
W4118: advanced scheduling

Instructor: Junfeng Yang

•References: Modern Operating Systems (3rd edition), Operating Systems
Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduler examples
 xv6 scheduling

 Linux scheduling

1

Motivation

 No one-size-fits-all scheduler
 Different workloads

 Different environment

 Building a general scheduler that works well
for all is difficult!

 Real scheduling algorithms are often more
complex than the simple scheduling algorithms
we’ve seen

Combining scheduling algorithms

 Multilevel queue scheduling: ready queue is
partitioned into multiple queues

 Each queue has its own scheduling algorithm
 Foreground processes: RR

 Background processes: FCFS

 Must choose scheduling algorithm to schedule
between queues. Possible algorithms
 RR between queues

 Fixed priority for each queue

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduling in Linux
 Scheduling algorithm

 Setting priorities and time slices

 Other implementation issues

4

Multiprocessor scheduling issues

 Shared-memory Multiprocessor

 How to allocate processes to CPU?

CPU0 CPU1 CPU2 CPU3

processes

5

Symmetric multiprocessor

 Architecture

 Small number of CPUs

 Same access time to main memory

 Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

6

Global queue of processes

 One ready queue shared across all CPUs

 Advantages
 Good CPU utilization
 Fair to all processes

 Disadvantages
 Not scalable (contention for global queue lock)
 Poor cache locality

 Linux 2.4 uses global queue

CPU0 CPU1 CPU2 CPU3

7

Per-CPU queue of processes

 Static partition of processes to CPUs

 Advantages
 Easy to implement
 Scalable (no contention on ready queue)
 Better cache locality

 Disadvantages
 Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

8

Hybrid approach

 Use both global and per-CPU queues

 Balance jobs across queues

 Processor Affinity
 Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

 Linux 2.6 uses a very similar approach

CPU0 CPU1 CPU2 CPU3

9

SMP: “gang” scheduling

 Multiple processes need coordination
 Should be scheduled simultaneously

 Scheduler on each CPU does not act independently
 Coscheduling (gang scheduling): run a set of processes

simultaneously
 Global context-switch across all CPUs

CPU0 CPU1 CPU2 CPU3

10

Real-time scheduling

 Real-time processes have timing constraints
 Expressed as deadlines or rate requirements

 E.g. gaming, video/music player, autopilot…

 Hard real-time systems – required to complete a
critical task within a guaranteed amount of time

 Soft real-time computing – requires that critical
processes receive priority over less fortunate
ones

 Linux supports soft real-time

11

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduler examples
 xv6 scheduling

 Linux scheduling

12

xv6 scheduling

 One global queue across all CPUs

 Local scheduling algorithm: RR

 scheduler() in proc.c

13

Linux scheduling overview

 Multilevel Queue Scheduler
 Each queue associated with a priority

 A process’s priority may be adjusted dynamically

 Two classes of processes
 Soft real-time processes: always schedule highest

priority processes

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes
with same priority

 Normal processes: priority with aging

• RR for processes with same priority (SCHED_NORMAL)

14

Linux scheduling
policies and priorities

 Soft real-time scheduling policies
 SCHED_FIFO (FCFS)
 SCHED_RR (round robin)
 Always get priority over non real time tasks
 100 static priority levels (1..99)

 Normal scheduling policies
 SCHED_NORMAL: standard

• SCHED_OTHER in POSIX

 SCHED_BATCH: CPU bound
 SCHED_IDLE: lower priority
 Static priority is 0
 40 dynamic priority levels (-20..0..19)

 sched_setscheduler(), nice()

Normal 0

Real Time 3

Real Time 99

Real Time 2

Real Time 1

…

Normal 19

Normal -20

…

…

Linux scheduler implementations

 Linux 2.4: global queue, O(N)
 Simple
 Poor performance on multiprocessor/core
 Poor performance when n is large

 Linux 2.5: O(1) scheduler, per-CPU run queue
 Solves performance problems in the old scheduler
 Complex, error prone logic to boost interactivity
 No guarantee of fairness

 Linux 2.6: completely fair scheduler (CFS)
 Fair
 Naturally boosts interactivity

16

Problems with O(1) scheduler

 Priorities for interactive processes?
 Higher priorities than CPU-bound processes

 How to detect interactive processes?

 Heuristics: more sleep/wait time more
interactive higher priorities

 Ad hoc, can be unfair

 Fairness for processes with diff. priorities?
 Convert priority to time slice

 Higher priorities get bigger time slices

 Ad hoc, can be unfair

17

Ideal fair scheduling

 Infinitesimally small time slice

 n processes: each runs uniformly at 1/nth rate

 “Ideal multitasking CPU”

 Weighted fair scheduling

 Fair queuing [John Nagle 1985], stride scheduling
[Carl A. Waldspurger, 1995]

•1 Process

•3 Processes
1/3rd progress

Pros and cons

 Pros
 Fair

 Naturally boosts interactivity

 Cons
 Too many context switches!

 Scanning all processes to find the next is O(N)

19

 Approximate fair scheduling
 Run each process once per schedule latency period

• sysctl_sched_latency

 Time slice for process Pi: T * Wi/(Sum of all Wi)
• sched_slice()

 Too many processes?
 Lower bound on smallest time slice
 Schedule latency = lower bound * number of procs

 Introduced in Linux 2.6.23

Completely Fair Scheduler (CFS)

Picking the next process

 Pick proc with weighted minimum runtime so far
 Virtual runtime: task->vruntime += executed time / Wi

 Example
 P1: 1 ms burst per 10 ms (schedule latency)

 P2 and P3 are CPU-bound

 All processes have the same weight (1)

Ready P1

P2

P3

Slice 3ms 5ms

P2

P3 P2

P3 P1

P2

P3

1
5
5

5
0

3ms

Finding proc with minimum runtime fast

 Red-black tree
 Balanced binary search tree

 Ordered by vruntime as key

 O(lgN) insertion, deletion, update, O(1): find min

cfs_rq->min_vruntime

300

150

100

400

410 30

 Tasks move from left of tree to the right
 min_vruntime caches smallest value
 Update vruntime and min_vruntime

 When task is added or removed
 On every timer tick, context switch

Converting nice level to weight

 Table of nice level to weight
 static const int prio_to_weight[40] (sched.h)

 Nice level changes by 1 10% weight

 Pre-computed to avoid
 Floating point operations

 Runtime overhead

23

Hierarchical, modular scheduler

 class = sched_class_highest;

 for (; ;) {

 p = class->pick_next_task(rq);

 if (p)

 return p;

 /*

 * Will never be NULL as the idle class always

 * returns a non-NULL p:

 */

 class = class->next;

 }

•Code from kernel/sched/core.c:

sched_class Structure
static const struct sched_class fair_sched_class = {

 .next = &idle_sched_class,

 .enqueue_task = enqueue_task_fair,

 .dequeue_task = dequeue_task_fair,

 .yield_task = yield_task_fair,

 .check_preempt_curr = check_preempt_wakeup,

 .pick_next_task = pick_next_task_fair,

 .put_prev_task = put_prev_task_fair,

 .select_task_rq = select_task_rq_fair,

 .load_balance = load_balance_fair,

 .move_one_task = move_one_task_fair,

 .set_curr_task = set_curr_task_fair,

 .task_tick = task_tick_fair,

 .task_fork = task_fork_fair,

 .prio_changed = prio_changed_fair,

 .switched_to = switched_to_fair,

}

The runqueue

 All run queues available in array runqueues, one per CPU
 struct rq (kernel/sched/sched.h)

 Contains per-class run queues (RT, CFS) and params
• E.g., CFS: a red-black tree of task_struct (struct rb_root

tasks_timeline)
• E.g., RT: array of active priorities
• Data structure rt_rq, cfs_rq,

 struct sched_entity (include/linux/sched.h)
 Member of task_struct, one per scheduler class
 Maintains struct rb_node run_node, other per-task params

 Current scheduler for task is specified by
task_struct.sched_class
 Pointer to struct sched_class
 Contains functions pertaining to class (object-oriented code)

Adding a new Scheduler Class

 The Scheduler is modular and extensible
 New scheduler classes can be installed

 Each scheduler class has priority within hierarchical scheduling
hierarchy

 Linked list of sched_class sched_class.next reflects priority

 Core functions: kernel/sched/core.c, kernel/sched/sched.h,
include/linux/sched.h

 Additional classes: kernel/sched/fair.c, rt.c

 Process changes class via sched_setscheduler syscall

 Each class needs
 New runqueue structure in main struct rq

 New sched_class structure implementing scheduling functions

 New sched_entity in the task_struct

Backup slides

Linux O(1) scheduler goals

 Avoid starvation

 Boost interactivity
 Fast response to user despite high load
 Achieved by inferring interactive processes and dynamically

increasing their priorities

 Scale well with number of processes
 O(1) scheduling overhead

 SMP goals
 Scale well with number of processors
 Load balance: no CPU should be idle if there is work
 CPU affinity: no random bouncing of processes

 Reference: Linux/Documentation/sched-design.txt

29

Algorithm overview

 Multilevel Queue Scheduler
 Each queue associated with a priority

 A process’s priority may be adjusted dynamically

 Two classes of processes
 Real-time processes: always schedule highest priority

processes

• FCFS (SCHED_FIFO) or RR (SCHED_RR) for processes
with same priority

 Normal processes: priority with aging

• RR for processes with same priority (SCHED_NORMAL)

• Aging is implemented efficiently

30

runqueue data structure

 Two arrays of priority queues
 active and expired

 Total 140 priorities [0, 140)

 Smaller integer = higher priority

31

Scheduling algorithm for normal processes

1. Find highest priority non-empty queue in rq-
>active; if none, simulate aging by swapping
active and expired

2. next = first process on that queue

3. Adjust next’s priority

4. Context switch to next

5. When next used up its time slice, insert next
to the right queue the expired array and call
schedule() again

32

33

Aging: the traditional algorithm

for(pp = proc; pp < proc+NPROC; pp++) {

 if (pp->prio != MAX)

 pp->prio++;

 if (pp->prio > curproc->prio)

 reschedule();

}

Problem: O(N). Every process is examined on
each schedule() call!

This code is taken almost verbatim from 6th
Edition Unix, circa 1976.

Simulate aging

 Swapping active and expired gives low
priority processes a chance to run

 Advantage: O(1)

 Processes are touched only when they
start or stop running

34

Find highest priority non-empty queue

 Time complexity: O(1)
 Depends on the number of priority levels, not

the number of processes

 Implementation: a bitmap for fast look up
 140 queues 5 integers
 A few compares to find the first non-zero bit
 Hardware instruction to find the first 1-bit

• bsfl on Intel

35

Real-time scheduling

 Linux has soft real-time scheduling
 No hard real-time guarantees

 All real-time processes are higher priority
than any conventional processes

 Processes with priorities [0, 99] are real-time

 Process can be converted to real-time via
sched_setscheduler system call

36

Real-time policies

 First-in, first-out: SCHED_FIFO

 Static priority

 Process is only preempted for a higher-priority
process

 No time quanta; it runs until it blocks or yields
voluntarily

 RR within same priority level

 Round-robin: SCHED_RR

 As above but with a time quanta

 Normal processes have SCHED_NORMAL
scheduling policy

37

Multiprocessor scheduling

 Per-CPU runqueue

 Possible for one processor to be idle while
others have jobs waiting in their run queues

 Periodically, rebalance runqueues
 Migration threads move processes from one runque

to another

 The kernel always locks runqueues in the same
order for deadlock prevention

38

Adjusting priority

 Goal: dynamically increase priority of interactive
process

 How to determine interactive?
 Sleep ratio
 Mostly sleeping: I/O bound
 Mostly running: CPU bound

 Implementation: per process sleep_avg
 Before switching out a process, subtract from sleep_avg

how many ticks a task ran
 Before switching in a process, add to sleep_avg how many

ticks it was blocked up to MAX_SLEEP_AVG (10 ms)

39

Calculating time slices

 Stored in field time_slice in struct task_struct

 Higher priority processes also get bigger time-slice

 task_timeslice() in sched.c
 If (static_priority < 120) time_slice = (140-static_priority) *

20

 If (static_priority >= 120) time_slice = (140-static_priority)
* 5

40

Example time slices

Priority: Static Pri Niceness Quantum

Highest 100 -20 800 ms

High 110 -10 600 ms

Normal 120 0 100 ms

Low 130 10 50 ms

Lowest 139 20 5 ms

41

Priority partition

 Total 140 priorities [0, 140)
 Smaller integer = higher priority

 Real-time: [0,100)

 Normal: [100, 140)

 MAX_PRIO and MAX_RT_PRIO

 include/linux/sched.h

42

Priority related fields in struct task_struct

 static_prio: static priority set by
administrator/users
 Default: 120 (even for realtime processes)
 Set use sys_nice() or sys_setpriority()

• Both call set_user_nice()

 prio: dynamic priority
 Index to prio_array

 rt_priority: real time priority
 prio = 99 – rt_priority

 include/linux/sched.h

43

Outline

 Advanced scheduling issues
 Multilevel queue scheduling

 Multiprocessor scheduling issues

 Real-time scheduling

 Scheduling in Linux
 Scheduling algorithm

 Setting priorities and time slices

 Other implementation issues

44

Bookkeeping on each timer interrupt

 scheduler_tick()
 Called on each tick

• timer_interrupt do_timer_interrupt do_timer_interrupt_hook
 update_process_times

 If realtime and SCHED_FIFO, do nothing
 SCHED_FIFO is non-preemptive

 If realtime and SCHED_RR and used up time slice, move to
end of rq->active[prio]

 If SCHED_NORMAL and used up time slice
 If not interactive or starving expired queue, move to end of rq-

>expired[prio]

 Otherwise, move to end of rq->active[prio]

• Boost interactive

 Else // SCHED_NORMAL, and not used up time slice
 Break large time slice into pieces

TIMESLICE_GRANULARITY

Processor affinity

 Each process has a bitmask saying what CPUs
it can run on
 By default, all CPUs

 Processes can change the mask

 Inherited by child processes (and threads), thus
tending to keep them on the same CPU

 Rebalancing does not override affinity

46

 To keep all CPUs busy, load balancing pulls
tasks from busy runqueues to idle runqueues.

 If schedule finds that a runqueue has no
runnable tasks (other than the idle task), it
calls load_balance

 load_balance also called via timer
 schedule_tick calls rebalance_tick

 Every tick when system is idle

 Every 100 ms otherwise

Load balancing

47

 load_balance looks for the busiest runqueue
(most runnable tasks) and takes a task that
is (in order of preference):
 inactive (likely to be cache cold)
 high priority

 load_balance skips tasks that are:
 likely to be cache warm (hasn't run for

cache_decay_ticks time)
 currently running on a CPU
 not allowed to run on the current CPU (as

indicated by the cpus_allowed bitmask in
the task_struct)

Load balancing (cont.)

48

Optimizations

 If next is a kernel thread, borrow the MM
mappings from prev
 User-level MMs are unused.

 Kernel-level MMs are the same for all kernel
threads

 If prev == next
 Don’t context switch

49

CFS: Scheduling Latency

 Equivalent to time slice across all processes
 Approximation of infinitesimally small
 To set/get type: $ sysctl kernel.sched_latency_ns

 Each process gets equal proportion of slice
 Timeslice(task) = latency/nr_tasks
 Lower bound on smallest slice
 To set/get: $ sysctl kernel.sched_min_granularity_ns
 Too many tasks? sched_latency = nr_tasks*min_granularity

 Priority through proportional sharing
 Task gets share of CPU proportional to relative priority
 Timeslice(task) = Timeslice(t) * prio(t) /

Sum_all_t’(prio(t’))

 Maximum wait time bounded by scheduling latency

CFS: Picking the Next Process

 Pick task with minimum runtime so far
 Tracked by vruntime member variable
 Every time process runs for t ns, vruntime +=t (weighed

by process priority)

 How does this impact I/O vs CPU bound tasks
 Task A: needs 1 msec every 100 sec (I/O bound)
 Task B, C: 80 msec every 100 msec (CPU bound)
 After 10 times that A, B, and C have been scheduled

• vruntime(A) = 10, vruntime(B, C) = 800
• A gets priority, B and C get large time slices (10msec each)

 Problem: how to efficiently track min runtime?
 Scheduler needs to be efficient
 Finding min every time is an O(N) operation

