer System Organization (1)

 Computer-system operation:
 One or more CPUs, device controllers connect through common

bus that provides access to shared memory.

 Each device controller is in charge of a specific type of device
(disk drives, audio/video devices).

Introduction to OS 6

11

Computer System Organization (2)

 Each device controller has a local buffer and a set of special-

purpose registers.

 E.g., your SATA hard disk may contain 8M buffer.

 CPU moves data from/to main memory to/from local buffers.

 I/O devices and the CPU can execute concurrently.

 Concurrent I/O is from the device to local buffer of controller.

12

Computer System Operation (1)

 When a computer is powered up or rebooted …
 A bootstrap program is loaded to Initialize all aspects

of system, from CPU registers to device controllers to
memory contents.

 Typically stored in ROM (read-only memory) or EEPROM,
(erasable programmable read-only memory) generally known
as firmware.

 Load into memory the operating-system kernel.

 The operating system then starts executing the first
process and waits for some event to occur.

 Events are usually signaled by an interrupt from either
the hardware or the software.

 Hardware :I/O operations — disk drive access,
keystroke, …

 Software: system calls.

Introduction to OS 7

13

Computer System Operation (2)

 Why interrupt? — I/O operations without interrupt as
an example.

 The handshaking process of a host (a program)
reads data through a port (device):
1. The controller does the I/O to the device (hardware

operations).
2. The host repeatedly read the busy bit (of the

device) until that bit becomes clear.
3. The host reads data from the device controller.
4. The I/O is finished.

 In step 2, the host is busy-waiting or polling.
 It is in a loop, reading the busy bit over and over

until the bit becomes clear.
 The wait may be long, the host should probably

switch to another task.
 Interrupt: the hardware mechanism that enables

a device to notify the CPU when it is ready for
service.

Interrupt Handling

 The operating system preserves the state of the CPU by

storing registers and the program counter.

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should

be taken for each type of interrupt.

Introduction to OS 8

15

Interrupt Mechanism (1)

 The CPU hardware has a wire called the interrupt-request line that the
CPU senses after executing every instruction.

 When the CPU detects that a controller has asserted a signal on the line,
the CPU performs a state save and transfers control to a generic routine.

 The generic routine examine the interrupt information and calls the
interrupt-specific handler.

 Polling all the devices to see which one raised the interrupt.

 Ideally, interrupts must be handled quickly (data overflow on keyboard

controller).

 Fortunately, only a predefined number of interrupts is possible.

 The modern interrupt mechanism accepts an address (index) in
accordance with a interrupt vector (table) to provide fast
interrupt service.

16

Interrupt Mechanism (2)

 The interrupt vector contains the

addresses of all the specific

interrupt handle routines.

 The address (index) is an offset in

the interrupt vector.

 This vectored interrupt mechanism

can reduce the need for a single

interrupt handler to search all

possible sources of interrupts.

 Operating systems as different as

Windows and Unix dispatch

interrupt in this manner.

The design of the interrupt
vector

for the Intel Pentium
processor.

Used for device-generated
interrupts

Introduction to OS 9

17

Interrupt Mechanism (3)

 The interrupt mechanism must also save the address of

the interrupted instruction.
 It may also save the state (processor register values).

 After the interrupt is serviced, the saved address (and

saved state) is loaded, and the interrupted computation

resumes as though the interrupt had not occurred.

 Note:
 Incoming interrupts are disabled while another interrupt is being

processed to prevent a lost interrupt.

 A trap is a software-generated interrupt caused either by an
error or a user request (system call).

18

Interrupt Timeline

Introduction to OS 10

19

Example of Interrupt

P1

I/O operations (read) I/O
device

P2

Interrupt
handler

time

I/O devices and the CPU can
execute concurrently

Point of
interruption

I/O ready to
transfer data

Send an interrupt signal
to CPU to indicate that

it is ready Resume the
interrupted

process

Time sharing (or multitasking)

Storage Definitions and Notation Review

• The basic unit of computer storage is the bit. A bit can contain one of two
values, 0 and 1. All other storage in a computer is based on collections of
bits. Given enough bits, it is amazing how many things a computer can
represent: numbers, letters, images, movies, sounds, documents, and
programs, to name a few. A byte is 8 bits, and on most computers it is the
smallest convenient chunk of storage. For example, most computers don’t
have an instruction to move a bit but do have one to move a byte. A less
common term is word, which is a given computer architecture’s native unit
of data. A word is made up of one or more bytes. For example, a computer
that has 64-bit registers and 64-bit memory addressing typically has 64-bit
(8-byte) words. A computer executes many operations in its native word size
rather than a byte at a time.

• Computer storage, along with most computer throughput, is generally
measured and manipulated in bytes and collections of bytes.

A kilobyte, or KB, is 1,024 bytes
a megabyte, or MB, is 1,0242 bytes
a gigabyte, or GB, is 1,0243 bytes
a terabyte, or TB, is 1,0244 bytes
a petabyte, or PB, is 1,0245 bytes

• Computer manufacturers often round off these numbers and say that a
megabyte is 1 million bytes and a gigabyte is 1 billion bytes. Networking
measurements are an exception to this general rule; they are given in bits
(because networks move data a bit at a time).

Introduction to OS 11

21

Storage Structure (1)

 Main memory and the registers are the only storage

that the CPU can access directly.

 Registers:
 Are built into the CPU.

 CPU can decode instructions and perform simple operations on
register contents.

 Main memory:

 Computer programs must be in main memory to be
executed.

 Random Access, Typically volatile

 Is the only large storage area that the CPU can access
directly.

22

Storage Structure (2)

 A typical (instruction) execution cycle first fetches an

instruction from memory.

 The instruction is stored in the instruction register.

 CPU then decodes the instruction.

 May cause operands to be fetched from memory and
stored in some internal register.

 After the instruction on the operands has been executed,

the result may be stored back in memory.

 Memory contains information about data and programs.

Introduction to OS 12

23

Storage Structure (3)

 Ideally, we want the programs and data to reside in

main memory permanently.

 Impossible!!

 Main memory is too small to store all needed programs
and data.

 Main memory is a volatile storage device that loses its
contents when power is turned off.

 Secondary storage – extension of main memory that

provides large nonvolatile storage capacity.

 Magnetic disks – The most common secondary
storage.

24

Storage Structure (cont’d)

 Other storage units: CD-ROM, tapes, and so on.

 Storage systems organized in hierarchy according to

speed, cost, and volatility.

slow

fast

cheap

expensive

nonvolatile

Introduction to OS 13

Caching

 Important principle, performed at many levels in a

computer (in hardware, operating system, software).

 Information in use copied from slower to faster storage

temporarily.

 Faster storage (cache) checked first to determine if

information is there.

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached.

 Cache management important design problem

 Cache size and replacement policy

26

I/O Structure (1)

 A large portion of operating system code is dedicated

to managing I/O.

 Importance to the reliability and performance of a system.

 The varying nature of the devices.

 A general-purpose computer system consists of CPUs

and multiple device controllers that are connected

through a common bus.

 Each device controller is in charge of a specific type of
device (e.g., disk controller and disks).

Introduction to OS 14

27

I/O Structure (2)

 A device controller maintains some local buffer storage

and a set of registers.

 Controller is responsible for moving the data between the
devices that it controls and its local buffer storage.

 Operating systems have a device driver for each device

controller.

 The device driver understands the device controller and
presents a uniform interface to the device to the
operating system.

28

I/O Structure (3)

Introduction to OS 15

29

I/O Structure (4)

 To start an I/O operation (such as “read a character

from the keyboard”):

 The device driver loads the appropriate registers with the
device controller.

 The device controller, in turn, examines the contents of
these registers to determine what action to take.

 The controller starts the transfer the data from the device
to its local buffer.

 Once the transfer the data is complete, the device
controller informs the device driver via an interrupt.

 The device driver then returns control (the received data)
to the operating systems.

30

I/O Structure (5)

Introduction to OS 16

31

I/O Structure (6)

 The purpose of device driver is to hide the differences among

device controllers from the I/O subsystem of the kernel.

 An I/O read() can read data from SATA, ATA, or SCSI hard

disks by using specific device drivers.

 Device drivers are internally custom-tailored to each device but

export standard interfaces to the I/O subsystem of the kernel.

 Benefit:

 Simplify the job of the operating system developer.

 New devices are easyly attached to a computer system without
waiting for the operating-system vendor to develop support code.

32

I/O Structure (7)

 The interrupt-driven I/O is fine for moving small

amounts of data.

 But can produce high overhead when used for bulk data
movement (e.g., disk I/O).

 Direct memory access (DMA) is used to solve this

problem.

 First set up buffers, pointers (to memory block), and counters
for the I/O device.

 The device controller transfer the entire block of data
directly to/from its buffer to/from memory, with no
intervention by the CPU.

 One interrupt for each block access, rather than per byte.

Introduction to OS 17

33

I/O Structure (8)

34

I/O Structure (9)

Introduction to OS 18

35

Computer System Architecture (1)

 Computer systems can be categorized according to the

number of general-purpose processors used.

 Single-processor systems:

 There is one main CPU capable of executing a general-
purpose instruction set.

 Almost all systems have other special-purpose processors
as well.

 Device-specific processors (e.g., graphics controllers).

 Do not run user processes and are managed by the
operating system.

 Relieve the overhead of the main CPU.

36

Computer System Architecture (2)

 Multiprocessor Systems:

 As known as parallel systems, tightly coupled systems.

 Have two or more processors in close communication.

 Share the same computation resources (memory, bus, …).

 Main advantages:

 Increased throughput:

 We expect to get more work done in less time.

 The speed-up ratio with N processors is not N,
however; rather, it is less than N.

 A certain amount of overhead is incurred in keeping
all the parts working correctly.

Introduction to OS 19

37

Computer System Architecture (3)

 Main advantages:

 Economy of scale:

 Cost less than equivalent multiple single-processor
systems, because they share computation resources.

 Store data on the same disk vs. many copies of the
data.

 Increased reliability:

 If functions can be distributed properly among several
processors, then the failure of one processor will not halt
the system, only slow it down.

38

Computer System Architecture (4)

 The multiple-processor systems in use today are of
two types:
 Asymmetric multiprocessing (master-slave

relationship):
 Each processor is assigned a specific task.

 A master process controls the system.

 The master processor schedules and allocates work to the slave
processors.

 Symmetric multiprocessing (SMP):
 All processors are peers, performs all tasks within the operating

system.

 Operating system must be written carefully to avoid unbalanced
resource arrangement.

 One processor may be sitting idle while another is overloaded.

 Virtually all modern operating systems (windows, Mac OSX, Linux)
now provide support for SMP.

Introduction to OS 20

Symmetric Multiprocessing Architecture

40

Computer System Architecture (5)

 A recent trend in CPU design is to include multiple

compute core on a single chip.

 In essence, these are multiprocessor chips.

 These multi-core CPUs look to the operating system
just as N standard processors.

Introduction to OS 21

A Dual-Core Design

 Multi-chip and multicore

 Systems containing all chips

 Chassis containing multiple separate systems

42

Clustered Systems (1)

 Clustered Systems:

 Clustered computers share storage and are linked via a
local-area network (LAN) or Storage-area Network (SAN).

 Differ from multiprocessor systems in that they are
composed of two or more individual system coupled
together.

 Goal: to provide high-availability service.

 Service will continue even if one or more systems in the
cluster fail.

 A layer of cluster software runs on the cluster nodes.

 Each node can monitor one or more of the others
(over the LAN).

 If the monitored machine fails, the monitoring
machine can take over the failed machine.

Introduction to OS 22

43

Clustered Systems (2)

 Clustering can be structured asymmetrically or
symmetrically.

 Asymmetric clustering:

 One machine is in hot-standby mode, does nothing but
monitor the active nodes.

 If an active fails, the hot-standby host becomes the active
node.

 Symmetric mode:

 Host are monitoring each other.

 More efficient as it uses all of the available hardware.

 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

 Some have distributed lock manager (DLM) to avoid
conflicting operations

Clustered Systems

Introduction to OS 23

45

Operating System Structure (1)

 Operating systems vary greatly in their makeup, since
they are organized along many different lines.
 However, there are many commonalities.

 One of the most important aspect of operating systems
is the ability to multiprogramming.
 User cannot keep CPU and I/O devices busy at all times.

 Jobs have to wait for some task, such as an I/O operation, to
complete.

 The CPU would sit idle.

 Multiprogramming organizes jobs so CPU always has one
to execute.

46

Operating System Structure (2)

 Multiprogramming:

 A subset of total jobs in system is kept in memory.

 One job is selected and run.

 When it has to wait (for I/O for example), OS switches to
another job.

 When that job needs to wait, the CPU is switched to
another job, and so on.

 Eventually, the first job finishes waiting and gets the CPU
back.

 As long as at least one job needs to execute, the CPU is
never idle.

Introduction to OS 24

47

Operating System Structure (3)

48

Operating System Structure (4)

 Time sharing (multitasking):
 Is logical extension of multiprogramming.

 CPU switches jobs frequently.

 Time sharing is frequently used in interactive computer
system.
 For example, windows systems, which provide direct

communication between the user and the system (using
keyboard or mouse).

 The response time (of each job) should be short!!

 The operating system must switch rapidly from one job (for
one user) to next, such that each user is given the
impression that the entire computer system is dedicated to
his use.

Introduction to OS 25

49

Operating System Structure (5)

 Time sharing and multiprogramming require several jobs to be

kept simultaneously in memory.

 A program loaded into memory and executing is called a process.

 Since main memory is too small to accommodate all jobs, the jobs

are kept initially on the disk in the job pool.

 The pool consists of all processes residing on disk awaiting
allocation of main memory.

 Job scheduling (chapter 5) selects jobs from the pool and loads

them into memory for execution.

 If several jobs ready to run at the same time CPU scheduling

(chapter 5) chooses among them.

50

Operating System Structure (6)

 If processes don’t fit in memory, swapping moves them

in and out to run.
 Swap to a backing store (e.g., hard disks).

 For example a higher-priority process arrives and wants service,
the memory manager can swap out the lower-priority process and
then load and execute the higher-priority process.

 Virtual memory allows execution of processes not completely in
memory.

Introduction to OS 26

51

Operating-System Operations (1)

 Modern operating systems are event driven.
 Waiting for something (event) to happen.

 Events are signaled by the occurrence of an interrupt
or a trap (software interrupt).
 Interrupt driven by hardware.

 Software error or request creates trap.
 E.g., division by zero, request for operating system service.

 The operation structure of interrupt (event) driven operating
system:

 For each interrupt, separate segments of code in the
operating system determine what action should be taken.

 An interrupt service routine (IRS) is provided that is
responsible for dealing with the interrupt.

52

Operating-System Operations (2)

 Since there are multiple running processes, we

(operating system) need to make sure that an error in a

program can not affect other programs.

 Infinite loop in one process could prevent the correct
operation of many other processes.

 One erroneous (malicious) program might modify another
program/data/OS.

 Protection and security are very important!!

Introduction to OS 27

53

Operating-System Operations (3)

 To ensure the proper execution of the operating system, we must

be able to distinguish between the execution of operating-system

code and user-defined code.

 Computation resources can only be managed by operating-
system code.

 User-defined code can not cross the line.

 Supported by hardware mechanism.

 Dual-mode: user mode and kernel mode.

 Mode bit provided by hardware, kernel (0) or user (1).

 Recent versions of the Intel CPU do provide dual-mode.

 When a user application requests a service from operating
system, it must transition from user to kernel mode to fulfill the
request.

 Request only through system call.

 Increasingly CPUs support multi-mode operations

 i.e. virtual machine manager (VMM) mode for guest VMs

54

Transition from User Mode to Kernel Mode (1)

Require a service from the operating
system

The operating system
gains

control of the computer

Passing control to user
program

Introduction to OS 28

55

Transition from User Mode to Kernel Mode (2)

 The dual mode protects the operating system from

errant users.

 We designate some machine instructions that may cause
harm as privileged instructions, and only executable in
kernel mode.

 I/O control, interrupt management … are examples of
privileged instruction.

 Generally, control is switched to the operating system via
an interrupt, a trap, or a system call.

56

Transition from User Mode to Kernel Mode (3)

 More description of system call:
 When a system call is called, it is treated by the hardware

as a software interrupt.

 The mode bit is set to kernel mode.

 Control passes through the interrupt vector to a service
routine in the operating system.
 The kernel examines the parameter of the interrupt to

determine what type of service the user program is
requesting.

 The kernel verifies and executes the request.

 And returns control to the instruction following the system
call (user mode).

Introduction to OS 29

57

Operating-System Operations: Timer

 Operating system must prevent a user program from
running too long.

 E.g., Getting stuck in an infinite loop.

 A timer can be set to prevent a user program from
running too long.

 Timer can be set to interrupt the computer after a
period.

 Before turning over control to the user (program),
operating system initializes a counter.

 Every timer interrupt decrements the counter by 1.

 When counter becomes negative, the operating
system terminates program.

58

Process Management (1)

 Process:

 A program in execution.

 Program is a passive entity, process is an active entity.

 A unit of work within the system.

 Process needs resources to accomplish its task.

 Process termination requires reclaim of any reusable resources.

 CPU, memory, I/O, files.

 Single-threaded process has one program counter specifying

location of next instruction to execute.

 Multi-threaded process has one program counter per thread.

 Process executes instructions sequentially, one at a time, until
completion.

Introduction to OS 30

59

Process Management (2)

 Typically system has many processes, some user, some

operating system running concurrently on one or more

CPUs.

 The operating system is responsible for the following

activities in connection with process management (chapters 3

~ 6):

 Creating and deleting both user and system processes

 Suspending and resuming processes.

 Providing mechanisms for process synchronization.

 Providing mechanisms for process communication.

 Providing mechanisms for deadlock handling.

60

Memory Management (1)

 The main memory is generally the only large storage

device that the CPU is able to address and access

directly.

 Main memory is a large array of words or bytes, ranging
in size from hundreds of thousands to billions.

 Each word or byte has its own (memory) address.

 Data must be in memory before and after processing.

 For example, load data from disk into memory.

 All instructions must be in memory in order to execute.

Introduction to OS 31

61

Memory Management (2)

 General-purpose computers must keep several

programs in memory to improve the computer

performance.

 Creating a need for memory management (chapters 8 and 9).

 Memory management activities:

 Keeping track of which parts of memory are currently being
used and by whom.

 Deciding which processes (or parts thereof) and data to move
into and out of memory.

 Allocating and de-allocating memory space as needed.

62

Storage Management

 The operating system provides uniform, logical view of
physical storage media.
 Abstract physical properties to Logical storage unit — file.

 Physical storage media — disk, tapes, …

 Varying properties include access speed, capacity, data-transfer
rate, access methods (sequential or random)

 The operating system maps files onto physical
media and access these files via the storage
devices.

Introduction to OS 32

63

File-System Management

 A file is a collection of related information defined by
its creator.
 Represent programs and data.

 Data: numeric, alphabetic, or binary. free-form or non-free
form.

 Files usually organized into directories to make them
easier to use.

 Multiple user can access to the same file.
 Access control on most operating systems to determine who

can access what.

 OS activities include:
 Creating and deleting files and directories.
 Primitives to manipulate files and directories.
 Mapping files onto secondary storage.
 Backup files onto stable (non-volatile) storage media.

64

Mass-Storage Management (1)

 Computer system must provide secondary storage to

back up main memory (for a long period of time).

 Disks are used as the principal storage medium for
programs and data.

 Disks are frequently used as the source and

destination of program processing.

 Proper management is of central importance.

 Speed of computer operation hinges on disk subsystem.

 OS activities:

 Free-space management.

 Storage allocation.

 Disk scheduling.

Introduction to OS 33

65

Mass-Storage Management (2)

 Tertiary storage:

 Storage that is slower and lower in cost than secondary
storage.

 Optical storage, magnetic tape.

 Backup disk data.

 Still must be managed.

66

Caching Revisited

 Important principle of computer systems.
 Information is normally kept in some storage system

(large, slow, and cheap).
 As it is used, it is copied into a faster (small, and

expensive) storage system — the cache.

 When we need a particular piece of information, we
first check faster storage (cache) to determine if
information is there.
 If it is, information used directly from the cache (fast).
 If not, data copied to cache and used there.

 Because cache is smaller than storage being
cached, cache management is an important design
problem.
 Careful selection of the cache size and replacement policy.

Introduction to OS 34

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be

explicit or implicit

68

Migration of data “A” from Disk to Register (1)

 In a hierarchical storage structure, the same data may appear in

different levels of the storage system.

 An integer A that is to be incremented by 1 is located in file B on

disk.

 Once the increment takes place in the register, the value of A
differs in the various storage system!!

 In an environment where only one process executes at a time.

 An access to A will always to be the copy at the highest level of
the storage hierarchy.

Introduction to OS 35

69

Migration of data “A” from Disk to Register (2)

 In multitasking environments:
 each process (has its memory space) must obtain the most

recently updated value of A.

 In multiprocessor environment:
 Each CPU also contains a local cache.
 A copy of A may exist simultaneously in several

caches.
 Since CPUs can execute concurrently, an update of A in

one cache must be reflected in all other caches where A
resides — cache coherency.

 Distributed environment situation even more complex.
 Several copies of a datum can exist.

70

I/O Subsystem

 The purpose of I/O subsystem of the operating system

is to hide peculiarities of hardware devices from the

user.

 I/O subsystem responsible for

 Memory management of I/O including buffering, caching,
spooling.

 General device-driver interface.

 Drivers for specific hardware devices.

Introduction to OS 36

71

Protection and Security (1)

 A multi-user computer system allows the concurrent
execution of multiple processes.
 Computation resources must be operated in a proper and

authorized manner.
 For example, a process can execute only within its own

address space.

 Protection – any mechanism for controlling access of
processes or users to resources defined by the operating
system.

 A system can have adequate protection but still be prone to
failure and allow inappropriate access.
 A user’s authentication information is stolen.

 Security – defense of the system against internal and
external attacks.
 Huge range, including denial-of-service, viruses, …

72

Protection and Security (2)

 Protection and security require the operating system
to be able to distinguish among all its users.

 Most systems maintain a list of user names and
associated user identifiers (user IDs, security IDs).

 User ID is then associated with all files, processes
of that user to determine access control.

 Group identifier (group ID) allows set of users to be
defined and managed, then also associated with each
process, file.

 Privilege escalation allows user to change to effective
ID with more rights for an activity.
 For example, on UNIX, the setuid attribute on a program

causes that program to run with the user ID of the owner
of the file, rather than the current user’s ID.

Introduction to OS 37

Kernel Data Structures

n Similar to standard programming data structures.

n Singly linked list

n Doubly linked list

n Circular linked list

Kernel Data Structures

 Binary search tree

left <= right

 Search performance is O(n)

 Balanced binary search tree is O(lg n)

Introduction to OS 38

Kernel Data Structures

 Hash function can create a hash map.

 Bitmap – string of n binary digits representing the status of n

items.

 Linux data structures defined in

include files <linux/list.h>, <linux/kfifo.h>, <linux/rbtree.h>

Computing Environments - Traditional

 Stand-alone general purpose machines.

 But blurred as most systems interconnect with others (i.e.,

the Internet).

 Portals provide web access to internal systems.

 Network computers (thin clients) are like Web terminals.

 Mobile computers interconnect via wireless networks.

 Networking becoming ubiquitous – even home systems use

firewalls to protect home computers from Internet attacks.

Introduction to OS 39

Computing Environments - Mobile

 Handheld smartphones, tablets, etc.

 What is the functional difference between them and a

“traditional” laptop?

 Extra feature – more OS features (GPS, gyroscope).

 Allows new types of apps like augmented reality.

 Use IEEE 802.11 wireless, or cellular data networks for

connectivity.

 Leaders are Apple iOS and Google Android.

Computing Environments – Distributed

 Distributed computing

 Collection of separate, possibly heterogeneous, systems

networked together.

 Network is a communications path, TCP/IP most common

 Local Area Network (LAN)

 Wide Area Network (WAN)

 Metropolitan Area Network (MAN)

 Personal Area Network (PAN)

 Network Operating System provides features between

systems across network.

 Communication scheme allows systems to exchange

messages

 Illusion of a single system

Introduction to OS 40

Computing Environments – Client-Server

 Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by
clients

 Compute-server system provides an interface to client to
request services (i.e., database)

 File-server system provides interface for clients to store and
retrieve files

Computing Environments - Peer-to-Peer

 Another model of distributed system.

 P2P does not distinguish clients and

servers.

 Instead all nodes are considered

peers

 May each act as client, server or

both

 Node must join P2P network

 Registers its service with central

lookup service on network, or

 Broadcast request for service and

respond to requests for service

via discovery protocol

 Examples include Napster and

Gnutella, Voice over IP (VoIP) such

as Skype

Introduction to OS 41

Computing Environments – Virtualization (1)

 Allows operating systems to run applications within other

OSes

 Vast and growing industry

 Emulation used when source CPU type different from target

type (i.e. PowerPC to Intel x86)

 Generally slowest method

 When computer language not compiled to native code –

Interpretation

 Virtualization – OS natively compiled for CPU, running guest

OSes also natively compiled

 Consider VMware running WinXP guests, each running

applications, all on native WinXP host OS

 VMM (virtual machine Manager) provides virtualization

services

Computing Environments – Virtualization (2)

 Use cases involve laptops and desktops running multiple

OSes for exploration or compatibility

 Apple laptop running Mac OS X host, Windows as a guest

 Developing apps for multiple OSes without having multiple

systems

 QA testing applications without having multiple systems

 Executing and managing compute environments within data

centers

 VMM can run natively, in which case they are also the host

 There is no general purpose host then (VMware ESX and

Citrix XenServer)

Introduction to OS 42

Computing Environments – Virtualization (3)

Computing Environments – Cloud Computing (1)

 Delivers computing, storage, even apps as a service across a

network.

 Logical extension of virtualization because it uses virtualization as

the base for it functionality.

 Amazon EC2 has thousands of servers, millions of virtual

machines, petabytes of storage available across the Internet, pay

based on usage

 Many types

 Public cloud – available via Internet to anyone willing to pay

 Private cloud – run by a company for the company’s own use

 Hybrid cloud – includes both public and private cloud components

 Software as a Service (SaaS) – one or more applications available via the Internet

(i.e., word processor)

 Platform as a Service (PaaS) – software stack ready for application use via the

Internet (i.e., a database server)

 Infrastructure as a Service (IaaS) – servers or storage available over Internet (i.e.,

storage available for backup use)

Introduction to OS 43

Computing Environments – Cloud Computing (2)

 Cloud computing environments composed of

traditional OSes, plus VMMs, plus cloud management

tools.

 Internet connectivity requires security like firewalls

 Load balancers spread traffic across multiple

applications

Computing Environments – Real-Time Embedded Systems

 Real-time embedded systems most prevalent form of

computers.

 Vary considerable, special purpose, limited purpose OS,

real-time OS

 Use expanding

 Many other special computing environments as well.

 Some have OSes, some perform tasks without an OS

 Real-time OS has well-defined fixed time constraints.

 Processing must be done within constraint

 Correct operation only if constraints met

Introduction to OS 44

Open-Source Operating Systems

 Operating systems made available in source-code format

rather than just binary closed-source.

 Counter to the copy protection and Digital Rights

Management (DRM) movement.

 Started by Free Software Foundation (FSF), which has

“copyleft” GNU Public License (GPL).

 Examples include GNU/Linux and BSD UNIX (including

core of Mac OS X), and many more.

 Can use VMM like VMware Player (Free on Windows),

Virtualbox (open source and free on many platforms -

http://www.virtualbox.com) .

 Use to run guest operating systems for exploration

88

Special-Purpose Systems

 Embedded Systems:

 A special-purpose computer system designed to perform
one or a few dedicated functions.
 E.g., robotic arms.

 Usually have little or no user interface.
 Almost run real-time operating systems.

 Rigid time requirements have been placed on the operation
of a processor or the flow of data.

 Multimedia Systems:

 A recent trend in technology is the incorporation of
multimedia data into computer system.

 Different from convention data, multimedia data must be
delivered according to a certain time restrictions.

 Chapter 20 explores the nature of multimedia data and the
design of operating systems that support the multimedia.

