
Chapter 10. System Calls 
Operating systems offer processes running in User Mode a set of interfaces to 
interact with hardware devices such as the CPU, disks, and printers. Putting an extra 
layer between the application and the hardware has several advantages. First, it 
makes programming easier by freeing users from studying low-level programming 
characteristics of hardware devices. Second, it greatly increases system security, 
because the kernel can check the accuracy of the request at the interface level 
before attempting to satisfy it. Last but not least, these interfaces make programs 
more portable, because they can be compiled and executed correctly on every kernel 
that offers the same set of interfaces. 

Unix systems implement most interfaces between User Mode processes and 
hardware devices by means of system calls issued to the kernel. This chapter 
examines in detail how Linux implements system calls that User Mode programs 
issue to the kernel. 

10.1. POSIX APIs and System Calls 

Let's start by stressing the difference between an application programmer interface 
(API) and a system call. The former is a function definition that specifies how to 
obtain a given service, while the latter is an explicit request to the kernel made via a 
software interrupt. 

Unix systems include several libraries of functions that provide APIs to programmers. 
Some of the APIs defined by the libc standard C library refer to wrapper routines 
(routines whose only purpose is to issue a system call). Usually, each system call has 
a corresponding wrapper routine, which defines the API that application programs 
should employ. 

The converse is not true, by the wayan API does not necessarily correspond to a 
specific system call. First of all, the API could offer its services directly in User Mode. 
(For something abstract such as math functions, there may be no reason to make 
system calls.) Second, a single API function could make several system calls. 
Moreover, several API functions could make the same system call, but wrap extra 
functionality around it. For instance, in Linux, the malloc( ) , calloc( ) , and free( ) 
APIs are implemented in the libc library. The code in this library keeps track of the 
allocation and deallocation requests and uses the brk( ) system call to enlarge or 
shrink the process heap (see the section "Managing the Heap" in Chapter 9). 

The POSIX standard refers to APIs and not to system calls. A system can be certified 
as POSIX-compliant if it offers the proper set of APIs to the application programs, no 
matter how the corresponding functions are implemented. As a matter of fact, 
several non-Unix systems have been certified as POSIX-compliant, because they 
offer all traditional Unix services in User Mode libraries. 

From the programmer's point of view, the distinction between an API and a system 
call is irrelevantthe only things that matter are the function name, the parameter 
types, and the meaning of the return code. From the kernel designer's point of view, 



however, the distinction does matter because system calls belong to the kernel, 
while User Mode libraries don't. 

Most wrapper routines return an integer value, whose meaning depends on the 
corresponding system call. A return value of -1 usually indicates that the kernel was 
unable to satisfy the process request. A failure in the system call handler may be 
caused by invalid parameters, a lack of available resources, hardware problems, and 
so on. The specific error code is contained in the errno variable, which is defined in 
the libc library. 

Each error code is defined as a macro constant, which yields a corresponding positive 
integer value. The POSIX standard specifies the macro names of several error codes. 
In Linux, on 80 x 86 systems, these macros are defined in the header file 
include/asm-i386/errno.h. To allow portability of C programs among Unix systems, 
the include/asm-i386/errno.h header file is included, in turn, in the standard 
/usr/include/errno.h C library header file. Other systems have their own specialized 
subdirectories of header files. 

10.2. System Call Handler and Service Routines 

When a User Mode process invokes a system call, the CPU switches to Kernel Mode 
and starts the execution of a kernel function. As we will see in the next section, in 
the 80 x 86 architecture a Linux system call can be invoked in two different ways. 
The net result of both methods, however, is a jump to an assembly language 
function called the system call handler. 

Because the kernel implements many different system calls, the User Mode process 
must pass a parameter called the system call number to identify the required system 
call; the eax register is used by Linux for this purpose. As we'll see in the section 
"Parameter Passing" later in this chapter, additional parameters are usually passed 
when invoking a system call. 

All system calls return an integer value. The conventions for these return values are 
different from those for wrapper routines. In the kernel, positive or 0 values denote a 
successful termination of the system call, while negative values denote an error 
condition. In the latter case, the value is the negation of the error code that must be 
returned to the application program in the errno variable. The errno variable is not 
set or used by the kernel. Instead, the wrapper routines handle the task of setting 
this variable after a return from a system call. 

The system call handler, which has a structure similar to that of the other exception 
handlers, performs the following operations: 

•  Saves the contents of most registers in the Kernel Mode stack (this operation 
is common to all system calls and is coded in assembly language). 

•  Handles the system call by invoking a corresponding C function called the 
system call service routine. 

•  Exits from the handler: the registers are loaded with the values saved in the 
Kernel Mode stack, and the CPU is switched back from Kernel Mode to User 
Mode (this operation is common to all system calls and is coded in assembly 
language). 



The name of the service routine associated with the xyz( ) system call is usually 
sys_xyz( ); there are, however, a few exceptions to this rule. 

Figure 10-1 illustrates the relationships between the application program that 
invokes a system call, the corresponding wrapper routine, the system call handler, 
and the system call service routine. The arrows denote the execution flow between 
the functions. The terms "SYSCALL" and "SYSEXIT" are placeholders for the actual 
assembly language instructions that switch the CPU, respectively, from User Mode to 
Kernel Mode and from Kernel Mode to User Mode. 

Figure 10-1. Invoking a system call 

 
 

To associate each system call number with its corresponding service routine, the 
kernel uses a system call dispatch table, which is stored in the sys_call_table array 
and has NR_syscalls entries (289 in the Linux 2.6.11 kernel). The nth entry contains 
the service routine address of the system call having number n. 

The NR_syscalls macro is just a static limit on the maximum number of 
implementable system calls; it does not indicate the number of system calls actually 
implemented. Indeed, each entry of the dispatch table may contain the address of 
the sys_ni_syscall( ) function, which is the service routine of the "nonimplemented" 
system calls; it just returns the error code -ENOSYS. 

10.3. Entering and Exiting a System Call 

Native applications[*] can invoke a system call in two different ways: 

[*] As we will see in the section "Execution Domains" in Chapter 20, Linux can execute programs compiled for "foreign" operating 
systems. Therefore, the kernel offers a compatibility mode to enter a system call: User Mode processes executing iBCS and 
Solaris /x86 programs can enter the kernel by jumping into suitable call gates included in the default Local Descriptor Table (see 
the section "The Linux LDTs" in Chapter 2). 

•  By executing the int $0x80 assembly language instruction; in older versions 
of the Linux kernel, this was the only way to switch from User Mode to Kernel 
Mode. 



•  By executing the sysenter assembly language instruction, introduced in the 
Intel Pentium II microprocessors; this instruction is now supported by the 
Linux 2.6 kernel. 

Similarly, the kernel can exit from a system callthus switching the CPU back to User 
Modein two ways: 

•  By executing the iret assembly language instruction. 
•  By executing the sysexit assembly language instruction, which was 

introduced in the Intel Pentium II microprocessors together with the sysenter 
instruction. 

However, supporting two different ways to enter the kernel is not as simple as it 
might look, because: 

•  The kernel must support both older libraries that only use the int $0x80 
instruction and more recent ones that also use the sysenter instruction. 

•  A standard library that makes use of the sysenter instruction must be able to 
cope with older kernels that support only the int $0x80 instruction. 

•  The kernel and the standard library must be able to run both on older 
processors that do not include the sysenter instruction and on more recent 
ones that include it. 

We will see in the section "Issuing a System Call via the sysenter Instruction" later in 
this chapter how the Linux kernel solves these compatibility problems. 

10.3.1. Issuing a System Call via the int $0x80 Instruction 

The "traditional" way to invoke a system call makes use of the int assembly 
language instruction, which was discussed in the section "Hardware Handling of 
Interrupts and Exceptions" in Chapter 4. 

The vector 128in hexadecimal, 0x80is associated with the kernel entry point. The 
trap_init( ) function, invoked during kernel initialization, sets up the Interrupt 
Descriptor Table entry corresponding to vector 128 as follows: 

    set_system_gate(0x80, &system_call); 

 

The call loads the following values into the gate descriptor fields (see the section 
"Interrupt, Trap, and System Gates" in Chapter 4): 

 

Segment Selector 

The _ _KERNEL_CS Segment Selector of the kernel code segment. 

 



Offset 

The pointer to the system_call( ) system call handler. 

 

Type 

Set to 15. Indicates that the exception is a Trap and that the corresponding 
handler does not disable maskable interrupts. 

 

DPL (Descriptor Privilege Level) 

Set to 3. This allows processes in User Mode to invoke the exception handler 
(see the section "Hardware Handling of Interrupts and Exceptions" in Chapter 
4). 

Therefore, when a User Mode process issues an int $0x80 instruction, the CPU 
switches into Kernel Mode and starts executing instructions from the system_call 
address. 

10.3.1.1. The system_call( ) function 

The system_call( ) function starts by saving the system call number and all the CPU 
registers that may be used by the exception handler on the stackexcept for eflags, 
cs, eip, ss, and esp, which have already been saved automatically by the control unit 
(see the section "Hardware Handling of Interrupts and Exceptions" in Chapter 4). The 
SAVE_ALL macro, which was already discussed in the section "I/O Interrupt Handling" 
in Chapter 4, also loads the Segment Selector of the kernel data segment in ds and 
es: 

    system_call: 
      pushl %eax 
      SAVE_ALL 
      movl $0xffffe000, %ebx /* or 0xfffff000 for 4-KB stacks */ 
      andl %esp, %ebx 

 

The function then stores the address of the thread_info data structure of the current 
process in ebx (see the section "Identifying a Process" in Chapter 3). This is done by 
taking the value of the kernel stack pointer and rounding it up to a multiple of 4 or 8 
KB (see the section "Identifying a Process" in Chapter 3). 

Next, the system_call( ) function checks whether either one of the 
TIF_SYSCALL_TRACE and TIF_SYSCALL_AUDIT flags included in the flags field of the 
thread_info structure is setthat is, whether the system call invocations of the 
executed program are being traced by a debugger. If this is the case, system_call( ) 
invokes the do_syscall_trace( ) function twice: once right before and once right 



after the execution of the system call service routine (as described later). This 
function stops current and thus allows the debugging process to collect information 
about it. 

A validity check is then performed on the system call number passed by the User 
Mode process. If it is greater than or equal to the number of entries in the system 
call dispatch table, the system call handler terminates: 

      cmpl $NR_syscalls, %eax 
      jb nobadsys 
      movl $(-ENOSYS), 24(%esp) 
      jmp resume_userspace 
    nobadsys: 

 

If the system call number is not valid, the function stores the -ENOSYS value in the 
stack location where the eax register has been savedthat is, at offset 24 from the 
current stack top. It then jumps to resume_userspace (see below). In this way, when 
the process resumes its execution in User Mode, it will find a negative return code in 
eax. 

Finally, the specific service routine associated with the system call number contained 
in eax is invoked: 

      call *sys_call_table(0, %eax, 4) 

 

Because each entry in the dispatch table is 4 bytes long, the kernel finds the address 
of the service routine to be invoked by multiplying the system call number by 4, 
adding the initial address of the sys_call_table dispatch table, and extracting a 
pointer to the service routine from that slot in the table. 

10.3.1.2. Exiting from the system call 

When the system call service routine terminates, the system_call( ) function gets its 
return code from eax and stores it in the stack location where the User Mode value of 
the eax register is saved: 

      movl %eax, 24(%esp) 

 

Thus, the User Mode process will find the return code of the system call in the eax 
register. 

Then, the system_call( ) function disables the local interrupts and checks the flags 
in the thread_info structure of current: 

      cli 
      movl 8(%ebp), %ecx 
      testw $0xffff, %cx 



      je restore_all 

 

The flags field is at offset 8 in the tHRead_info structure; the mask 0xffff selects 
the bits corresponding to all flags listed in Table 4-15 except TIF_POLLING_NRFLAG. If 
none of these flags is set, the function jumps to the restore_all label: as described 
in the section "Returning from Interrupts and Exceptions" in Chapter 4, this code 
restores the contents of the registers saved on the Kernel Mode stack and executes 
an iret assembly language instruction to resume the User Mode process. (You might 
refer to the flow diagram in Figure 4-6.) 

If any of the flags is set, then there is some work to be done before returning to User 
Mode. If the TIF_SYSCALL_TRACE flag is set, the system_call( ) function invokes for 
the second time the do_syscall_trace( ) function, then jumps to the 
resume_userspace label. Otherwise, if the TIF_SYSCALL_TRACE flag is not set, the 
function jumps to the work_pending label. 

As explained in the section "Returning from Interrupts and Exceptions" in Chapter 4, 
that code at the resume_userspace and work_pending labels checks for rescheduling 
requests, virtual-8086 mode, pending signals, and single stepping; then eventually a 
jump is done to the restore_all label to resume the execution of the User Mode 
process. 

10.3.2. Issuing a System Call via the sysenter Instruction 

The int assembly language instruction is inherently slow because it performs several 
consistency and security checks. (The instruction is described in detail in the section 
"Hardware Handling of Interrupts and Exceptions" in Chapter 4.) 

The sysenter instruction, dubbed in Intel documentation as "Fast System Call," 
provides a faster way to switch from User Mode to Kernel Mode. 

10.3.2.1. The sysenter instruction 

The sysenter assembly language instruction makes use of three special registers that 
must be loaded with the following information:[*] 

[*] "MSR" is an acronym for "Model-Specific Register" and denotes a register that is present only in some models of 80 x 86 
microprocessors. 

 

SYSENTER_CS_MSR 

The Segment Selector of the kernel code segment 

 

SYSENTER_EIP_MSR 



The linear address of the kernel entry point 

 

SYSENTER_ESP_MSR 

The kernel stack pointer 

When the sysenter instruction is executed, the CPU control unit: 

1. Copies the content of SYSENTER_CS_MSR into cs. 
2. Copies the content of SYSENTER_EIP_MSR into eip. 
3. Copies the content of SYSENTER_ESP_MSR into esp. 
4. Adds 8 to the value of SYSENTER_CS_MSR, and loads this value into ss. 

Therefore, the CPU switches to Kernel Mode and starts executing the first instruction 
of the kernel entry point. As we have seen in the section "The Linux GDT" in Chapter 
2, the kernel stack segment coincides with the kernel data segment, and the 
corresponding descriptor follows the descriptor of the kernel code segment in the 
Global Descriptor Table; therefore, step 4 loads the proper Segment Selector in the 
ss register. 

The three model-specific registers are initialized by the enable_sep_cpu( ) function, 
which is executed once by every CPU in the system during the initialization of the 
kernel. The function performs the following steps: 

1. Writes the Segment Selector of the kernel code (_ _KERNEL_CS) in the 
SYSENTER_CS_MSR register. 

2. Writes in the SYSENTER_CS_EIP register the linear address of the 
sysenter_entry( ) function described below. 

3. Computes the linear address of the end of the local TSS, and writes this value 
in the SYSENTER_CS_ESP register.[*] 

[*] The encoding of the local TSS address written in SYSENTER_ESP_MSR is due to the fact that the register 
should point to a real stack, which grows towards lower address. In practice, initializing the register 
with any value would work, provided that it is possible to get the address of the local TSS from such a 
value. 

The setting of the SYSENTER_CS_ESP register deserves some comments. When a 
system call starts, the kernel stack is empty, thus the esp register should point to the 
end of the 4- or 8-KB memory area that includes the kernel stack and the descriptor 
of the current process (see Figure 3-2). The User Mode wrapper routine cannot 
properly set this register, because it does not know the address of this memory area; 
on the other hand, the value of the register must be set before switching to Kernel 
Mode. Therefore, the kernel initializes the register so as to encode the address of the 
Task State Segment of the local CPU. As we have described in step 3 of the _ 
_switch_to( ) function (see the section "Performing the Process Switch" in Chapter 
3), at every process switch the kernel saves the kernel stack pointer of the current 
process in the esp0 field of the local TSS. Thus, the system call handler reads the esp 
register, computes the address of the esp0 field of the local TSS, and loads into the 
same esp register the proper kernel stack pointer. 



10.3.2.2. The vsyscall page 

A wrapper function in the libc standard library can make use of the sysenter 
instruction only if both the CPU and the Linux kernel support it. 

This compatibility problem calls for a quite sophisticated solution. Essentially, in the 
initialization phase the sysenter_setup( ) function builds a page frame called vsyscall 
page containing a small ELF shared object (i.e., a tiny ELF dynamic library). When a 
process issues an execve( ) system call to start executing an ELF program, the code 
in the vsyscall page is dynamically linked to the process address space (see the 
section "The exec Functions" in Chapter 20). The code in the vsyscall page makes 
use of the best available instruction to issue a system call. 

The sysenter_setup( ) function allocates a new page frame for the vsyscall page and 
associates its physical address with the FIX_VSYSCALL fix-mapped linear address (see 
the section "Fix-Mapped Linear Addresses" in Chapter 2). Then, the function copies in 
the page either one of two predefined ELF shared objects: 

•  If the CPU does not support sysenter, the function builds a vsyscall page that 
includes the code: 

•      _ _kernel_vsyscall: 
•        int  
•   $0x80 

      ret 

 

•  Otherwise, if the CPU does support sysenter, the function builds a vsyscall 
page that includes the code: 

•      _ _kernel_vsyscall: 
•        pushl %ecx 
•        pushl %edx 
•        pushl %ebp 
•        movl %esp, %ebp 

      sysenter 

 

When a wrapper routine in the standard library must invoke a system call, it calls the 
_ _kernel_vsyscall( ) function, whatever it may be. 

A final compatibility problem is due to old versions of the Linux kernel that do not 
support the sysenter instruction; in this case, of course, the kernel does not build the 
vsyscall page and the _ _kernel_vsyscall( ) function is not linked to the address 
space of the User Mode processes. When recent standard libraries recognize this fact, 
they simply execute the int $0x80 instruction to invoke the system calls. 

10.3.2.3. Entering the system call 



The sequence of steps performed when a system call is issued via the sysenter 
instruction is the following: 

1. The wrapper routine in the standard library loads the system call number into 
the eax register and calls the _ _kernel_vsyscall( ) function. 

2. The _ _kernel_vsyscall( ) function saves on the User Mode stack the 
contents of ebp, edx, and ecx (these registers are going to be used by the 
system call handler), copies the user stack pointer in ebp, then executes the 
sysenter instruction. 

3. The CPU switches from User Mode to Kernel Mode, and the kernel starts 
executing the sysenter_entry( ) function (pointed to by the SYSENTER_EIP_MSR 
register). 

4. The sysenter_entry( ) assembly language function performs the following 
steps: 

a. Sets up the kernel stack pointer: 
b.     movl -508(%esp), %esp 

 

Initially, the esp register points to the first location after the local TSS, 
which is 512bytes long. Therefore, the instruction loads in the esp 
register the contents of the field at offset 4 in the local TSS, that is, 
the contents of the esp0 field. As already explained, the esp0 field 
always stores the kernel stack pointer of the current process. 

c. Enables local interrupts: 
d.     sti 

 

e. Saves in the Kernel Mode stack the Segment Selector of the user data 
segment, the current user stack pointer, the eflags register, the 
Segment Selector of the user code segment, and the address of the 
instruction to be executed when exiting from the system call: 

f.     pushl $(__USER_DS) 
g.     pushl %ebp 
h.     pushfl 
i.     pushl $(__USER_CS) 
j.     pushl $SYSENTER_RETURN 

 

Observe that these instructions emulate some operations performed 
by the int assembly language instruction (steps 5c and 7 in the 
description of int in the section "Hardware Handling of Interrupts and 
Exceptions" in Chapter 4). 

k. Restores in ebp the original value of the register passed by the 
wrapper routine: 

    movl (%ebp), %ebp 



 

This instruction does the job, because _ _kernel_vsyscall( ) saved on 
the User Mode stack the original value of ebp and then loaded in ebp 
the current value of the user stack pointer. 

l. Invokes the system call handler by executing a sequence of 
instructions identical to that starting at the system_call label described 
in the earlier section "Issuing a System Call via the int $0x80 
Instruction." 

10.3.2.4. Exiting from the system call 

When the system call service routine terminates, the sysenter_entry( ) function 
executes essentially the same operations as the system_call( ) function (see 
previous section). First, it gets the return code of the system call service routine 
from eax and stores it in the kernel stack location where the User Mode value of the 
eax register is saved. Then, the function disables the local interrupts and checks the 
flags in the thread_info structure of current. 

If any of the flags is set, then there is some work to be done before returning to User 
Mode. In order to avoid code duplication, this case is handled exactly as in the 
system_call( ) function, thus the function jumps to the resume_userspace or 
work_pending labels (see flow diagram in Figure 4-6 in Chapter 4). Eventually, the 
iret assembly language instruction fetches from the Kernel Mode stack the five 
arguments saved in step 4c by the sysenter_entry( ) function, and thus switches the 
CPU back to User Mode and starts executing the code at the SYSENTER_RETURN label 
(see below). 

If the sysenter_entry( ) function determines that the flags are cleared, it performs a 
quick return to User Mode: 

    movl 40(%esp), %edx 
    movl 52(%esp), %ecx 
    xorl %ebp, %ebp 
    sti 
    sysexit 

 

The edx and ecx registers are loaded with a couple of the stack values saved by 
sysenter_entry( ) in step 4c in the previos section: edx gets the address of the 
SYSENTER_RETURN label, while ecx gets the current user data stack pointer. 

10.3.2.5. The sysexit instruction 

The sysexit assembly language instruction is the companion of sysenter: it allows a 
fast switch from Kernel Mode to User Mode. When the instruction is executed, the 
CPU control unit performs the following steps: 



1. Adds 16 to the value in the SYSENTER_CS_MSR register, and loads the result in 
the cs register. 

2. Copies the content of the edx register into the eip register. 
3. Adds 24 to the value in the SYSENTER_CS_MSR register, and loads the result in 

the ss register. 
4. Copies the content of the ecx register into the esp register. 

Because the SYSENTER_CS_MSR register is loaded with the Segment Selector of the 
kernel code, the cs register is loaded with the Segment Selector of the user code, 
while the ss register is loaded with the Segment Selector of the user data segment 
(see the section "The Linux GDT" in Chapter 2). 

As a result, the CPU switches from Kernel Mode to User Mode and starts executing 
the instruction whose address is stored in the edx register. 

10.3.2.6. The SYSENTER_RETURN code 

The code at the SYSENTER_RETURN label is stored in the vsyscall page, and it is 
executed when a system call entered via sysenter is being terminated, either by the 
iret instruction or the sysexit instruction. 

The code simply restores the original contents of the ebp, edx, and ecx registers 
saved in the User Mode stack, and returns the control to the wrapper routine in the 
standard library: 

    SYSENTER_RETURN: 
      popl %ebp 
      popl %edx 
      popl %ecx 
      ret 

10.4. Parameter Passing 

Like ordinary functions, system calls often require some input/output parameters, 
which may consist of actual values (i.e., numbers), addresses of variables in the 
address space of the User Mode process, or even addresses of data structures 
including pointers to User Mode functions (see the section "System Calls Related to 
Signal Handling" in Chapter 11). 

Because the system_call( ) and the sysenter_entry( ) functions are the common 
entry points for all system calls in Linux, each of them has at least one parameter: 
the system call number passed in the eax register. For instance, if an application 
program invokes the fork( ) wrapper routine, the eax register is set to 2 (i.e., _ 
_NR_fork) before executing the int $0x80 or sysenter assembly language instruction. 
Because the register is set by the wrapper routines included in the libc library, 
programmers do not usually care about the system call number. 

The fork( ) system call does not require other parameters. However, many system 
calls do require additional parameters, which must be explicitly passed by the 



application program. For instance, the mmap( ) system call may require up to six 
additional parameters (besides the system call number). 

The parameters of ordinary C functions are usually passed by writing their values in 
the active program stack (either the User Mode stack or the Kernel Mode stack). 
Because system calls are a special kind of function that cross over from user to 
kernel land, neither the User Mode or the Kernel Mode stacks can be used. Rather, 
system call parameters are written in the CPU registers before issuing the system 
call. The kernel then copies the parameters stored in the CPU registers onto the 
Kernel Mode stack before invoking the system call service routine, because the latter 
is an ordinary C function. 

Why doesn't the kernel copy parameters directly from the User Mode stack to the 
Kernel Mode stack? First of all, working with two stacks at the same time is complex; 
second, the use of registers makes the structure of the system call handler similar to 
that of other exception handlers. 

However, to pass parameters in registers, two conditions must be satisfied: 

•  The length of each parameter cannot exceed the length of a register (32 
bits).[*] 

[*] We refer, as usual, to the 32-bit architecture of the 80 x 86 processors. The discussion in this section does not apply 
to 64-bit architectures. 

•  The number of parameters must not exceed six, besides the system call 
number passed in eax, because 80 x 86 processors have a very limited 
number of registers. 

The first condition is always true because, according to the POSIX standard, large 
parameters that cannot be stored in a 32-bit register must be passed by reference. A 
typical example is the settimeofday( ) system call, which must read a 64-bit 
structure. 

However, system calls that require more than six parameters exist. In such cases, a 
single register is used to point to a memory area in the process address space that 
contains the parameter values. Of course, programmers do not have to care about 
this workaround. As with every C function call, parameters are automatically saved 
on the stack when the wrapper routine is invoked. This routine will find the 
appropriate way to pass the parameters to the kernel. 

The registers used to store the system call number and its parameters are, in 
increasing order, eax (for the system call number), ebx, ecx, edx, esi, edi, and ebp. 
As seen before, system_call( ) and sysenter_entry( ) save the values of these 
registers on the Kernel Mode stack by using the SAVE_ALL macro. Therefore, when the 
system call service routine goes to the stack, it finds the return address to 
system_call( ) or to sysenter_entry( ), followed by the parameter stored in ebx (the 
first parameter of the system call), the parameter stored in ecx, and so on (see the 
section "Saving the registers for the interrupt handler" in Chapter 4). This stack 
configuration is exactly the same as in an ordinary function call, and therefore the 
service routine can easily refer to its parameters by using the usual C-language 
constructs. 



Let's look at an example. The sys_write( ) service routine, which handles the 
write( ) system call, is declared as: 

    int sys_write (unsigned int fd, const char * buf, unsigned int 
count) 

 

The C compiler produces an assembly language function that expects to find the fd, 
buf, and count parameters on top of the stack, right below the return address, in the 
locations used to save the contents of the ebx, ecx, and edx registers, respectively. 

In a few cases, even if the system call doesn't use any parameters, the 
corresponding service routine needs to know the contents of the CPU registers right 
before the system call was issued. For example, the do_fork( ) function that 
implements fork( ) needs to know the value of the registers in order to duplicate 
them in the child process thread field (see the section "The thread field" in Chapter 
3). In these cases, a single parameter of type pt_regs allows the service routine to 
access the values saved in the Kernel Mode stack by the SAVE_ALL macro (see the 
section "The do_IRQ( ) function" in Chapter 4): 

    int sys_fork (struct pt_regs regs) 

 

The return value of a service routine must be written into the eax register. This is 
automatically done by the C compiler when a return n; instruction is executed. 

10.4.1. Verifying the Parameters 

All system call parameters must be carefully checked before the kernel attempts to 
satisfy a user request. The type of check depends both on the system call and on the 
specific parameter. Let's go back to the write( ) system call introduced before: the 
fd parameter should be a file descriptor that identifies a specific file, so sys_write( ) 
must check whether fd really is a file descriptor of a file previously opened and 
whether the process is allowed to write into it (see the section "File-Handling System 
Calls" in Chapter 1). If any of these conditions are not true, the handler must return 
a negative valuein this case, the error code -EBADF. 

One type of checking, however, is common to all system calls. Whenever a 
parameter specifies an address, the kernel must check whether it is inside the 
process address space. There are two possible ways to perform this check: 

•  Verify that the linear address belongs to the process address space and, if so, 
that the memory region including it has the proper access rights. 

•  Verify just that the linear address is lower than PAGE_OFFSET (i.e., that it 
doesn't fall within the range of interval addresses reserved to the kernel). 

Early Linux kernels performed the first type of checking. But it is quite time 
consuming because it must be executed for each address parameter included in a 
system call; furthermore, it is usually pointless because faulty programs are not very 
common. 



Therefore, starting with Version 2.2, Linux employs the second type of checking. This 
is much more efficient because it does not require any scan of the process memory 
region descriptors. Obviously, this is a very coarse check: verifying that the linear 
address is smaller than PAGE_OFFSET is a necessary but not sufficient condition for its 
validity. But there's no risk in confining the kernel to this limited kind of check 
because other errors will be caught later. 

The approach followed is thus to defer the real checking until the last possible 
momentthat is, until the Paging Unit translates the linear address into a physical one. 
We will discuss in the section "Dynamic Address Checking: The Fix-up Code," later in 
this chapter, how the Page Fault exception handler succeeds in detecting those bad 
addresses issued in Kernel Mode that were passed as parameters by User Mode 
processes. 

One might wonder at this point why the coarse check is performed at all. This type of 
checking is actually crucial to preserve both process address spaces and the kernel 
address space from illegal accesses. We saw in Chapter 2 that the RAM is mapped 
starting from PAGE_OFFSET. This means that kernel routines are able to address all 
pages present in memory. Thus, if the coarse check were not performed, a User 
Mode process might pass an address belonging to the kernel address space as a 
parameter and then be able to read or write every page present in memory without 
causing a Page Fault exception. 

The check on addresses passed to system calls is performed by the access_ok( ) 
macro, which acts on two parameters: addr and size. The macro checks the address 
interval delimited by addr and addr + size - 1. It is essentially equivalent to the 
following C function: 

    int access_ok(const void * addr, unsigned long size) 
    { 
        unsigned long a = (unsigned long) addr; 
        if (a + size < a || 
            a + size > current_thread_info( )->addr_limit.seg) 
            return 0; 
        return 1; 
    } 

 

The function first verifies whether addr + size, the highest address to be checked, is 
larger than 232-1; because unsigned long integers and pointers are represented by 
the GNU C compiler (gcc) as 32-bit numbers, this is equivalent to checking for an 
overflow condition. The function also checks whether addr + size exceeds the value 
stored in the addr_limit.seg field of the thread_info structure of current. This field 
usually has the value PAGE_OFFSET for normal processes and the value 0xffffffff for 
kernel threads . The value of the addr_limit.seg field can be dynamically changed by 
the get_fs and set_fs macros; this allows the kernel to bypass the security checks 
made by access_ok( ), so that it can invoke system call service routines, directly 
passing to them addresses in the kernel data segment. 

The verify_area( ) function performs the same check as the access_ok( ) macro; 
although this function is considered obsolete, it is still widely used in the source code. 



10.4.2. Accessing the Process Address Space 

System call service routines often need to read or write data contained in the 
process's address space. Linux includes a set of macros that make this access easier. 
We'll describe two of them, called get_user( ) and put_user( ). The first can be used 
to read 1, 2, or 4 consecutive bytes from an address, while the second can be used 
to write data of those sizes into an address. 

Each function accepts two arguments, a value x to transfer and a variable ptr. The 
second variable also determines how many bytes to transfer. Thus, in 
get_user(x,ptr), the size of the variable pointed to by ptr causes the function to 
expand into a _ _get_user_1( ), _ _get_user_2( ), or _ _get_user_4( ) assembly 
language function. Let's consider one of them, _ _get_user_2( ): 

     _ _get_user_2: 
        addl $1, %eax 
        jc bad_get_user 
        movl $0xffffe000, %edx /* or 0xfffff000 for 4-KB stacks */ 
        andl %esp, %edx 
        cmpl 24(%edx), %eax 
        jae bad_get_user 
    2:  movzwl  
 -1(%eax), %edx 
        xorl %eax, %eax 
        ret 
    bad_get_user: 
        xorl %edx, %edx 
        movl $-EFAULT, %eax 
        ret 

 

The eax register contains the address ptr of the first byte to be read. The first six 
instructions essentially perform the same checks as the access_ok( ) macro: they 
ensure that the 2 bytes to be read have addresses less than 4 GB as well as less 
than the addr_limit.seg field of the current process. (This field is stored at offset 24 
in the thread_info structure of current, which appears in the first operand of the 
cmpl instruction.) 

If the addresses are valid, the function executes the movzwl instruction to store the 
data to be read in the two least significant bytes of edx register while setting the 
high-order bytes of edx to 0; then it sets a 0 return code in eax and terminates. If 
the addresses are not valid, the function clears edx, sets the -EFAULT value into eax, 
and terminates. 

The put_user(x,ptr) macro is similar to the one discussed before, except it writes 
the value x into the process address space starting from address ptr. Depending on 
the size of x, it invokes either the _ _put_user_asm( ) macro (size of 1, 2, or 4 bytes) 
or the _ _put_user_u64( ) macro (size of 8 bytes). Both macros return the value 0 in 
the eax register if they succeed in writing the value, and -EFAULT otherwise. 



Several other functions and macros are available to access the process address 
space in Kernel Mode; they are listed in Table 10-1. Notice that many of them also 
have a variant prefixed by two underscores (_ _). The ones without initial 
underscores take extra time to check the validity of the linear address interval 
requested, while the ones with the underscores bypass that check. Whenever the 
kernel must repeatedly access the same memory area in the process address space, 
it is more efficient to check the address once at the start and then access the 
process area without making any further checks. 

Table 10-1. Functions and macros that access the process 
address space 

Function Action

get_user _ _get_user Reads an integer value from user space (1, 2, 
or 4 bytes) 

put_user _ _put_user Writes an integer value to user space (1, 2, or 4 
bytes) 

copy_from_user _ _copy_from_user Copies a block of arbitrary size from user space

copy_to_user _ _copy_to_user Copies a block of arbitrary size to user space 

strncpy_from_user _ 
_strncpy_from_user Copies a null-terminated string from user space 

strlen_user strnlen_user Returns the length of a null-terminated string in 
user space 

clear_user _ _clear_user Fills a memory area in user space with zeros 

 

10.4.3. Dynamic Address Checking: The Fix-up Code 

As seen previously, access_ok( ) makes a coarse check on the validity of linear 
addresses passed as parameters of a system call. This check only ensures that the 
User Mode process is not attempting to fiddle with the kernel address space; 
however, the linear addresses passed as parameters still might not belong to the 
process address space. In this case, a Page Fault exception will occur when the 
kernel tries to use any of such bad addresses. 

Before describing how the kernel detects this type of error, let's specify the three 
cases in which Page Fault exceptions may occur in Kernel Mode. These cases must 
be distinguished by the Page Fault handler, because the actions to be taken are quite 
different. 

1. The kernel attempts to address a page belonging to the process address 
space, but either the corresponding page frame does not exist or the kernel 
tries to write a read-only page. In these cases, the handler must allocate and 
initialize a new page frame (see the sections "Demand Paging" and "Copy On 
Write" in Chapter 9). 

2. The kernel addresses a page belonging to its address space, but the 
corresponding Page Table entry has not yet been initialized (see the section 



"Handling Noncontiguous Memory Area Accesses" in Chapter 9). In this case, 
the kernel must properly set up some entries in the Page Tables of the 
current process. 

3. Some kernel functions include a programming bug that causes the exception 
to be raised when that program is executed; alternatively, the exception 
might be caused by a transient hardware error. When this occurs, the handler 
must perform a kernel oops (see the section "Handling a Faulty Address 
Inside the Address Space" in Chapter 9). 

4. The case introduced in this chapter: a system call service routine attempts to 
read or write into a memory area whose address has been passed as a 
system call parameter, but that address does not belong to the process 
address space. 

The Page Fault handler can easily recognize the first case by determining whether 
the faulty linear address is included in one of the memory regions owned by the 
process. It is also able to detect the second case by checking whether the 
corresponding master kernel Page Table entry includes a proper non-null entry that 
maps the address. Let's now explain how the handler distinguishes the remaining 
two cases. 

10.4.4. The Exception Tables 

The key to determining the source of a Page Fault lies in the narrow range of calls 
that the kernel uses to access the process address space. Only the small group of 
functions and macros described in the previous section are used to access this 
address space; thus, if the exception is caused by an invalid parameter, the 
instruction that caused it must be included in one of the functions or else be 
generated by expanding one of the macros. The number of the instructions that 
address user space is fairly small. 

Therefore, it does not take much effort to put the address of each kernel instruction 
that accesses the process address space into a structure called the exception table. 
If we succeed in doing this, the rest is easy. When a Page Fault exception occurs in 
Kernel Mode, the do_ page_fault( ) handler examines the exception table: if it 
includes the address of the instruction that triggered the exception, the error is 
caused by a bad system call parameter; otherwise, it is caused by a more serious 
bug. 

Linux defines several exception tables . The main exception table is automatically 
generated by the C compiler when building the kernel program image. It is stored in 
the _ _ex_table section of the kernel code segment, and its starting and ending 
addresses are identified by two symbols produced by the C compiler: _ _start_ _ 
_ex_table and _ _stop_ _ _ex_table. 

Moreover, each dynamically loaded module of the kernel (see Appendix B) includes 
its own local exception table. This table is automatically generated by the C compiler 
when building the module image, and it is loaded into memory when the module is 
inserted in the running kernel. 

Each entry of an exception table is an exception_table_entry structure that has two 
fields: 



 

insn 

The linear address of an instruction that accesses the process address space 

 

fixup 

The address of the assembly language code to be invoked when a Page Fault 
exception triggered by the instruction located at insn occurs 

The fixup code consists of a few assembly language instructions that solve the 
problem triggered by the exception. As we will see later in this section, the fix 
usually consists of inserting a sequence of instructions that forces the service routine 
to return an error code to the User Mode process. These instructions, which are 
usually defined in the same macro or function that accesses the process address 
space, are placed by the C compiler into a separate section of the kernel code 
segment called .fixup. 

The search_exception_tables( ) function is used to search for a specified address in 
all exception tables: if the address is included in a table, the function returns a 
pointer to the corresponding exception_table_entry structure; otherwise, it returns 
NULL. Thus the Page Fault handler do_page_fault( ) executes the following 
statements: 

    if ((fixup = search_exception_tables(regs->eip))) { 
        regs->eip = fixup->fixup; 
        return 1; 
    } 

 

The regs->eip field contains the value of the eip register saved on the Kernel Mode 
stack when the exception occurred. If the value in the register (the instruction 
pointer) is in an exception table, do_page_fault( ) replaces the saved value with the 
address found in the entry returned by search_exception_tables( ). Then the Page 
Fault handler terminates and the interrupted program resumes with execution of the 
fixup code . 

10.4.5. Generating the Exception Tables and the Fixup Code 

The GNU Assembler .section directive allows programmers to specify which section 
of the executable file contains the code that follows. As we will see in Chapter 20, an 
executable file includes a code segment, which in turn may be subdivided into 
sections. Thus, the following assembly language instructions add an entry into an 
exception table; the "a" attribute specifies that the section must be loaded into 
memory together with the rest of the kernel image: 

    .section _ _ex_table, "a" 
        .long faulty_instruction_address, fixup_code_address 



    .previous 

 

The .previous directive forces the assembler to insert the code that follows into the 
section that was active when the last .section directive was encountered. 

Let's consider again the _ _get_user_1( ), _ _get_user_2( ), and _ _get_user_4( ) 
functions mentioned before. The instructions that access the process address space 
are those labeled as 1, 2, and 3: 

    _ _get_user_1: 
        [...] 
    1:  movzbl (%eax), %edx 
        [...] 
    _ _get_user_2: 
        [...] 
    2:  movzwl -1(%eax), %edx 
        [...] 
    _ _get_user_4: 
        [...] 
    3:  movl -3(%eax), %edx 
        [...] 
    bad_get_user: 
        xorl %edx, %edx 
        movl $-EFAULT, %eax 
        ret 
    .section _ _ex_table,"a" 
        .long 1b, bad_get_user 
        .long 2b, bad_get_user 
        .long 3b, bad_get_user 
    .previous 

 

Each exception table entry consists of two labels. The first one is a numeric label 
with a b suffix to indicate that the label is "backward;" in other words, it appears in a 
previous line of the program. The fixup code is common to the three functions and is 
labeled as bad_get_user. If a Page Fault exception is generated by the instructions at 
label 1, 2, or 3, the fixup code is executed. It simply returns an -EFAULT error code to 
the process that issued the system call. 

Other kernel functions that act in the User Mode address space use the fixup code 
technique. Consider, for instance, the strlen_user(string) macro. This macro 
returns either the length of a null-terminated string passed as a parameter in a 
system call or the value 0 on error. The macro essentially yields the following 
assembly language instructions: 

        movl $0, %eax 
        movl $0x7fffffff, %ecx 
        movl %ecx, %ebx 
        movl string, %edi 
    0:  repne; scasb  
 
        subl %ecx, %ebx 



        movl %ebx, %eax 
    1: 
    .section .fixup,"ax" 
    2:  xorl %eax, %eax 
        jmp 1b 
    .previous 
    .section _ _ex_table,"a" 
        .long 0b, 2b 
    .previous 

 

The ecx and ebx registers are initialized with the 0x7fffffff value, which represents 
the maximum allowed length for the string in the User Mode address space. The 
repne;scasb assembly language instructions iteratively scan the string pointed to by 
the edi register, looking for the value 0 (the end of string \0 character) in eax. 
Because scasb decreases the ecx register at each iteration, the eax register ultimately 
stores the total number of bytes scanned in the string (that is, the length of the 
string). 

The fixup code of the macro is inserted into the .fixup section. The "ax" attributes 
specify that the section must be loaded into memory and that it contains executable 
code. If a Page Fault exception is generated by the instructions at label 0, the fixup 
code is executed; it simply loads the value 0 in eaxthus forcing the macro to return a 
0 error code instead of the string lengthand then jumps to the 1 label, which 
corresponds to the instruction following the macro. 

The second .section directive adds an entry containing the address of the repne; 
scasb instruction and the address of the corresponding fixup code in the _ _ex_table 
section. 

10.5. Kernel Wrapper Routines 

Although system calls are used mainly by User Mode processes, they can also be 
invoked by kernel threads , which cannot use library functions. To simplify the 
declarations of the corresponding wrapper routines , Linux defines a set of seven 
macros called _syscall0 through _syscall6. 

In the name of each macro, the numbers 0 through 6 correspond to the number of 
parameters used by the system call (excluding the system call number). The macros 
are used to declare wrapper routines that are not already included in the libc 
standard library (for instance, because the Linux system call is not yet supported by 
the library); however, they cannot be used to define wrapper routines for system 
calls that have more than six parameters (excluding the system call number) or for 
system calls that yield nonstandard return values. 

Each macro requires exactly 2 + 2 x n parameters, with n being the number of 
parameters of the system call. The first two parameters specify the return type and 
the name of the system call; each additional pair of parameters specifies the type 
and the name of the corresponding system call parameter. Thus, for instance, the 
wrapper routine of the fork( ) system call may be generated by: 



    _syscall0(int,fork) 

 

while the wrapper routine of the write( ) system call may be generated by: 

    _syscall3(int,write,int,fd,const char *,buf,unsigned int,count) 

 

In the latter case, the macro yields the following code: 

    int write(int fd,const char * buf,unsigned int count) 
    { 
        long _ _res; 
        asm("int $0x80" 
            : "=a" (_ _res) 
            : "0" (_ _NR_write), "b" ((long)fd), 
              "c" ((long)buf), "d" ((long)count)); 
        if ((unsigned long)_ _res >= (unsigned long)-129) { 
            errno = -_ _res; 
            _ _res = -1; 
        } 
        return (int) _ _res; 
    } 

 

The _ _NR_write macro is derived from the second parameter of _syscall3; it 
expands into the system call number of write( ). When compiling the preceding 
function, the following assembly language code is produced: 

    write: 
         pushl %ebx              ; push ebx into stack 
         movl 8(%esp), %ebx      ; put first parameter in ebx 
         movl 12(%esp), %ecx     ; put second parameter in ecx 
         movl 16(%esp), %edx     ; put third parameter in edx 
         movl $4, %eax           ; put _ _NR_write in eax 
         int  
 $0x80               ; invoke system call 
         cmpl $-125, %eax        ; check return code 
         jbe .L1                 ; if no error, jump 
         negl %eax               ; complement the value of eax 
         movl %eax, errno        ; put result in errno 
         movl $-1, %eax          ; set eax to -1 
    .L1: popl %ebx               ; pop ebx from stack 
         ret                     ; return to calling program 

 

Notice how the parameters of the write( ) function are loaded into the CPU registers 
before the int $0x80 instruction is executed. The value returned in eax must be 
interpreted as an error code if it lies between -1 and -129 (the kernel assumes that 
the largest error code defined in include/generic/errno.h is 129). If this is the case, 
the wrapper routine stores the value of -eax in errno and returns the value -1; 
otherwise, it returns the value of eax. 


