
General overview of the Linux file system

Files

General

A simple description of the UNIX system, also applicable to Linux, is this:

“On a UNIX system, everything is a file; if something is not a file, it is a process.”

This statement is true because there are special files that are more than just files
(named pipes and sockets, for instance), but to keep things simple, saying that
everything is a file is an acceptable generalization. A Linux system, just like UNIX,
makes no difference between a file and a directory, since a directory is just a file
containing names of other files. Programs, services, texts, images, and so forth, are all
files. Input and output devices, and generally all devices, are considered to be files,
according to the system.

In order to manage all those files in an orderly fashion, man likes to think of them in an
ordered tree-like structure on the hard disk, as we know from MS-DOS (Disk Operating
System) for instance. The large branches contain more branches, and the branches at
the end contain the tree's leaves or normal files. For now we will use this image of the
tree, but we will find out later why this is not a fully accurate image.

Sorts of files

Most files are just files, called regular files; they contain normal data, for example text
files, executable files or programs, input for or output from a program and so on.

While it is reasonably safe to suppose that everything you encounter on a Linux system
is a file, there are some exceptions.

• Directories: files that are lists of other files.
• Special files: the mechanism used for input and output. Most special files are in

/dev, we will discuss them later.
• Links: a system to make a file or directory visible in multiple parts of the system's

file tree. We will talk about links in detail.
• (Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter-

process networking protected by the file system's access control.
• Named pipes: act more or less like sockets and form a way for processes to

communicate with each other, without using network socket semantics.

The -l option to ls displays the file type, using the first character of each input line:

jaime:~/Documents> ls -l

total 80
-rw-rw-r-- 1 jaime jaime 31744 Feb 21 17:56 intro Linux.doc
-rw-rw-r-- 1 jaime jaime 41472 Feb 21 17:56 Linux.doc
drwxrwxr-x 2 jaime jaime 4096 Feb 25 11:50 course

This table gives an overview of the characters determining the file type:

Table 3.1. File types in a long list

Symbol Meaning

- Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

b Block device

In order not to always have to perform a long listing for seeing the file type, a lot of
systems by default don't issue just ls, but ls -F, which suffixes file names with one of the
characters “/=*|@” to indicate the file type. To make it extra easy on the beginning user,
both the -F and --color options are usually combined, see the section called “More
about ls”. We will use ls -F throughout this document for better readability.

As a user, you only need to deal directly with plain files, executable files, directories and
links. The special file types are there for making your system do what you demand from
it and are dealt with by system administrators and programmers.

Now, before we look at the important files and directories, we need to know more about
partitions.

About partitioning

Why partition?

Most people have a vague knowledge of what partitions are, since every operating
system has the ability to create or remove them. It may seem strange that Linux uses
more than one partition on the same disk, even when using the standard installation
procedure, so some explanation is called for.

One of the goals of having different partitions is to achieve higher data security in case
of disaster. By dividing the hard disk in partitions, data can be grouped and separated.

When an accident occurs, only the data in the partition that got the hit will be damaged,
while the data on the other partitions will most likely survive.

This principle dates from the days when Linux didn't have journaled file systems and
power failures might have lead to disaster. The use of partitions remains for security
and robustness reasons, so a breach on one part of the system doesn't automatically
mean that the whole computer is in danger. This is currently the most important reason
for partitioning. A simple example: a user creates a script, a program or a web
application that starts filling up the disk. If the disk contains only one big partition, the
entire system will stop functioning if the disk is full. If the user stores the data on a
separate partition, then only that (data) partition will be affected, while the system
partitions and possible other data partitions keep functioning.

Mind that having a journaled file system only provides data security in case of power
failure and sudden disconnection of storage devices. This does not protect your data
against bad blocks and logical errors in the file system. In those cases, you should use
a RAID (Redundant Array of Inexpensive Disks) solution.

Partition layout and types

There are two kinds of major partitions on a Linux system:

• data partition: normal Linux system data, including the root partition containing all
the data to start up and run the system; and

• swap partition: expansion of the computer's physical memory, extra memory on
hard disk.

Most systems contain a root partition, one or more data partitions and one or more
swap partitions. Systems in mixed environments may contain partitions for other system
data, such as a partition with a FAT or VFAT file system for MS Windows data.

Most Linux systems use fdisk at installation time to set the partition type. As you may
have noticed during the exercise from Chapter 1, this usually happens automatically. On
some occasions, however, you may not be so lucky. In such cases, you will need to
select the partition type manually and even manually do the actual partitioning. The
standard Linux partitions have number 82 for swap and 83 for data, which can be
journaled (ext3) or normal (ext2, on older systems). The fdisk utility has built-in help,
should you forget these values.

Apart from these two, Linux supports a variety of other file system types, such as the
relatively new Reiser file system, JFS, NFS, FATxx and many other file systems natively
available on other (proprietary) operating systems.

The standard root partition (indicated with a single forward slash, /) is about 100-500
MB, and contains the system configuration files, most basic commands and server

programs, system libraries, some temporary space and the home directory of the
administrative user. A standard installation requires about 250 MB for the root partition.

Swap space (indicated with swap) is only accessible for the system itself, and is hidden
from view during normal operation. Swap is the system that ensures, like on normal
UNIX systems, that you can keep on working, whatever happens. On Linux, you will
virtually never see irritating messages like Out of memory, please close some
applications first and try again, because of this extra memory. The swap or virtual
memory procedure has long been adopted by operating systems outside the UNIX
world by now.

Using memory on a hard disk is naturally slower than using the real memory chips of a
computer, but having this little extra is a great comfort. We will learn more about swap
when we discuss processes in Chapter 4, Processes.

Linux generally counts on having twice the amount of physical memory in the form of
swap space on the hard disk. When installing a system, you have to know how you are
going to do this. An example on a system with 512 MB of RAM:

• 1st possibility: one swap partition of 1 GB
• 2nd possibility: two swap partitions of 512 MB
• 3rd possibility: with two hard disks: 1 partition of 512 MB on each disk.

The last option will give the best results when a lot of I/O is to be expected.

Read the software documentation for specific guidelines. Some applications, such as
databases, might require more swap space. Others, such as some handheld systems,
might not have any swap at all by lack of a hard disk. Swap space may also depend on
your kernel version.

The kernel is on a separate partition as well in many distributions, because it is the most
important file of your system. If this is the case, you will find that you also have a /boot
partition, holding your kernel(s) and accompanying data files.

The rest of the hard disk(s) is generally divided in data partitions, although it may be
that all of the non-system critical data resides on one partition, for example when you
perform a standard workstation installation. When non-critical data is separated on
different partitions, it usually happens following a set pattern:

• a partition for user programs (/usr)
• a partition containing the users' personal data (/home)
• a partition to store temporary data like print- and mail-queues (/var)
• a partition for third party and extra software (/opt)

Once the partitions are made, you can only add more. Changing sizes or properties of
existing partitions is possible but not advisable.

The division of hard disks into partitions is determined by the system administrator. On
larger systems, he or she may even spread one partition over several hard disks, using
the appropriate software. Most distributions allow for standard setups optimized for
workstations (average users) and for general server purposes, but also accept
customized partitions. During the installation process you can define your own partition
layout using either your distribution specific tool, which is usually a straight forward
graphical interface, or fdisk, a text-based tool for creating partitions and setting their
properties.

A workstation or client installation is for use by mainly one and the same person. The
selected software for installation reflects this and the stress is on common user
packages, such as nice desktop themes, development tools, client programs for E-mail,
multimedia software, web and other services. Everything is put together on one large
partition, swap space twice the amount of RAM is added and your generic workstation is
complete, providing the largest amount of disk space possible for personal use, but with
the disadvantage of possible data integrity loss during problem situations.

On a server, system data tends to be separate from user data. Programs that offer
services are kept in a different place than the data handled by this service. Different
partitions will be created on such systems:

• a partition with all data necessary to boot the machine
• a partition with configuration data and server programs
• one or more partitions containing the server data such as database tables, user

mails, an ftp archive etc.
• a partition with user programs and applications
• one or more partitions for the user specific files (home directories)
• one or more swap partitions (virtual memory)

Servers usually have more memory and thus more swap space. Certain server
processes, such as databases, may require more swap space than usual; see the
specific documentation for detailed information. For better performance, swap is often
divided into different swap partitions.

Mount points

All partitions are attached to the system via a mount point. The mount point defines the
place of a particular data set in the file system. Usually, all partitions are connected
through the root partition. On this partition, which is indicated with the slash (/),
directories are created. These empty directories will be the starting point of the
partitions that are attached to them. An example: given a partition that holds the
following directories:

videos/ cd-images/ pictures/

We want to attach this partition in the filesystem in a directory called /opt/media. In
order to do this, the system administrator has to make sure that the directory
/opt/media exists on the system. Preferably, it should be an empty directory. How this
is done is explained later in this chapter. Then, using the mount command, the
administrator can attach the partition to the system. When you look at the content of the
formerly empty directory /opt/media, it will contain the files and directories that are on
the mounted medium (hard disk or partition of a hard disk, CD, DVD, flash card, USB or
other storage device).

During system startup, all the partitions are thus mounted, as described in the file
/etc/fstab. Some partitions are not mounted by default, for instance if they are not
constantly connected to the system, such like the storage used by your digital camera. If
well configured, the device will be mounted as soon as the system notices that it is
connected, or it can be user-mountable, i.e. you don't need to be system administrator
to attach and detach the device to and from the system. There is an example in the
section called “Using rsync”.

On a running system, information about the partitions and their mount points can be
displayed using the df command (which stands for disk full or disk free). In Linux, df is
the GNU version, and supports the -h or human readable option which greatly improves
readability. Note that commercial UNIX machines commonly have their own versions of
df and many other commands. Their behavior is usually the same, though GNU
versions of common tools often have more and better features.

The df command only displays information about active non-swap partitions. These can
include partitions from other networked systems, like in the example below where the
home directories are mounted from a file server on the network, a situation often
encountered in corporate environments.

freddy:~> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/hda8 496M 183M 288M 39% /
/dev/hda1 124M 8.4M 109M 8% /boot
/dev/hda5 19G 15G 2.7G 85% /opt
/dev/hda6 7.0G 5.4G 1.2G 81% /usr
/dev/hda7 3.7G 2.7G 867M 77% /var
fs1:/home 8.9G 3.7G 4.7G 44% /.automount/fs1/root/home

More file system layout

Visual

For convenience, the Linux file system is usually thought of in a tree structure. On a
standard Linux system you will find the layout generally follows the scheme presented
below.

Figure 3.1. Linux file system layout

This is a layout from a RedHat system. Depending on the system admin, the operating
system and the mission of the UNIX machine, the structure may vary, and directories
may be left out or added at will. The names are not even required; they are only a
convention.

The tree of the file system starts at the trunk or slash, indicated by a forward slash (/).
This directory, containing all underlying directories and files, is also called the root
directory or “the root” of the file system.

Directories that are only one level below the root directory are often preceded by a slash,
to indicate their position and prevent confusion with other directories that could have the
same name. When starting with a new system, it is always a good idea to take a look in
the root directory. Let's see what you could run into:

emmy:~> cd /
emmy:/> ls
bin/ dev/ home/ lib/ misc/ opt/ root/ tmp/ var/
boot/ etc/ initrd/ lost+found/ mnt/ proc/ sbin/ usr/

Table 3.2. Subdirectories of the root directory

Directory Content

/bin
Common programs, shared by the system, the system administrator and the
users.

/boot
The startup files and the kernel, vmlinuz. In some recent distributions also
grub data. Grub is the GRand Unified Boot loader and is an attempt to get
rid of the many different boot-loaders we know today.

/dev
Contains references to all the CPU peripheral hardware, which are
represented as files with special properties.

/etc Most important system configuration files are in /etc, this directory contains
data similar to those in the Control Panel in Windows

/home Home directories of the common users.

/initrd (on some distributions) Information for booting. Do not remove!

/lib Library files, includes files for all kinds of programs needed by the system
and the users.

/lost+found
Every partition has a lost+found in its upper directory. Files that were saved
during failures are here.

/misc For miscellaneous purposes.

/mnt
Standard mount point for external file systems, e.g. a CD-ROM or a digital
camera.

/net Standard mount point for entire remote file systems

/opt Typically contains extra and third party software.

/proc

A virtual file system containing information about system resources. More
information about the meaning of the files in proc is obtained by entering the
command man proc in a terminal window. The file proc.txt discusses the
virtual file system in detail.

/root The administrative user's home directory. Mind the difference between /, the

Directory Content

root directory and /root, the home directory of the root user.

/sbin Programs for use by the system and the system administrator.

/tmp
Temporary space for use by the system, cleaned upon reboot, so don't use
this for saving any work!

/usr Programs, libraries, documentation etc. for all user-related programs.

/var

Storage for all variable files and temporary files created by users, such as
log files, the mail queue, the print spooler area, space for temporary storage
of files downloaded from the Internet, or to keep an image of a CD before
burning it.

How can you find out which partition a directory is on? Using the df command with a dot
(.) as an option shows the partition the current directory belongs to, and informs about
the amount of space used on this partition:

sandra:/lib> df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/hda7 980M 163M 767M 18% /

As a general rule, every directory under the root directory is on the root partition, unless
it has a separate entry in the full listing from df (or df -h with no other options).

Read more in man hier.

The file system in reality

For most users and for most common system administration tasks, it is enough to
accept that files and directories are ordered in a tree-like structure. The computer,
however, doesn't understand a thing about trees or tree-structures.

Every partition has its own file system. By imagining all those file systems together, we
can form an idea of the tree-structure of the entire system, but it is not as simple as that.
In a file system, a file is represented by an inode, a kind of serial number containing
information about the actual data that makes up the file: to whom this file belongs, and
where is it located on the hard disk.

Every partition has its own set of inodes; throughout a system with multiple partitions,
files with the same inode number can exist.

Each inode describes a data structure on the hard disk, storing the properties of a file,
including the physical location of the file data. When a hard disk is initialized to accept
data storage, usually during the initial system installation process or when adding extra
disks to an existing system, a fixed number of inodes per partition is created. This

number will be the maximum amount of files, of all types (including directories, special
files, links etc.) that can exist at the same time on the partition. We typically count on
having 1 inode per 2 to 8 kilobytes of storage.

At the time a new file is created, it gets a free inode. In that inode is the following
information:

• Owner and group owner of the file.
• File type (regular, directory, ...)
• Permissions on the file the section called “Access rights: Linux's first line of

defense”
• Date and time of creation, last read and change.
• Date and time this information has been changed in the inode.
• Number of links to this file (see later in this chapter).
• File size
• An address defining the actual location of the file data.

The only information not included in an inode, is the file name and directory. These are
stored in the special directory files. By comparing file names and inode numbers, the
system can make up a tree-structure that the user understands. Users can display
inode numbers using the -i option to ls. The inodes have their own separate space on
the disk.

Orientation in the file system

The path

When you want the system to execute a command, you almost never have to give the
full path to that command. For example, we know that the ls command is in the /bin
directory (check with which -a ls), yet we don't have to enter the command /bin/ls for
the computer to list the content of the current directory.

The PATH environment variable takes care of this. This variable lists those directories in
the system where executable files can be found, and thus saves the user a lot of typing
and memorizing locations of commands. So the path naturally contains a lot of
directories containing bin somewhere in their names, as the user below demonstrates.
The echo command is used to display the content (“$”) of the variable PATH:

rogier:> echo $PATH
/opt/local/bin:/usr/X11R6/bin:/usr/bin:/usr/sbin/:/bin

In this example, the directories /opt/local/bin, /usr/X11R6/bin, /usr/bin, /usr/sbin
and /bin are subsequently searched for the required program. As soon as a match is
found, the search is stopped, even if not every directory in the path has been searched.
This can lead to strange situations. In the first example below, the user knows there is a
program called sendsms to send an SMS message, and another user on the same

system can use it, but she can't. The difference is in the configuration of the PATH
variable:

[jenny@blob jenny]$ sendsms
bash: sendsms: command not found
[jenny@blob jenny]$ echo $PATH
/bin:/usr/bin:/usr/bin/X11:/usr/X11R6/bin:/home/jenny/bin
[jenny@blob jenny]$ su - tony
Password:
tony:~>which sendsms
sendsms is /usr/local/bin/sendsms

tony:~>echo $PATH
/home/tony/bin.Linux:/home/tony/bin:/usr/local/bin:/usr/local/sbin:\
/usr/X11R6/bin:/usr/bin:/usr/sbin:/bin:/sbin

Note the use of the su (switch user) facility, which allows you to run a shell in the
environment of another user, on the condition that you know the user's password.

A backslash indicates the continuation of a line on the next, without an Enter separating
one line from the other.

In the next example, a user wants to call on the wc (word count) command to check the
number of lines in a file, but nothing happens and he has to break off his action using
the Ctrl+C combination:

jumper:~> wc -l test

(Ctrl-C)
jumper:~> which wc
wc is hashed (/home/jumper/bin/wc)

jumper:~> echo $PATH
/home/jumper/bin:/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:\
/usr/bin:/usr/sbin:/bin:/sbin

The use of the which command shows us that this user has a bin-directory in his home
directory, containing a program that is also called wc. Since the program in his home
directory is found first when searching the paths upon a call for wc, this “home-made”
program is executed, with input it probably doesn't understand, so we have to stop it. To
resolve this problem there are several ways (there are always several ways to solve a
problem in UNIX/Linux): one answer could be to rename the user's wc program, or the
user can give the full path to the exact command he wants, which can be found by using
the -a option to the which command.

If the user uses programs in the other directories more frequently, he can change his
path to look in his own directories last:

jumper:~> export PATH=/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:\
/usr/bin:/usr/sbin:/bin:/sbin:/home/jumper/bin

Changes are not permanent!

Note that when using the export command in a shell, the changes are temporary
and only valid for this session (until you log out). Opening new sessions, even while
the current one is still running, will not result in a new path in the new session. We
will see in the section called “Your text environment” how we can make these kinds
of changes to the environment permanent, adding these lines to the shell
configuration files.

Absolute and relative paths

A path, which is the way you need to follow in the tree structure to reach a given file,
can be described as starting from the trunk of the tree (the / or root directory). In that
case, the path starts with a slash and is called an absolute path, since there can be no
mistake: only one file on the system can comply.

In the other case, the path doesn't start with a slash and confusion is possible between
~/bin/wc (in the user's home directory) and bin/wc in /usr, from the previous example.
Paths that don't start with a slash are always relative.

In relative paths we also use the . and .. indications for the current and the parent
directory. A couple of practical examples:

• When you want to compile source code, the installation documentation often
instructs you to run the command ./configure, which runs the configure program
located in the current directory (that came with the new code), as opposed to
running another configure program elsewhere on the system.

• In HTML files, relative paths are often used to make a set of pages easily
movable to another place:

•

• Notice the difference one more time:
• theo:~> ls /mp3
• ls: /mp3: No such file or directory
• theo:~>ls mp3/
• oriental/ pop/ sixties/

The most important files and directories

The kernel

The kernel is the heart of the system. It manages the communication between the
underlying hardware and the peripherals. The kernel also makes sure that processes
and daemons (server processes) are started and stopped at the exact right times. The
kernel has a lot of other important tasks, so many that there is a special kernel-
development mailing list on this subject only, where huge amounts of information are

shared. It would lead us too far to discuss the kernel in detail. For now it suffices to
know that the kernel is the most important file on the system.

The shell

What is a shell?

When I was looking for an appropriate explanation on the concept of a shell, it gave me
more trouble than I expected. All kinds of definitions are available, ranging from the
simple comparison that “the shell is the steering wheel of the car”, to the vague
definition in the Bash manual which says that “bash is an sh-compatible command
language interpreter,” or an even more obscure expression, “a shell manages the
interaction between the system and its users”. A shell is much more than that.

A shell can best be compared with a way of talking to the computer, a language. Most
users do know that other language, the point-and-click language of the desktop. But in
that language the computer is leading the conversation, while the user has the passive
role of picking tasks from the ones presented. It is very difficult for a programmer to
include all options and possible uses of a command in the GUI-format. Thus, GUIs are
almost always less capable than the command or commands that form the backend.

The shell, on the other hand, is an advanced way of communicating with the system,
because it allows for two-way conversation and taking initiative. Both partners in the
communication are equal, so new ideas can be tested. The shell allows the user to
handle a system in a very flexible way. An additional asset is that the shell allows for
task automation.

Shell types

Just like people know different languages and dialects, the computer knows different
shell types:

• sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX
related environments. This is the basic shell, a small program with few features.
When in POSIX-compatible mode, bash will emulate this shell.

• bash or Bourne Again SHell: the standard GNU shell, intuitive and flexible.
Probably most advisable for beginning users while being at the same time a
powerful tool for the advanced and professional user. On Linux, bash is the
standard shell for common users. This shell is a so-called superset of the Bourne
shell, a set of add-ons and plug-ins. This means that the Bourne Again SHell is
compatible with the Bourne shell: commands that work in sh, also work in bash.
However, the reverse is not always the case. All examples and exercises in this
book use bash.

• csh or C Shell: the syntax of this shell resembles that of the C programming
language. Sometimes asked for by programmers.

• tcsh or Turbo C Shell: a superset of the common C Shell, enhancing user-
friendliness and speed.

• ksh or the Korn shell: sometimes appreciated by people with a UNIX background.
A superset of the Bourne shell; with standard configuration a nightmare for
beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:

mia:~> cat /etc/shells
/bin/bash
/bin/sh
/bin/tcsh
/bin/csh

Fake Bourne shell

Note that /bin/sh is usually a link to Bash, which will execute in Bourne shell
compatible mode when called on this way.

Your default shell is set in the /etc/passwd file, like this line for user mia:

mia:L2NOfqdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active
terminal. The system finds the directory where the name occurs using the PATH settings,
and since a shell is an executable file (program), the current shell activates it and it gets
executed. A new prompt is usually shown, because each shell has its typical
appearance:

mia:~> tcsh
[mia@post21 ~]$

Which shell am I using?

If you don't know which shell you are using, either check the line for your account in
/etc/passwd or type the command

echo $SHELL

Your home directory

Your home directory is your default destination when connecting to the system. In most
cases it is a subdirectory of /home, though this may vary. Your home directory may be
located on the hard disk of a remote file server; in that case your home directory may be
found in /nethome/your_user_name. In another case the system administrator may have
opted for a less comprehensible layout and your home directory may be on
/disk6/HU/07/jgillard.

Whatever the path to your home directory, you don't have to worry too much about it.
The correct path to your home directory is stored in the HOME environment variable, in
case some program needs it. With the echo command you can display the content of
this variable:

orlando:~> echo $HOME
/nethome/orlando

You can do whatever you like in your home directory. You can put as many files in as
many directories as you want, although the total amount of data and files is naturally
limited because of the hardware and size of the partitions, and sometimes because the
system administrator has applied a quota system. Limiting disk usage was common
practice when hard disk space was still expensive. Nowadays, limits are almost
exclusively applied in large environments. You can see for yourself if a limit is set using
the quota command:

pierre@lamaison:/> quota -v
Diskquotas for user pierre (uid 501): none

In case quotas have been set, you get a list of the limited partitions and their specific
limitations. Exceeding the limits may be tolerated during a grace period with fewer or no
restrictions at all. Detailed information can be found using the info quota or man quota
commands.

No Quota?

If your system can not find the quota, then no limitation of file system usage is
being applied.

Your home directory is indicated by a tilde (~), shorthand for /path_to_home/user_name.
This same path is stored in the HOME variable, so you don't have to do anything to
activate it. A simple application: switch from /var/music/albums/arno/2001 to images in
your home directory using one elegant command:

rom:/var/music/albums/arno/2001> cd ~/images

rom:~/images> pwd
/home/rom/images

Later in this chapter we will talk about the commands for managing files and directories
in order to keep your home directory tidy.

The most important configuration files

As we mentioned before, most configuration files are stored in the /etc directory.
Content can be viewed using the cat command, which sends text files to the standard
output (usually your monitor). The syntax is straight forward:

cat file1 file2 ... fileN

In this section we try to give an overview of the most common configuration files. This is
certainly not a complete list. Adding extra packages may also add extra configuration
files in /etc. When reading the configuration files, you will find that they are usually
quite well commented and self-explanatory. Some files also have man pages which
contain extra documentation, such as man group.

Table 3.3. Most common configuration files

File Information/service

aliases

Mail aliases file for use with the Sendmail and Postfix mail server. Running
a mail server on each and every system has long been common use in the
UNIX world, and almost every Linux distribution still comes with a
Sendmail package. In this file local user names are matched with real
names as they occur in E-mail addresses, or with other local addresses.

apache Config files for the Apache web server.

bashrc
The system-wide configuration file for the Bourne Again SHell. Defines
functions and aliases for all users. Other shells may have their own
system-wide config files, like cshrc.

crontab and the
cron.* directories

Configuration of tasks that need to be executed periodically - backups,
updates of the system databases, cleaning of the system, rotating logs etc.

default Default options for certain commands, such as useradd.

filesystems Known file systems: ext3, vfat, iso9660 etc.

fstab Lists partitions and their mount points.

ftp* Configuration of the ftp-server: who can connect, what parts of the system
are accessible etc.

group
Configuration file for user groups. Use the shadow utilities groupadd,
groupmod and groupdel to edit this file. Edit manually only if you really
know what you are doing.

hosts
A list of machines that can be contacted using the network, but without the
need for a domain name service. This has nothing to do with the system's
network configuration, which is done in /etc/sysconfig.

File Information/service

inittab Information for booting: mode, number of text consoles etc.

issue Information about the distribution (release version and/or kernel info).

ld.so.conf Locations of library files.

lilo.conf,
silo.conf,
aboot.conf etc.

Boot information for the LInux LOader, the system for booting that is now
gradually being replaced with GRUB.

logrotate.* Rotation of the logs, a system preventing the collection of huge amounts of
log files.

mail Directory containing instructions for the behavior of the mail server.

modules.conf Configuration of modules that enable special features (drivers).

motd
Message Of The Day: Shown to everyone who connects to the system (in
text mode), may be used by the system admin to announce system
services/maintenance etc.

mtab Currently mounted file systems. It is advised to never edit this file.

nsswitch.conf Order in which to contact the name resolvers when a process demands
resolving of a host name.

pam.d Configuration of authentication modules.

passwd
Lists local users. Use the shadow utilities useradd, usermod and userdel
to edit this file. Edit manually only when you really know what you are
doing.

printcap Outdated but still frequently used printer configuration file. Don't edit this
manually unless you really know what you are doing.

profile System wide configuration of the shell environment: variables, default
properties of new files, limitation of resources etc.

rc* Directories defining active services for each run level.

resolv.conf Order in which to contact DNS servers (Domain Name Servers only).

File Information/service

sendmail.cf Main config file for the Sendmail server.

services Connections accepted by this machine (open ports).

sndconfig or
sound Configuration of the sound card and sound events.

ssh Directory containing the config files for secure shell client and server.

sysconfig
Directory containing the system configuration files: mouse, keyboard,
network, desktop, system clock, power management etc. (specific to
RedHat)

X11

Settings for the graphical server, X. RedHat uses XFree, which is reflected
in the name of the main configuration file, XFree86Config. Also contains
the general directions for the window managers available on the system,
for example gdm, fvwm, twm, etc.

xinetd.* or
inetd.conf

Configuration files for Internet services that are run from the system's
(extended) Internet services daemon (servers that don't run an
independent daemon).

Throughout this guide we will learn more about these files and study some of them in
detail.

The most common devices

Devices, generally every peripheral attachment of a PC that is not the CPU itself, is
presented to the system as an entry in the /dev directory. One of the advantages of this
UNIX-way of handling devices is that neither the user nor the system has to worry much
about the specification of devices.

Users that are new to Linux or UNIX in general are often overwhelmed by the amount of
new names and concepts they have to learn. That is why a list of common devices is
included in this introduction.

Table 3.4. Common devices

Name Device

Name Device

cdrom CD drive

console Special entry for the currently used console.

cua* Serial ports

dsp* Devices for sampling and recording

fd* Entries for most kinds of floppy drives, the default is
/dev/fd0, a floppy drive for 1.44 MB floppies.

hd[a-t][1-16] Standard support for IDE drives with maximum amount
of partitions each.

ir* Infrared devices

isdn* Management of ISDN connections

js* Joystick(s)

lp* Printers

mem Memory

midi* midi player

mixer* and music Idealized model of a mixer (combines or adds signals)

modem Modem

mouse (also msmouse, logimouse,
psmouse, input/mice, psaux)

All kinds of mouses

null Bottomless garbage can

par* Entries for parallel port support

pty* Pseudo terminals

radio* For Radio Amateurs (HAMs).

Name Device

ram* boot device

sd* SCSI disks with their partitions

sequencer For audio applications using the synthesizer features of
the sound card (MIDI-device controller)

tty* Virtual consoles simulating vt100 terminals.

usb* USB card and scanner

video* For use with a graphics card supporting video.

The most common variable files

In the /var directory we find a set of directories for storing specific non-constant data
(as opposed to the ls program or the system configuration files, which change relatively
infrequently or never at all). All files that change frequently, such as log files, mailboxes,
lock files, spoolers etc. are kept in a subdirectory of /var.

As a security measure these files are usually kept in separate parts from the main
system files, so we can keep a close eye on them and set stricter permissions where
necessary. A lot of these files also need more permissions than usual, like /var/tmp,
which needs to be writable for everyone. A lot of user activity might be expected here,
which might even be generated by anonymous Internet users connected to your system.
This is one reason why the /var directory, including all its subdirectories, is usually on a
separate partition. This way, there is for instance no risk that a mail bomb, for instance,
fills up the rest of the file system, containing more important data such as your
programs and configuration files.

/var/tmp and /tmp

Files in /tmp can be deleted without notice, by regular system tasks or because of a
system reboot. On some (customized) systems, also /var/tmp might behave
unpredictably. Nevertheless, since this is not the case by default, we advise to use
the /var/tmp directory for saving temporary files. When in doubt, check with your
system administrator. If you manage your own system, you can be reasonably sure
that this is a safe place if you did not consciously change settings on /var/tmp (as
root, a normal user can not do this).

Whatever you do, try to stick to the privileges granted to a normal user - don't go
saving files directly under the root (/) of the file system, don't put them in /usr or
some subdirectory or in another reserved place. This pretty much limits your access
to safe file systems.

One of the main security systems on a UNIX system, which is naturally implemented on
every Linux machine as well, is the log-keeping facility, which logs all user actions,
processes, system events etc. The configuration file of the so-called syslogdaemon
determines which and how long logged information will be kept. The default location of
all logs is /var/log, containing different files for access log, server logs, system
messages etc.

In /var we typically find server data, which is kept here to separate it from critical data
such as the server program itself and its configuration files. A typical example on Linux
systems is /var/www, which contains the actual HTML pages, scripts and images that a
web server offers. The FTP-tree of an FTP server (data that can be downloaded by a
remote client) is also best kept in one of /var's subdirectories. Because this data is
publicly accessible and often changeable by anonymous users, it is safer to keep it here,
away from partitions or directories with sensitive data.

On most workstation installations, /var/spool will at least contain an at and a cron
directory, containing scheduled tasks. In office environments this directory usually
contains lpd as well, which holds the print queue(s) and further printer configuration
files, as well as the printer log files.

On server systems we will generally find /var/spool/mail, containing incoming mails
for local users, sorted in one file per user, the user's “inbox”. A related directory is
mqueue, the spooler area for unsent mail messages. These parts of the system can be
very busy on mail servers with a lot of users. News servers also use the /var/spool
area because of the enormous amounts of messages they have to process.

The /var/lib/rpm directory is specific to RPM-based (RedHat Package Manager)
distributions; it is where RPM package information is stored. Other package managers
generally also store their data somewhere in /var.

Manipulating files

Viewing file properties

More about ls

Besides the name of the file, ls can give a lot of other information, such as the file type,
as we already discussed. It can also show permissions on a file, file size, inode number,
creation date and time, owners and amount of links to the file. With the -a option to ls,

files that are normally hidden from view can be displayed as well. These are files that
have a name starting with a dot. A couple of typical examples include the configuration
files in your home directory. When you've worked with a certain system for a while, you
will notice that tens of files and directories have been created that are not automatically
listed in a directory index. Next to that, every directory contains a file named just dot (.)
and one with two dots (..), which are used in combination with their inode number to
determine the directory's position in the file system's tree structure.

You should really read the Info pages about ls, since it is a very common command with
a lot of useful options. Options can be combined, as is the case with most UNIX
commands and their options. A common combination is ls -al; it shows a long list of
files and their properties as well as the destinations that any symbolic links point to. ls -
latr displays the same files, only now in reversed order of the last change, so that the
file changed most recently occurs at the bottom of the list. Here are a couple of
examples:

krissie:~/mp3> ls
Albums/ Radio/ Singles/ gene/ index.html

krissie:~/mp3> ls -a
./ .thumbs Radio gene/
../ Albums/ Singles/ index.html

krissie:~/mp3> ls -l Radio/
total 8
drwxr-xr-x 2 krissie krissie 4096 Oct 30 1999 Carolina/
drwxr-xr-x 2 krissie krissie 4096 Sep 24 1999 Slashdot/

krissie:~/mp3> ls -ld Radio/
drwxr-xr-x 4 krissie krissie 4096 Oct 30 1999 Radio/

krissie:~/mp3> ls -ltr
total 20
drwxr-xr-x 4 krissie krissie 4096 Oct 30 1999 Radio/
-rw-r--r-- 1 krissie krissie 453 Jan 7 2001 index.html
drwxrwxr-x 30 krissie krissie 4096 Oct 20 17:32 Singles/
drwxr-xr-x 2 krissie krissie 4096 Dec 4 23:22 gene/
drwxrwxr-x 13 krissie krissie 4096 Dec 21 11:40 Albums/

On most Linux versions ls is aliased to color-ls by default. This feature allows to see the
file type without using any options to ls. To achieve this, every file type has its own color.
The standard scheme is in /etc/DIR_COLORS:

Table 3.5. Color-ls default color scheme

Color File type

blue directories

Color File type

red compressed archives

white text files

pink images

cyan links

yellow devices

green executables

flashing red broken links

More information is in the man page. The same information was in earlier days
displayed using suffixes to every non-standard file name. For mono-color use (like
printing a directory listing) and for general readability, this scheme is still in use:

Table 3.6. Default suffix scheme for ls

Character File type

nothing regular file

/ directory

* executable file

@ link

= socket

| named pipe

A description of the full functionality and features of the ls command can be read with
info coreutils ls.

More tools

To find out more about the kind of data we are dealing with, we use the file command.
By applying certain tests that check properties of a file in the file system, magic
numbers and language tests, file tries to make an educated guess about the format of a
file. Some examples:

mike:~> file Documents/
Documents/: directory

mike:~> file high-tech-stats.pdf
high-tech-stats.pdf: PDF document, version 1.2

mike:~> file Nari-288.rm
Nari-288.rm: RealMedia file

mike:~> file bijlage10.sdw
bijlage10.sdw: Microsoft Office Document

mike:~> file logo.xcf
logo.xcf: GIMP XCF image data, version 0, 150 x 38, RGB Color

mike:~> file cv.txt
cv.txt: ISO-8859 text

mike:~> file image.png
image.png: PNG image data, 616 x 862, 8-bit grayscale, non-interlaced

mike:~> file figure
figure: ASCII text

mike:~> file me+tux.jpg
me+tux.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI),
 "28 Jun 1999", 144 x 144

mike:~> file 42.zip.gz
42.zip.gz: gzip compressed data, deflated, original filename,
 `42.zip', last modified: Thu Nov 1 23:45:39 2001, os: Unix

mike:~> file vi.gif
vi.gif: GIF image data, version 89a, 88 x 31

mike:~> file slide1
slide1: HTML document text

mike:~> file template.xls
template.xls: Microsoft Office Document

mike:~> file abook.ps
abook.ps: PostScript document text conforming at level 2.0

mike:~> file /dev/log
/dev/log: socket

mike:~> file /dev/hda
/dev/hda: block special (3/0)

The file command has a series of options, among others the -z option to look into
compressed files. See info file for a detailed description. Keep in mind that the results
of file are not absolute, it is only a guess. In other words, file can be tricked.

Why all the fuss about file types and formats?

Shortly, we will discuss a couple of command-line tools for looking at plain text files.
These tools will not work when used on the wrong type of files. In the worst case,
they will crash your terminal and/or make a lot of beeping noises. If this happens to
you, just close the terminal session and start a new one. But try to avoid it, because
it is usually very disturbing for other people.

Creating and deleting files and directories

Making a mess...

... Is not a difficult thing to do. Today almost every system is networked, so naturally
files get copied from one machine to another. And especially when working in a
graphical environment, creating new files is a piece of cake and is often done without
the approval of the user. To illustrate the problem, here's the full content of a new user's
directory, created on a standard RedHat system:

[newuser@blob user]$ ls -al
total 32
drwx------ 3 user user 4096 Jan 16 13:32 .
drwxr-xr-x 6 root root 4096 Jan 16 13:32 ..
-rw-r--r-- 1 user user 24 Jan 16 13:32 .bash_logout
-rw-r--r-- 1 user user 191 Jan 16 13:32 .bash_profile
-rw-r--r-- 1 user user 124 Jan 16 13:32 .bashrc
drwxr-xr-x 3 user user 4096 Jan 16 13:32 .kde
-rw-r--r-- 1 user user 3511 Jan 16 13:32 .screenrc
-rw------- 1 user user 61 Jan 16 13:32 .xauthDqztLr

On first sight, the content of a “used” home directory doesn't look that bad either:

olduser:~> ls
app-defaults/ crossover/ Fvwm@ mp3/ OpenOffice.org638/
articles/ Desktop/ GNUstep/ Nautilus/ staroffice6.0/
bin/ Desktop1/ images/ nqc/ training/
brol/ desktoptest/ Machines@ ns_imap/ webstart/
C/ Documents/ mail/ nsmail/ xml/
closed/ Emacs@ Mail/ office52/ Xrootenv.0

But when all the directories and files starting with a dot are included, there are 185
items in this directory. This is because most applications have their own directories
and/or files, containing user-specific settings, in the home directory of that user. Usually
these files are created the first time you start an application. In some cases you will be

notified when a non-existent directory needs to be created, but most of the time
everything is done automatically.

Furthermore, new files are created seemingly continuously because users want to save
files, keep different versions of their work, use Internet applications, and download files
and attachments to their local machine. It doesn't stop. It is clear that one definitely
needs a scheme to keep an overview on things.

In the next section, we will discuss our means of keeping order. We only discuss text
tools available to the shell, since the graphical tools are very intuitive and have the
same look and feel as the well known point-and-click MS Windows-style file managers,
including graphical help functions and other features you expect from this kind of
applications. The following list is an overview of the most popular file managers for
GNU/Linux. Most file managers can be started from the menu of your desktop manager,
or by clicking your home directory icon, or from the command line, issuing these
commands:

• nautilus: The default file manager in Gnome, the GNU desktop. Excellent
documentation about working with this tool can be found at
http://www.gnome.org.

• konqueror: The file manager typically used on a KDE desktop. The handbook is
at http://docs.kde.org.

• mc: Midnight Commander, the Unix file manager after the fashion of Norton
Commander. All documentation available from http://gnu.org/directory/ or a mirror,
such as http://www.ibiblio.org.

These applications are certainly worth giving a try and usually impress newcomers to
Linux, if only because there is such a wide variety: these are only the most popular tools
for managing directories and files, and many other projects are being developed. Now
let's find out about the internals and see how these graphical tools use common UNIX
commands.

The tools

Creating directories

A way of keeping things in place is to give certain files specific default locations by
creating directories and subdirectories (or folders and sub-folders if you wish). This is
done with the mkdir command:

richard:~> mkdir archive

richard:~> ls -ld archive
drwxrwxrwx 2 richard richard 4096 Jan 13 14:09 archive/

Creating directories and subdirectories in one step is done using the -p option:

richard:~> cd archive

richard:~/archive> mkdir 1999 2000 2001

richard:~/archive> ls
1999/ 2000/ 2001/

richard:~/archive> mkdir 2001/reports/Restaurants-Michelin/
mkdir: cannot create directory `2001/reports/Restaurants-Michelin/':
No such file or directory

richard:~/archive> mkdir -p 2001/reports/Restaurants-Michelin/

richard:~/archive> ls 2001/reports/
Restaurants-Michelin/

If the new file needs other permissions than the default file creation permissions, the
new access rights can be set in one move, still using the mkdir command, see the Info
pages for more. We are going to discuss access modes in the next section on file
security.

The name of a directory has to comply with the same rules as those applied on regular
file names. One of the most important restrictions is that you can't have two files with
the same name in one directory (but keep in mind that Linux is, like UNIX, a case
sensitive operating system). There are virtually no limits on the length of a file name, but
it is usually kept shorter than 80 characters, so it can fit on one line of a terminal. You
can use any character you want in a file name, although it is advised to exclude
characters that have a special meaning to the shell. When in doubt, check with
Appendix C, Shell Features.

Moving files

Now that we have properly structured our home directory, it is time to clean up
unclassified files using the mv command:

richard:~/archive> mv ../report[1-4].doc reports/Restaurants-Michelin/

This command is also applicable when renaming files:

richard:~> ls To_Do
-rw-rw-r-- 1 richard richard 2534 Jan 15 12:39 To_Do

richard:~> mv To_Do done

richard:~> ls -l done
-rw-rw-r-- 1 richard richard 2534 Jan 15 12:39 done

It is clear that only the name of the file changes. All other properties remain the same.

Detailed information about the syntax and features of the mv command can be found in
the man or Info pages. The use of this documentation should always be your first reflex
when confronted with a problem. The answer to your problem is likely to be in the
system documentation. Even experienced users read man pages every day, so
beginning users should read them all the time. After a while, you will get to know the
most common options to the common commands, but you will still need the
documentation as a primary source of information. Note that the information contained
in the HOWTOs, FAQs, man pages and other sources is slowly being merged into the
Info pages, which are today the most up-to-date source of online (as in readily available
on the system) documentation.

Copying files

Copying files and directories is done with the cp command. A useful option is recursive
copy (copy all underlying files and subdirectories), using the -R option to cp. The
general syntax is

cp [-R] fromfile tofile

As an example the case of user newguy, who wants the same Gnome desktop settings
user oldguy has. One way to solve the problem is to copy the settings of oldguy to the
home directory of newguy:

victor:~> cp -R ../oldguy/.gnome/ .

This gives some errors involving file permissions, but all the errors have to do with
private files that newguy doesn't need anyway. We will discuss in the next part how to
change these permissions in case they really are a problem.

Removing files

Use the rm command to remove single files, rmdir to remove empty directories. (Use ls
-a to check whether a directory is empty or not). The rm command also has options for
removing non-empty directories with all their subdirectories, read the Info pages for
these rather dangerous options.

How empty can a directory be?

It is normal that the directories . (dot) and .. (dot-dot) can't be removed, since they
are also necessary in an empty directory to determine the directories ranking in the
file system hierarchy.

On Linux, just like on UNIX, there is no garbage can - at least not for the shell, although
there are plenty of solutions for graphical use. So once removed, a file is really gone,
and there is generally no way to get it back unless you have backups, or you are really
fast and have a real good system administrator. To protect the beginning user from this

malice, the interactive behavior of the rm, cp and mv commands can be activated using
the -i option. In that case the system won't immediately act upon request. Instead it will
ask for confirmation, so it takes an additional click on the Enter key to inflict the
damage:

mary:~> rm -ri archive/
rm: descend into directory `archive'? y
rm: descend into directory `archive/reports'? y
rm: remove directory `archive/reports'? y
rm: descend into directory `archive/backup'? y
rm: remove `archive/backup/sysbup200112.tar'? y
rm: remove directory `archive/backup'? y
rm: remove directory `archive'? y

We will discuss how to make this option the default in Chapter 7, Home sweet /home,
which discusses customizing your shell environment.

Finding files

Using shell features

In the example on moving files we already saw how the shell can manipulate multiple
files at once. In that example, the shell finds out automatically what the user means by
the requirements between the square braces “[” and “]”. The shell can substitute ranges
of numbers and upper or lower case characters alike. It also substitutes as many
characters as you want with an asterisk, and only one character with a question mark.

All sorts of substitutions can be used simultaneously; the shell is very logical about it.
The Bash shell, for instance, has no problem with expressions like ls dirname/*/*/*[2-
3].

In other shells, the asterisk is commonly used to minimize the efforts of typing: people
would enter cd dir* instead of cd directory. In Bash however, this is not necessary
because the GNU shell has a feature called file name completion. It means that you can
type the first few characters of a command (anywhere) or a file (in the current directory)
and if no confusion is possible, the shell will find out what you mean. For example in a
directory containing many files, you can check if there are any files beginning with the
letter A just by typing ls A and pressing the Tab key twice, rather than pressing Enter. If
there is only one file starting with “A”, this file will be shown as the argument to ls (or
any shell command, for that matter) immediately.

Which

A very simple way of looking up files is using the which command, to look in the
directories listed in the user's search path for the required file. Of course, since the
search path contains only paths to directories containing executable programs, which
doesn't work for ordinary files. The which command is useful when troubleshooting

“Command not Found” problems. In the example below, user tina can't use the
acroread program, while her colleague has no troubles whatsoever on the same
system. The problem is similar to the PATH problem in the previous part: Tina's colleague
tells her that he can see the required program in /opt/acroread/bin, but this directory is
not in her path:

tina:~> which acroread
/usr/bin/which: no acroread in (/bin:/usr/bin:/usr/bin/X11)

The problem can be solved by giving the full path to the command to run, or by re-
exporting the content of the PATH variable:

tina:~> export PATH=$PATH:/opt/acroread/bin

tina:~> echo $PATH
/bin:/usr/bin:/usr/bin/X11:/opt/acroread/bin

Using the which command also checks to see if a command is an alias for another
command:

gerrit:~> which -a ls
ls is aliased to `ls -F --color=auto'
ls is /bin/ls

If this does not work on your system, use the alias command:

tille@www:~/mail$ alias ls
alias ls='ls --color'

Find and locate

These are the real tools, used when searching other paths beside those listed in the
search path. The find tool, known from UNIX, is very powerful, which may be the cause
of a somewhat more difficult syntax. GNU find, however, deals with the syntax
problems. This command not only allows you to search file names, it can also accept
file size, date of last change and other file properties as criteria for a search. The most
common use is for finding file names:

find <path> -name <searchstring>

This can be interpreted as “Look in all files and subdirectories contained in a given path,
and print the names of the files containing the search string in their name” (not in their
content).

Another application of find is for searching files of a certain size, as in the example
below, where user peter wants to find all files in the current directory or one of its
subdirectories, that are bigger than 5 MB:

peter:~> find . -size +5000k
psychotic_chaos.mp3

If you dig in the man pages, you will see that find can also perform operations on the
found files. A common example is removing files. It is best to first test without the -exec
option that the correct files are selected, after that the command can be rerun to delete
the selected files. Below, we search for files ending in .tmp:

peter:~> find . -name "*.tmp" -exec rm {} \;

peter:~>

Optimize!

This command will call on rm as many times as a file answering the requirements is
found. In the worst case, this might be thousands or millions of times. This is quite a
load on your system.

A more realistic way of working would be the use of a pipe (|) and the xargs tool
with rm as an argument. This way, the rm command is only called when the
command line is full, instead of for every file. See Chapter 5, I/O redirection for
more on using I/O redirection to ease everyday tasks.

Later on (in 1999 according to the man pages, after 20 years of find), locate was
developed. This program is easier to use, but more restricted than find, since its output
is based on a file index database that is updated only once every day. On the other
hand, a search in the locate database uses less resources than find and therefore
shows the results nearly instantly.

Most Linux distributions use slocate these days, security enhanced locate, the modern
version of locate that prevents users from getting output they have no right to read. The
files in root's home directory are such an example, these are not normally accessible to
the public. A user who wants to find someone who knows about the C shell may issue
the command locate .cshrc, to display all users who have a customized configuration
file for the C shell. Supposing the users root and jenny are running C shell, then only the
file /home/jenny/.cshrc will be displayed, and not the one in root's home directory. On
most systems, locate is a symbolic link to the slocate program:

billy:~> ls -l /usr/bin/locate
lrwxrwxrwx 1 root slocate 7 Oct 28 14:18 /usr/bin/locate -> slocate*

User tina could have used locate to find the application she wanted:

tina:~> locate acroread
/usr/share/icons/hicolor/16x16/apps/acroread.png
/usr/share/icons/hicolor/32x32/apps/acroread.png
/usr/share/icons/locolor/16x16/apps/acroread.png
/usr/share/icons/locolor/32x32/apps/acroread.png
/usr/local/bin/acroread

/usr/local/Acrobat4/Reader/intellinux/bin/acroread
/usr/local/Acrobat4/bin/acroread

Directories that don't contain the name bin can't contain the program - they don't
contain executable files. There are three possibilities left. The file in /usr/local/bin is
the one tina would have wanted: it is a link to the shell script that starts the actual
program:

tina:~> file /usr/local/bin/acroread
/usr/local/bin/acroread: symbolic link to ../Acrobat4/bin/acroread

tina:~> file /usr/local/Acrobat4/bin/acroread
/usr/local/Acrobat4/bin/acroread: Bourne shell script text executable

tina:~> file /usr/local/Acrobat4/Reader/intellinux/bin/acroread
/usr/local/Acrobat4/Reader/intellinux/bin/acroread: ELF 32-bit LSB
executable, Intel 80386, version 1, dynamically linked (uses
shared libs), not stripped

In order to keep the path as short as possible, so the system doesn't have to search too
long every time a user wants to execute a command, we add /usr/local/bin to the
path and not the other directories, which only contain the binary files of one specific
program, while /usr/local/bin contains other useful programs as well.

Again, a description of the full features of find and locate can be found in the Info
pages.

The grep command

General line filtering

A simple but powerful program, grep is used for filtering input lines and returning certain
patterns to the output. There are literally thousands of applications for the grep program.
In the example below, jerry uses grep to see how he did the thing with find:

jerry:~> grep -a find .bash_history
find . -name userinfo
man find
find ../ -name common.cfg

Search history

Also useful in these cases is the search function in bash, activated by pressing
Ctrl+R at once, such as in the example where we want to check how we did that
last find again:

thomas ~> ^R
(reverse-i-search)`find': find `/home/thomas` -name *.xml

Type your search string at the search prompt. The more characters you type, the

more restricted the search gets. This reads the command history for this shell
session (which is written to .bash_history in your home directory when you quit
that session). The most recent occurrence of your search string is shown. If you
want to see previous commands containing the same string, type Ctrl+R again.

See the Info pages on bash for more.

All UNIXes with just a little bit of decency have an online dictionary. So does Linux. The
dictionary is a list of known words in a file named words, located in /usr/share/dict. To
quickly check the correct spelling of a word, no graphical application is needed:

william:~> grep pinguin /usr/share/dict/words

william:~> grep penguin /usr/share/dict/words
penguin
penguins

Dictionary vs. word list

Some distributions offer the dict command, which offers more features than simply
searching words in a list.

Who is the owner of that home directory next to mine? Hey, there's his telephone
number!

lisa:~> grep gdbruyne /etc/passwd
gdbruyne:x:981:981:Guy Debruyne, tel 203234:/home/gdbruyne:/bin/bash

And what was the E-mail address of Arno again?

serge:~/mail> grep -i arno *
sent-mail: To: <Arno.Hintjens@celeb.com>
sent-mail: On Mon, 24 Dec 2001, Arno.Hintjens@celeb.com wrote:

find and locate are often used in combination with grep to define some serious queries.
For more information, see Chapter 5, I/O redirection on I/O redirection.

Special characters

Characters that have a special meaning to the shell have to be escaped. The escape
character in Bash is backslash, as in most shells; this takes away the special meaning
of the following character. The shell knows about quite some special characters, among
the most common /, ., ? and *. A full list can be found in the Info pages and
documentation for your shell.

For instance, say that you want to display the file “*” instead of all the files in a directory,
you would have to use

less *

The same goes for filenames containing a space:

cat This\ File

More ways to view file content

General

Apart from cat, which really doesn't do much more than sending files to the standard
output, there are other tools to view file content.

The easiest way of course would be to use graphical tools instead of command line
tools. In the introduction we already saw a glimpse of an office application,
OpenOffice.org. Other examples are the GIMP (start up with gimp from the command
line), the GNU Image Manipulation Program; xpdf to view Portable Document Format
files (PDF); GhostView (gv) for viewing PostScript files; Mozilla/FireFox, links (a text
mode browser), Konqueror, Opera and many others for web content; XMMS, CDplay
and others for multimedia file content; AbiWord, Gnumeric, KOffice etc. for all kinds of
office applications and so on. There are thousands of Linux applications; to list them all
would take days.

Instead we keep concentrating on shell- or text-mode applications, which form the
basics for all other applications. These commands work best in a text environment on
files containing text. When in doubt, check first using the file command.

So let's see what text tools we have that are useful to look inside files.

Font problems

Plain text tools such as the ones we will now be discussing, often have problems
with “plain” text files because of the font encoding used in those files. Special
characters, such as accented alphabetical characters, Chinese characters and other
characters from languages using different character sets than the default en_US
encoding and so on, are then displayed the wrong way or replaced by unreadable
rubbish. These problems are discussed in the section called “Region specific
settings”.

“less is more”

Undoubtedly you will hear someone say this phrase sooner or later when working in a
UNIX environment. A little bit of UNIX history explains this:

• First there was cat. Output was streamed in an uncontrollable way.

• Then there was pg, which may still be found on older UNIXes. This command
puts text to the output one page at the time.

• The more program was a revised version of pg. This command is still available
on every Linux system.

• less is the GNU version of more and has extra features allowing highlighting of
search strings, scrolling back etc. The syntax is very simple:

less name_of_file

More information is located in the Info pages.

You already know about pagers by now, because they are used for viewing the man
pages.

The head and tail commands

These two commands display the n first/last lines of a file respectively. To see the last
ten commands entered:

tony:~> tail -10 .bash_history
locate configure | grep bin
man bash
cd
xawtv &
grep usable /usr/share/dict/words
grep advisable /usr/share/dict/words
info quota
man quota
echo $PATH
frm

head works similarly. The tail command has a handy feature to continuously show the
last n lines of a file that changes all the time. This -f option is often used by system
administrators to check on log files. More information is located in the system
documentation files.

Linking files

Link types

Since we know more about files and their representation in the file system,
understanding links (or shortcuts) is a piece of cake. A link is nothing more than a way
of matching two or more file names to the same set of file data. There are two ways to
achieve this:

• Hard link: Associate two or more file names with the same inode. Hard links
share the same data blocks on the hard disk, while they continue to behave as
independent files.

There is an immediate disadvantage: hard links can't span partitions, because
inode numbers are only unique within a given partition.

• Soft link or symbolic link (or for short: symlink): a small file that is a pointer to
another file. A symbolic link contains the path to the target file instead of a
physical location on the hard disk. Since inodes are not used in this system, soft
links can span across partitions.

The two link types behave similar, but are not the same, as illustrated in the scheme
below:

Figure 3.2. Hard and soft link mechanism

Note that removing the target file for a symbolic link makes the link useless.

Each regular file is in principle a hardlink. Hardlinks can not span across partitions,
since they refer to inodes, and inode numbers are only unique within a given partition.

It may be argued that there is a third kind of link, the user-space link, which is similar to
a shortcut in MS Windows. These are files containing meta-data which can only be
interpreted by the graphical file manager. To the kernel and the shell these are just
normal files. They may end in a .desktop or .lnk suffix; an example can be found in
~/.gnome-desktop:

[dupont@boulot .gnome-desktop]$ cat La\ Maison\ Dupont
[Desktop Entry]
Encoding=Legacy-Mixed
Name=La Maison Dupont
Type=X-nautilus-home
X-Nautilus-Icon=temp-home
URL=file:///home/dupont

This example is from a KDE desktop:

[lena@venus Desktop]$ cat camera
[Desktop Entry]
Dev=/dev/sda1
FSType=auto
Icon=memory
MountPoint=/mnt/camera
Type=FSDevice
X-KDE-Dynamic-Device=true

Creating this kind of link is easy enough using the features of your graphical
environment. Should you need help, your system documentation should be your first
resort.

In the next section, we will study the creation of UNIX-style symbolic links using the
command line.

Creating symbolic links

The symbolic link is particularly interesting for beginning users: they are fairly obvious to
see and you don't need to worry about partitions.

The command to make links is ln. In order to create symlinks, you need to use the -s
option:

ln -s targetfile linkname

In the example below, user freddy creates a link in a subdirectory of his home directory
to a directory on another part of the system:

freddy:~/music> ln -s /opt/mp3/Queen/ Queen

freddy:~/music> ls -l
lrwxrwxrwx 1 freddy freddy 17 Jan 22 11:07 Queen -> /opt/mp3/Queen

Symbolic links are always very small files, while hard links have the same size as the
original file.

The application of symbolic links is widespread. They are often used to save disk space,
to make a copy of a file in order to satisfy installation requirements of a new program
that expects the file to be in another location, they are used to fix scripts that suddenly
have to run in a new environment and can generally save a lot of work. A system admin
may decide to move the home directories of the users to a new location, disk2 for
instance, but if he wants everything to work like before, like the /etc/passwd file, with a
minimum of effort he will create a symlink from /home to the new location /disk2/home.

File security

Access rights: Linux's first line of defense

The Linux security model is based on the one used on UNIX systems, and is as rigid as
the UNIX security model (and sometimes even more), which is already quite robust. On
a Linux system, every file is owned by a user and a group user. There is also a third
category of users, those that are not the user owner and don't belong to the group
owning the file. For each category of users, read, write and execute permissions can be
granted or denied.

We already used the long option to list files using the ls -l command, though for other
reasons. This command also displays file permissions for these three user categories;
they are indicated by the nine characters that follow the first character, which is the file
type indicator at the beginning of the file properties line. As seen in the examples below,
the first three characters in this series of nine display access rights for the actual user
that owns the file. The next three are for the group owner of the file, the last three for
other users. The permissions are always in the same order: read, write, execute for the
user, the group and the others. Some examples:

marise:~> ls -l To_Do
-rw-rw-r-- 1 marise users 5 Jan 15 12:39 To_Do
marise:~> ls -l /bin/ls
-rwxr-xr-x 1 root root 45948 Aug 9 15:01 /bin/ls*

The first file is a regular file (first dash). Users with user name marise or users belonging
to the group users can read and write (change/move/delete) the file, but they can't
execute it (second and third dash). All other users are only allowed to read this file, but
they can't write or execute it (fourth and fifth dash).

The second example is an executable file, the difference: everybody can run this
program, but you need to be root to change it.

The Info pages explain how the ls command handles display of access rights in detail,
see the section What information is listed.

For easy use with commands, both access rights or modes and user groups have a
code. See the tables below.

Table 3.7. Access mode codes

Code Meaning

0 or - The access right that is supposed to be on this place is not granted.

4 or r read access is granted to the user category defined in this place

2 or w write permission is granted to the user category defined in this place

1 or x execute permission is granted to the user category defined in this place

Table 3.8. User group codes

Code Meaning

u user permissions

g group permissions

o permissions for others

This straight forward scheme is applied very strictly, which allows a high level of security
even without network security. Among other functions, the security scheme takes care
of user access to programs, it can serve files on a need-to-know basis and protect
sensitive data such as home directories and system configuration files.

You should know what your user name is. If you don't, it can be displayed using the id
command, which also displays the default group you belong to and eventually other
groups of which you are a member:

tilly:~> id
uid=504(tilly) gid=504(tilly) groups=504(tilly),100(users),2051(org)

Your user name is also stored in the environment variable USER:

tilly:~> echo $USER
tilly

The tools

The chmod command

A normal consequence of applying strict file permissions, and sometimes a nuisance, is
that access rights will need to be changed for all kinds of reasons. We use the chmod

command to do this, and eventually to chmod has become an almost acceptable
English verb, meaning the changing of the access mode of a file. The chmod command
can be used with alphanumeric or numeric options, whatever you like best.

The example below uses alphanumeric options in order to solve a problem that
commonly occurs with new users:

asim:~> ./hello
bash: ./hello: bad interpreter: Permission denied

asim:~> cat hello
#!/bin/bash
echo "Hello, World"

asim:~> ls -l hello
-rw-rw-r-- 1 asim asim 32 Jan 15 16:29 hello

asim:~> chmod u+x hello

asim:~> ./hello
Hello, World

asim:~> ls -l hello
-rwxrw-r-- 1 asim asim 32 Jan 15 16:29 hello*

The + and - operators are used to grant or deny a given right to a given group.
Combinations separated by commas are allowed. The Info and man pages contain
useful examples. Here's another one, which makes the file from the previous example a
private file to user asim:

asim:~> chmod u+rwx,go-rwx hello

asim:~> ls -l hello
-rwx------ 1 asim asim 32 Jan 15 16:29 hello*

The kind of problem resulting in an error message saying that permission is denied
somewhere is usually a problem with access rights in most cases. Also, comments like,
“It worked yesterday,” and “When I run this as root it works,” are most likely caused by
the wrong file permissions.

When using chmod with numeric arguments, the values for each granted access right
have to be counted together per group. Thus we get a 3-digit number, which is the
symbolic value for the settings chmod has to make. The following table lists the most
common combinations:

Table 3.9. File protection with chmod

Command Meaning

chmod 400 file To protect a file against accidental overwriting.

Command Meaning

chmod 500
directory

To protect yourself from accidentally removing, renaming or moving
files from this directory.

chmod 600 file A private file only changeable by the user who entered this
command.

chmod 644 file A publicly readable file that can only be changed by the issuing user.

chmod 660 file Users belonging to your group can change this file, others don't have
any access to it at all.

chmod 700 file Protects a file against any access from other users, while the issuing
user still has full access.

chmod 755
directory

For files that should be readable and executable by others, but only
changeable by the issuing user.

chmod 775 file Standard file sharing mode for a group.

chmod 777 file Everybody can do everything to this file.

If you enter a number with less than three digits as an argument to chmod, omitted
characters are replaced with zeros starting from the left. There is actually a fourth digit
on Linux systems, that precedes the first three and sets special access modes.
Everything about these and many more are located in the Info pages.

Logging on to another group

When you type id on the command line, you get a list of all the groups that you can
possibly belong to, preceded by your user name and ID and the group name and ID that
you are currently connected with. However, on many Linux systems you can only be
actively logged in to one group at the time. By default, this active or primary group is the
one that you get assigned from the /etc/passwd file. The fourth field of this file holds
users' primary group ID, which is looked up in the /etc/group file. An example:

asim:~> id
uid=501(asim) gid=501(asim) groups=100(users),501(asim),3400(web)

asim:~> grep asim /etc/passwd
asim:x:501:501:Asim El Baraka:/home/asim:/bin/bash

asim:~> grep 501 /etc/group
asim:x:501:

The fourth field in the line from /etc/passwd contains the value “501”, which represents
the group asim in the above example. From /etc/group we can get the name matching
this group ID. When initially connecting to the system, this is the group that asim will
belong to.

User private group scheme
In order to allow more flexibility, most Linux systems follow the so-called user
private group scheme, that assigns each user primarily to his or her own group. This
group is a group that only contains this particular user, hence the name “private
group”. Usually this group has the same name as the user login name, which can be
a bit confusing.

Apart from his own private group, user asim can also be in the groups users and web.
Because these are secondary groups to this user, he will need to use the newgrp to log
into any of these groups (use gpasswd for setting the group password first). In the
example, asim needs to create files that are owned by the group web.

asim:/var/www/html> newgrp web

asim:/var/www/html> id
uid=501(asim) gid=3400(web) groups=100(users),501(asim),3400(web)

When asim creates new files now, they will be in group ownership of the group web
instead of being owned by the group asim:

asim:/var/www/html> touch test

asim:/var/www/html> ls -l test
-rw-rw-r-- 1 asim web 0 Jun 10 15:38 test

Logging in to a new group prevents you from having to use chown (see the section
called “Changing user and group ownership”) or calling your system administrator to
change ownerships for you.

See the manpage for newgrp for more information.

The file mask

When a new file is saved somewhere, it is first subjected to the standard security
procedure. Files without permissions don't exist on Linux. The standard file permission
is determined by the mask for new file creation. The value of this mask can be displayed
using the umask command:

bert:~> umask
0002

Instead of adding the symbolic values to each other, as with chmod, for calculating the
permission on a new file they need to be subtracted from the total possible access
rights. In the example above, however, we see 4 values displayed, yet there are only 3
permission categories: user, group and other. The first zero is part of the special file
attributes settings, which we will discuss in the section called “Changing user and group
ownership” and the section called “SUID and SGID”. It might just as well be that this first

zero is not displayed on your system when entering the umask command, and that you
only see 3 numbers representing the default file creation mask.

Each UNIX-like system has a system function for creating new files, which is called
each time a user uses a program that creates new files, for instance, when downloading
a file from the Internet, when saving a new text document and so on. This function
creates both new files and new directories. Full read, write and execute permission is
granted to everybody when creating a new directory. When creating a new file, this
function will grant read and write permissions for everybody, but set execute
permissions to none for all user categories. This, before the mask is applied, a directory
has permissions 777 or rwxrwxrwx, a plain file 666 or rw-rw-rw-.

The umask value is subtracted from these default permissions after the function has
created the new file or directory. Thus, a directory will have permissions of 775 by
default, a file 664, if the mask value is (0)002. This is demonstrated in the example
below:

bert:~> mkdir newdir

bert:~> ls -ld newdir
drwxrwxr-x 2 bert bert 4096 Feb 28 13:45 newdir/

bert:~> touch newfile

bert:~> ls -l newfile
-rw-rw-r-- 1 bert bert 0 Feb 28 13:52 newfile

Files versus directories
A directory gets more permissions by default: it always has the execute permission.
If it wouldn't have that, it would not be accessible. Try this out by chmodding a
directory 644!

If you log in to another group using the newgrp command, the mask remains
unchanged. Thus, if it is set to 002, files and directories that you create while being in
the new group will also be accessible to the other members of that group; you don't
have to use chmod.

The root user usually has stricter default file creation permissions:

[root@estoban root]# umask
022

These defaults are set system-wide in the shell resource configuration files, for instance
/etc/bashrc or /etc/profile. You can change them in your own shell configuration file,
see Chapter 7, Home sweet /home on customizing your shell environment.

Changing user and group ownership

When a file is owned by the wrong user or group, the error can be repaired with the
chown (change owner) and chgrp (change group) commands. Changing file ownership
is a frequent system administrative task in environments where files need to be shared
in a group. Both commands are very flexible, as you can find out by using the --help
option.

The chown command can be applied to change both user and group ownership of a file,
while chgrp only changes group ownership. Of course the system will check if the user
issuing one of these commands has sufficient permissions on the file(s) she wants to
change.

In order to only change the user ownership of a file, use this syntax:

chown newuser file

If you use a colon after the user name (see the Info pages), group ownership will be
changed as well, to the primary group of the user issuing the command. On a Linux
system, each user has his own group, so this form can be used to make files private:

jacky:~> id
uid=1304(jacky) gid=(1304) groups=1304(jacky),2034(pproject)

jacky:~> ls -l my_report
-rw-rw-r-- 1 jacky project 29387 Jan 15 09:34 my_report

jacky:~> chown jacky: my_report

jacky:~> chmod o-r my_report

jacky:~> ls -l my_report
-rw-rw---- 1 jacky jacky 29387 Jan 15 09:34 my_report

If jacky would like to share this file, without having to give everybody permission to write
it, he can use the chgrp command:

jacky:~> ls -l report-20020115.xls
-rw-rw---- 1 jacky jacky 45635 Jan 15 09:35 report-20020115.xls

jacky:~> chgrp project report-20020115.xls

jacky:~> chmod o= report-20020115.xls

jacky:~> ls -l report-20020115.xls
-rw-rw---- 1 jacky project 45635 Jan 15 09:35 report-20020115.xls

This way, users in the group project will be able to work on this file. Users not in this
group have no business with it at all.

Both chown and chgrp can be used to change ownership recursively, using the -R
option. In that case, all underlying files and subdirectories of a given directory will
belong to the given user and/or group.

Restrictions
On most systems, the use of the chown and chgrp commands is restricted for non-
privileged users. If you are not the administrator of the system, you can not change
user nor group ownerships for security reasons. If the usage of these commands
would not be restricted, malicious users could assign ownership of files to other
users and/or groups and change behavior of those users' environments and even
cause damage to other users' files.

Special modes

For the system admin to not be bothered solving permission problems all the time,
special access rights can be given to entire directories, or to separate programs. There
are three special modes:

• Sticky bit mode: After execution of a job, the command is kept in the system
memory. Originally this was a feature used a lot to save memory: big jobs are
loaded into memory only once. But these days memory is inexpensive and there
are better techniques to manage it, so it is not used anymore for its optimizing
capabilities on single files. When applied to an entire directory, however, the
sticky bit has a different meaning. In that case, a user can only change files in
this directory when she is the user owner of the file or when the file has
appropriate permissions. This feature is used on directories like /var/tmp, that
have to be accessible for everyone, but where it is not appropriate for users to
change or delete each other's data. The sticky bit is indicated by a t at the end of
the file permission field:

• mark:~> ls -ld /var/tmp
• drwxrwxrwt 19 root root 8192 Jan 16 10:37 /var/tmp/

The sticky bit is set using the command chmod o+t directory. The historic
origin of the “t” is in UNIX' save Text access feature.

• SUID (set user ID) and SGID (set group ID): represented by the character s in
the user or group permission field. When this mode is set on an executable file, it
will run with the user and group permissions on the file instead of with those of
the user issuing the command, thus giving access to system resources. We will
discuss this further in Chapter 4, Processes.

• SGID (set group ID) on a directory: in this special case every file created in the
directory will have the same group owner as the directory itself (while normal
behavior would be that new files are owned by the users who create them). This
way, users don't need to worry about file ownership when sharing directories:

• mimi:~> ls -ld /opt/docs

• drwxrws--- 4 root users 4096 Jul 25 2001 docs/

•
• mimi:~> ls -l /opt/docs

• -rw-rw---- 1 mimi users 345672 Aug 30 2001-Council.doc

This is the standard way of sharing files in UNIX.

Existing files are left unchanged!
Files that are being moved to a SGID directory but were created elsewhere
keep their original user and group owner. This may be confusing.

Summary

On UNIX, as on Linux, all entities are in some way or another presented to the system
as files with the appropriate file properties. Use of (predefined) paths allows the users
and the system admin to find, read and manipulate files.

We've made our first steps toward becoming an expert: we discussed the real and the
fake structure of the file system, and we know about the Linux file security model, as
well as several other security precautions that are taken on every system by default.

The shell is the most important tool for interaction with the system. We learned several
shell commands in this chapter, which are listed in the table below.

Table 3.10. New commands in chapter 3: Files and the file system

Command Meaning

bash GNU shell program.

cat file(s) Send content of file(s) to standard output.

cd directory Enter directory. cd is a bash built-in command.

chgrp newgroup file(s) Change the group ownership of file(s) to
newgroup

chmod mode file(s) Change access permissions on file(s)

chown newowner[:[newgroup]]
file(s) Change file owner and group ownership.

cp sourcefile targetfile Copy sourcefile to targetfile.

df file
Reports on used disk space on the partition
containing file.

echo string Display a line of text

export Part of bash that announces variables and their
values to the system.

file filename Determine file type of filename.

find path expression Find files in the file system hierarchy

Command Meaning

grep PATTERN file Print lines in file containing the search pattern.

head file Send the first part of file to standard output

id Prints real and effective user name and groups.

info command Read documentation about command.

less file View file with a powerful viewer.

ln targetfile linkname Make a link with name linkname to targetfile.

locate searchstring Print all accessible files matching the search
pattern.

ls file(s) Prints directory content.

man command Format and display online (system) manual pages
for command.

mkdir newdir Make a new empty directory.

mv oldfile newfile Rename or move oldfile.

newgrp groupname Log in to a new group.

pwd Print the present or current working directory.

quota Show disk usage and limits.

rm file Removes files and directories.

rmdir file Removes directories.

tail file Print the last part of file.

umask [value] Show or change new file creation mode.

wc file Counts lines, words and characters in file.

which command Shows the full path to command.

We also stressed the fact that you should READ THE MAN PAGES. This
documentation is your first-aid kit and contains the answers to many questions. The
above list contains the basic commands that you will use on a daily basis, but they can
do much more than the tasks we've discussed here. Reading the documentation will
give you the control you need.

Last but not least, a handy overview of file permissions:

Table 3.11. File permissions

Who\What r(ead) w(rite) (e)x(ecute)

u(ser) 4 2 1

g(roup) 4 2 1

Who\What r(ead) w(rite) (e)x(ecute)

o(ther) 4 2 1

