
1

Summary on Java Multithreading and Synchronization Techniques

1. Thread Concept

 A program may consist of many tasks that can run concurrently. A thread is the flow of execution of a task.

 In Java, you can launch multiple threads from a program concurrently

 When your program executes an application, the JRE starts a thread for the main method. When your

program executes an applet, the Web browser (or Applet container) starts a thread to run the applet.

 You can create additional threads to run concurrent tasks in the program.

 In Java, each task is an instance of the Runnable interface, also called runnable object. A thread is

essentially an object that facilitates the execution of a task

Multiple threads on multiple CPUs

Multiple threads on a single CPU

2. Creating Tasks and Threads

Example:

Create and run three threads:

 The first thread prints the letter a 100 times.

 The second thread prints the letter b 100 times.

 The third thread prints the integers 1 through 100.

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

// Custom task class

public class TaskClass implements Runnable {

 ...

 public TaskClass(...) {

 ...

 }

 // Implement the run method in Runnable

 public void run() {

 // Tell system how to run custom thread

 ...

 }

 ...

}

// Client class

public class Client {

 ...

 public void someMethod() {

 ...

 // Create an instance of TaskClass

 TaskClass task = new TaskClass(...);

 // Create a thread

 Thread thread = new Thread(task);

 // Start a thread

 thread.start();

 ...

 }

 ...

}

java.lang.Runnable

TaskClass

2

printChar.java

// The task for printing a specified character in specified times

public class PrintChar implements Runnable {

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 /** Construct a task with specified character and number of

 * times to print the character

 */

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 }

 /** Override the run() method to tell the system

 * what the task to perform

 */

 public void run() {

 for (int i = 0; i < times; i++) {

 System.out.print(charToPrint);

 }

 }

}

printNum.java

//The task class for printing number from 1 to n for a given n

class PrintNum implements Runnable {

 private int lastNum;

 /** Construct a task for printing 1, 2, ... i */

 public PrintNum(int n) {

 lastNum = n;

 }

 /** Tell the thread how to run */

 public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 }

 }

}

TaskThreadDemo.java

public class TaskThreadDemo {

 public static void main(String[] args) {

 // Create tasks

3

 Runnable printA = new PrintChar('a', 100);

 Runnable printB = new PrintChar('b', 100);

 Runnable print100 = new PrintNum(100);

 // Create threads

 Thread thread1 = new Thread(printA);

 Thread thread2 = new Thread(printB);

 Thread thread3 = new Thread(print100);

 // Start threads

 thread1.start();

 thread2.start();

 thread3.start();

 }

 }

3. The Thread Class

 The Static yield() Method

You can use the yield() method to temporarily release time for other threads. For example, suppose you

modify the code in PrintNum.java as follows:

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 Thread.yield();

 }

}

Every time a number is printed, the print100 thread is yielded. So, the numbers are printed after the

characters.

 The Static sleep(milliseconds) Method

The sleep(long mills) method puts the thread to sleep for the specified time in milliseconds. For example,

suppose you modify the code in PrintNum.java as follows:

public void run() {

java.lang.Thread

+Thread()

+Thread(task: Runnable)

+start(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+interrupt(): void

Creates a default thread.

Creates a thread for a specified task.

Starts the thread that causes the run() method to be invoked by the JVM.

Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Causes this thread to temporarily pause and allow other threads to execute.

Interrupts this thread.

«interface»
java.lang.Runnable

4

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 try {

 if (i >= 50) Thread.sleep(1);

 }

 catch (InterruptedException ex) {

 }

 }

}

Every time a number (>= 50) is printed, the print100 thread is put to sleep for 1 millisecond.

 The join() Method

You can use the join() method to force one thread to wait for another thread to finish. For example, suppose

you modify the code in PrintNum.java as follows:

The numbers after 50 are printed after thread printA is finished.

 isAlive(), interrupt(), and isInterrupted()

The isAlive() method is used to find out the state of a thread. It returns true if a thread is in the Ready,

Blocked, or Running state; it returns false if a thread is new and has not started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently in the Ready or

Running state, its interrupted flag is set; if a thread is currently blocked, it is awakened and enters the

Ready state, and an java.io.InterruptedException is thrown.

The isInterrupt() method tests whether the thread is interrupted.

 The deprecated stop(), suspend(), and resume() Methods

NOTE: The Thread class also contains the stop(), suspend(), and resume() methods. As of Java 2, these

methods are deprecated (or outdated) because they are known to be inherently unsafe. You should assign

null to a Thread variable to indicate that it is stopped rather than use the stop() method.

printA.join()

-char token

+getToken

+setToken

+paintCompone

t

+mouseClicked

Thread

print100

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

Wait for printA

to finish

+getToken

+setToken

+paintComponet

+mouseClicked

Thread

printA

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

 printA finished

-char token

public void run() {

 Thread thread4 = new Thread(

new PrintChar('c', 40));

 thread4.start();

 try {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 if (i == 50) thread4.join();

 }

 }

 catch (InterruptedException ex) {

 }

}

5

4. The Life Cycle of a Thread

 Thread Priority

Each thread is assigned a default priority of Thread.NORM_PRIORITY. You can reset the priority using

setPriority(int priority).

Some constants for priorities include Thread.MIN_PRIORITY Thread.MAX_PRIORITY

Thread.NORM_PRIORITY

Example: Applet/Application animation

FlashingText.java

import javax.swing.*;

public class FlashingText extends JApplet implements Runnable {

 public static final long serialVersionUID = 1L;

 private JLabel jlblText = new JLabel("Welcome", JLabel.CENTER);

 public FlashingText() {

 add(jlblText);

 new Thread(this).start();

 }

 /** Set the text on/off every 200 milliseconds */

 public void run() {

 try {

 while (true) {

 if (jlblText.getText() == null)

 jlblText.setText("Welcome");

 else

 jlblText.setText(null);

 Thread.sleep(200);

 }

 }

New Ready

Thread created

Finished

Running

start()
run()

Wait for target

to finish

join()

run() returns

yield(), or

time out

interrupt()

Wait for time

out

Wait to be

notified

sleep()

wait() Target

finished

notify() or

notifyAll()

Time out

Blocked

Interrupted()

6

 catch (InterruptedException ex) {

 }

 }

 /** Main method */

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 JFrame frame = new JFrame("FlashingText");

 frame.add(new FlashingText());

 frame.setLocationRelativeTo(null); // Center the frame

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(200, 200);

 frame.setVisible(true);

 }

 });

 }

}

5. GUI Event Dispatcher Thread

GUI event handling and painting code executes in a single thread, called the event dispatcher thread. This is

necessary because most of Swing methods are not thread-safe. Invoking them from multiple threads may cause

conflicts. In certain situations with multithreading, you need to run the code in the event dispatch thread to avoid

possible conflicts.

 invokeLater and invokeAndWait

You can use the static methods, invokeLater and invokeAndWait, in the javax.swing.SwingUtilities class to

run the code in the event dispatcher thread. You must put this code in the run method of a Runnable object

and specify the Runnable object as the argument to invokeLater and invokeAndWait. The invokeLater

method returns immediately, without waiting for the event dispatcher thread to execute the code. The

invokeAndWait method is just like invokeLater, except that invokeAndWait doesn't return until the event-

dispatching thread has executed the specified code.

 Launch Application from Main Method

So far, you have launched your GUI application from the main method by creating a frame and making it

visible. This works fine for most applications. In certain situations, however, it could cause problems. To

avoid possible conflicts (e.g., thread deadlock), you should launch GUI creation from the event dispatcher

thread as follows:

public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 // Place the code for creating a frame and setting it properties

 }

 });

}

Example:

EventDispatcherThreadDemo.java

7

import javax.swing.*;

public class EventDispatcherThreadDemo extends JApplet {

public static final long serialVersionUID = 1L;

 public EventDispatcherThreadDemo() {

 add(new JLabel("Hi, it runs from an event dispatcher thread"));

 }

 /** Main method */

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 JFrame frame = new JFrame("EventDispatcherThreadDemo");

 frame.add(new EventDispatcherThreadDemo());

 frame.setLocationRelativeTo(null); // Center the frame

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(200, 200);

 frame.setVisible(true);

 }

 });

 }

}

6. Creating and Executing Threads with Executor Framework

Starting a new thread for each task could limit throughput and cause poor performance. A thread pool is ideal to

manage the number of tasks executing concurrently. Since JDK 1.5 uses the Executor interface for executing tasks

in a thread pool and the ExecutorService interface for managing and controlling tasks. ExecutorService is a

subinterface of Executor.

 To create an Executor object, use the static methods in the Executors class.

Shuts down the executor, but allows the tasks in the executor to

complete. Once shutdown, it cannot accept new tasks.

Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished

tasks.

Returns true if the executor has been shutdown.

Returns true if all tasks in the pool are terminated.

«interface»
java.util.concurrent.Executor

+execute(Runnable object): void

Executes the runnable task.

\

«interface»
java.util.concurrent.ExecutorService

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean

+isTerminated(): boolean

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task

after its current task is finished.

Creates a thread pool that creates new threads as needed, but
will reuse previously constructed threads when they are

available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:

int): ExecutorService

+newCachedThreadPool():

ExecutorService

8

Example:

ExecutorDemo.java

import java.util.concurrent.*;

public class ExecutorDemo {

 public static void main(String[] args) {

 // Create a fixed thread pool with maximum three threads

 ExecutorService executor = Executors.newFixedThreadPool(3);

 // Submit runnable tasks to the executor

 executor.execute(new PrintChar('a', 100));

 executor.execute(new PrintChar('b', 100));

 executor.execute(new PrintNum(100));

 // Shut down the executor

 executor.shutdown();

 }

}

Example:

PrintTask.java

import java.util.Random;

public class PrintTask implements Runnable

{

 private final int sleepTime; // random sleep time for thread

 private final String taskName; // name of task

 private final static Random generator = new Random();

 // constructor

 public PrintTask(String name)

 {

 taskName = name; // set task name

 // pick random sleep time between 0 and 5 seconds

 sleepTime = generator.nextInt(5000); // milliseconds

 } // end PrintTask constructor

 // method run contains the code that a thread will execute

 public void run()

 {

 try // put thread to sleep for sleepTime amount of time

 {

9

 System.out.printf("%s going to sleep for %d milliseconds.\n",

 taskName, sleepTime);

 Thread.sleep(sleepTime); // put thread to sleep

 } // end try

 catch (InterruptedException exception)

 {

 System.out.printf("%s %s\n", taskName,

 "terminated prematurely due to interruption");

 } // end catch

 // print task name

 System.out.printf("%s done sleeping\n", taskName);

 } // end method run

} // end class PrintTask

TaskExecutor.java

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

public class TaskExecutor

{

 public static void main(String[] args)

 {

 // create and name each runnable

 PrintTask task1 = new PrintTask("task1");

 PrintTask task2 = new PrintTask("task2");

 PrintTask task3 = new PrintTask("task3");

 System.out.println("Starting Executor");

 // create ExecutorService to manage threads

 ExecutorService threadExecutor = Executors.newCachedThreadPool();

 // start threads and place in runnable state

 threadExecutor.execute(task1); // start task1

 threadExecutor.execute(task2); // start task2

 threadExecutor.execute(task3); // start task3

 // shut down worker threads when their tasks complete

 threadExecutor.shutdown();

 System.out.println("Tasks started, main ends.\n");

 } // end main

} // end class TaskExecutor

7. Thread Synchronization

 A shared resource may be corrupted if it is accessed simultaneously by multiple threads. For example, two

unsynchronized threads accessing the same bank account may cause conflict.

10

Example:

Suppose that you create and launch one hundred threads, each of which adds a penny to an account. Assume that the

account is initially empty.

AccountWithoutSync.java

import java.util.concurrent.*;

public class AccountWithoutSync {

 private static Account account = new Account();

 public static void main(String[] args) {

 ExecutorService executor = Executors.newCachedThreadPool();

 // ExecutorService executor = Executors.newFixedThreadPool(20);

 // Create and launch 100 threads

 for (int i = 0; i < 100; i++) {

 executor.execute(new AddAPennyTask());

 }

 executor.shutdown();

 // Wait until all tasks are finished

 while (!executor.isTerminated()) {

 }

 System.out.println("What is balance? " + account.getBalance());

 }

 // A thread for adding a penny to the account

 private static class AddAPennyTask implements Runnable {

Step balance thread[i] thread[j]

1 0 newBalance = bank.getBalance() + 1;

2 0 newBalance = bank.getBalance() + 1;

3 1 bank.setBalance(newBalance);

4 1 bank.setBalance(newBalance);

Account

-balance: int

+getBalance(): int

+deposit(amount: int): void

100
AccountWithoutSync

-bank: Account

-thread: Thread[]

+main(args: String[]): void

AddAPennyTask

+run(): void

java.lang.Runnable

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

1 1 1

11

 public void run() {

 System.out.println(Thread.currentThread());

 account.deposit(1);

 }

 }

 // An inner class for account

 private static class Account {

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

 public void deposit(int amount) {

 int newBalance = balance + amount;

 // This delay is deliberately added to magnify the

 // data-corruption problem and make it easy to see.

 try {

 Thread.sleep(100);

 }

 catch (InterruptedException ex) {

 }

 // System.out.println("this thread is in the deposit() " + Thread.currentThread().getId());

 balance = newBalance;

 }

 }

}

 Race Condition

What caused the error in the example?

Here is a possible scenario:

The effect of this scenario is that Task 1 did nothing, because in Step 4 Task 2 overrides Task 1's result.

Obviously, the problem is that Task 1 and Task 2 are accessing a common resource in a way that causes

conflict. This is a common problem known as a race condition in multithreaded programs. A class is said to

be thread-safe if an object of the class does not cause a race condition in the presence of multiple threads.

As demonstrated in the preceding example, the Account class is not thread-safe.

 The synchronized keyword

 Step balance Task 1 Task 2

1 0 newBalance = balance + 1;

2 0 newBalance = balance + 1;

3 1 balance = newBalance;

4 1 balance = newBalance;

);

12

To avoid race conditions, more than one thread must be prevented from simultaneously entering certain

part of the program, known as critical region. The critical region in the AccountWithoutSync.java is the

entire deposit method. You can use the synchronized keyword to synchronize the method so that only one

thread can access the method at a time. There are several ways to correct the problem in

AccountWithoutSync.java. One approach is to make Account thread-safe by adding the synchronized

keyword in the deposit method as follows:

public synchronized void deposit(double amount)

 Synchronizing Instance Methods and Static Methods

A synchronized method acquires a lock before it executes. In the case of an instance method, the lock is on

the object for which the method was invoked. In the case of a static method, the lock is on the class. If one

thread invokes a synchronized instance method (respectively, static method) on an object, the lock of that

object (respectively, class) is acquired first, then the method is executed, and finally the lock is released.

Another thread invoking the same method of that object (respectively, class) is blocked until the lock is

released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 2 starts to enter the

method, and Task 1 is already in the method, Task 2 is blocked until Task 1 finishes the method.

Example:

AccountWithSynch.java

import java.util.concurrent.*;

public class AccountWithSynch {

 private static Account account = new Account();

 public static void main(String[] args) {

 ExecutorService executor = Executors.newCachedThreadPool();

 // ExecutorService executor = Executors.newFixedThreadPool(20);

 // Create and launch 100 threads

 for (int i = 0; i < 100; i++) {

 executor.execute(new AddAPennyTask());

 }

 executor.shutdown();

Acquire a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Release the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task 1

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Acqurie a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

Release the lock

Task 2

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Wait to acquire the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

13

 // Wait until all tasks are finished

 while (!executor.isTerminated()) {

 }

 System.out.println("What is balance? " + account.getBalance());

 }

 // A thread for adding a penny to the account

 private static class AddAPennyTask implements Runnable {

 public void run() {

 account.deposit(1);

 System.out.println(Thread.currentThread());

 }

 }

 // An inner class for account

 private static class Account {

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

 public synchronized void deposit(int amount) {

 int newBalance = balance + amount;

 // This delay is deliberately added to magnify the

 // data-corruption problem and make it easy to see.

 try {

 System.out.println(Thread.currentThread().getId());

 Thread.sleep(5);

 }

 catch (InterruptedException ex) {

 }

 balance = newBalance;

 }

 }

}

 Synchronizing Statements

Invoking a synchronized instance method of an object acquires a lock on the object, and invoking a

synchronized static method of a class acquires a lock on the class. A synchronized statement can be used to

acquire a lock on any object, not just this object, when executing a block of the code in a method. This

block is referred to as a synchronized block. The general form of a synchronized statement is as follows:

synchronized (expr) {

 statements;

}

14

The expression expr must evaluate to an object reference. If the object is already locked by another thread,

the thread is blocked until the lock is released. When a lock is obtained on the object, the statements in the

synchronized block are executed, and then the lock is released.

 Synchronizing Statements vs. Methods

Any synchronized instance method can be converted into a synchronized statement. Suppose that the

following is a synchronized instance method:

public synchronized void xMethod() {

 // method body

}

This method is equivalent to

public void xMethod() {

 synchronized (this) {

 // method body

 }

}

 Synchronization Using Locks

A synchronized instance method implicitly acquires a lock on the instance before it executes the method.

Since JDK 1.5 enables you to use locks explicitly. The new locking features are flexible and give you more

control for coordinating threads. A lock is an instance of the Lock interface, which declares the methods for

acquiring and releasing locks, as shown below. A lock may also use the newCondition() method to create

any number of Condition objects, which can be used for thread communications.

 Fairness Policy

Reentrant Lock is a concrete implementation of Lock for creating mutual exclusive locks. You can create a

lock with the specified fairness policy. True fairness policies guarantee the longest-wait thread to obtain the

lock first. False fairness policies grant a lock to a waiting thread without any access order. Programs using

fair locks accessed by many threads may have poor overall performance than those using the default setting,

but have smaller variances in times to obtain locks and guarantee lack of starvation.

Example:

AccountWithSyncUsingLock.java

Same as ReentrantLock(false).

Creates a lock with the given fairness policy. When the
fairness is true, the longest-waiting thread will get the

lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void

+unlock(): void

+newCondition(): Condition

Acquires the lock.

Releases the lock.

Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()

+ReentrantLock(fair: boolean)

15

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class AccountWithSyncUsingLock {

 private static Account account = new Account();

 public static void main(String[] args) {

 ExecutorService executor = Executors.newCachedThreadPool();

 // Create and launch 100 threads

 for (int i = 0; i < 100; i++) {

 executor.execute(new AddAPennyTask());

 }

 executor.shutdown();

 // Wait until all tasks are finished

 while (!executor.isTerminated()) {

 }

 System.out.println("What is balance ? " + account.getBalance());

 }

 // A thread for adding a penny to the account

 public static class AddAPennyTask implements Runnable {

 public void run() {

 account.deposit(1);

 }

 }

 // An inner class for account

 public static class Account {

 private static Lock lock = new ReentrantLock(); // Create a lock

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

 public void deposit(int amount) {

 lock.lock(); // Acquire the lock

 try {

 int newBalance = balance + amount;

 // This delay is deliberately added to magnify the

 // data-corruption problem and make it easy to see.

 Thread.sleep(5);

16

 balance = newBalance;

 }

 catch (InterruptedException ex) {

 }

 finally {

 lock.unlock(); // Release the lock

 }

 }

 }

}

8. Cooperation among Threads

The conditions can be used to facilitate communications among threads. A thread can specify what to do under a

certain condition. Conditions are objects created by invoking the newCondition() method on a Lock object. Once a

condition is created, you can use its await(), signal(), and signalAll() methods for thread communications, as shown

below. The await() method causes the current thread to wait until the condition is signaled. The signal() method

wakes up one waiting thread, and the signalAll() method wakes all waiting threads.

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit added to the account). If

the balance is less than the amount to be withdrawn, the withdraw task will wait for the newDeposit condition.

When the deposit task adds money to the account, the task signals the waiting withdraw task to try again. The

interaction between the two tasks is shown below.

Example:

Suppose that you create and launch two threads, one deposits to an account, and the other withdraws from the same

account. The second thread has to wait if the amount to be withdrawn is more than the current balance in the account.

Whenever new fund is deposited to the account, the first thread notifies the second thread to resume. If the amount is

«interface»

java.util.concurrent.Condition

+await(): void

+signal(): void

+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.

Wakes up one waiting thread.

Wakes up all waiting threads.

while (balance < withdrawAmount)

 newDeposit.await();

Withdraw Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

balance -= withdrawAmount

-char token

+getToken

+setToken

lock.unlock();

Deposit Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

17

still not enough for a withdrawal, the second thread has to continue to wait for more funds in the account. Assume

the initial balance is 0 and the amount to deposit and to withdraw is randomly generated.

ThreadCooperation.java

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

public class ThreadCooperation {

 private static Account account = new Account();

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(2);

 executor.execute(new DepositTask());

 executor.execute(new WithdrawTask());

 executor.shutdown();

 System.out.println("Thread 1\t\tThread 2\t\tBalance");

 }

 // A task for adding an amount to the account

 public static class DepositTask implements Runnable {

 public void run() {

 try { // Purposely delay it to let the withdraw method proceed

 while (true) {

 account.deposit((int)(Math.random() * 10) + 1);

 Thread.sleep(1000);

 }

 }

 catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 }

 // A task for subtracting an amount from the account

 public static class WithdrawTask implements Runnable {

 public void run() {

 while (true) {

 account.withdraw((int)(Math.random() * 10) + 1);

 }

 }

 }

 // An inner class for account

 private static class Account {

 // Create a new lock

 private static Lock lock = new ReentrantLock();

18

 // Create a condition

 private static Condition newDeposit = lock.newCondition();

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

 public void withdraw(int amount) {

 lock.lock(); // Acquire the lock

 try {

 while (balance < amount)

 newDeposit.await();

 balance -= amount;

 System.out.println("\t\t\tWithdraw " + amount +

 "\t\t" + getBalance());

 }

 catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 finally {

 lock.unlock(); // Release the lock

 }

 }

 public void deposit(int amount) {

 lock.lock(); // Acquire the lock

 try {

 balance += amount;

 System.out.println("Deposit " + amount +

 "\t\t\t\t\t" + getBalance());

 // Signal thread waiting on the condition

 newDeposit.signalAll();

 }

 finally {

 lock.unlock(); // Release the lock

 }

 }

 }

}

10. Java’s Built-in Monitors

Locks and conditions are new in Java 5. Prior to Java 5, thread communications are programmed using object’s

built-in monitors. A monitor is an object with mutual exclusion and synchronization capabilities. Only one thread

can execute a method at a time in the monitor. A thread enters the monitor by acquiring a lock on the monitor and

exits by releasing the lock. Any object can be a monitor. An object becomes a monitor once a thread locks it.

Locking is implemented using the synchronized keyword on a method or a block. A thread must acquire a lock

19

before executing a synchronized method or block. A thread can wait in a monitor if the condition is not right for it to

continue executing in the monitor.

 wait(), notify(), and notifyAll()

Use the wait(), notify(), and notifyAll() methods to facilitate communication among threads.

The wait(), notify(), and notifyAll() methods must be called in a synchronized method or a synchronized

block on the calling object of these methods. Otherwise, an IllegalMonitorStateException would occur.

The wait() method lets the thread wait until some condition occurs. When it occurs, you can use the notify()

or notifyAll() methods to notify the waiting threads to resume normal execution. The notifyAll() method

wakes up all waiting threads, while notify() picks up only one thread from a waiting queue.

The wait(), notify(), and notifyAll() methods on an object are analogous to the await(), signal(), and

signalAll() methods on a condition.

Example:

Producer/Consumer

Consider the classic Consumer/Producer example. Suppose you use a buffer to store integers. The buffer size is

limited. The buffer provides the method write(int) to add an int value to the buffer and the method read() to read and

delete an int value from the buffer. To synchronize the operations, use a lock with two conditions: notEmpty (i.e.,

buffer is not empty) and notFull (i.e., buffer is not full). When a task adds an int to the buffer, if the buffer is full, the

task will wait for the notFull condition. When a task deletes an int from the buffer, if the buffer is empty, the task

will wait for the notEmpty condition. The interaction between the two tasks is shown below.

ProducerConsumer.java presents the complete program. The write(int) method in Buffer class adds an integer to the

buffer. The read() method in Buffer class deletes and returns an integer from the buffer. The buffer is implemented

using a linked list. Two conditions notEmpty and notFull on the lock are created in the Buffer class. The conditions

are bound to a lock. A lock must be acquired before a condition can be applied.

Buffer.java

import java.util.concurrent.locks.*;

synchronized (anObject) {

 try {

 // Wait for the condition to become true

 while (!condition)

 anObject.wait();

 // Do something when condition is true

 }

 catch (InterruptedException ex) {

 ex.printStackTrace();

 }

}

Task 1

synchronized (anObject) {

 // When condition becomes true

 anObject.notify(); or anObject.notifyAll();

 ...

}

Task 2

resume

while (count == CAPACITY)

 notFull.await();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task for adding an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Add an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notEmpty.signal();

-char token

while (count == 0)

 notEmpty.await();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task for deleting an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Delete an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notFull.signal();

-char token

20

public class Buffer {

 private static final int CAPACITY = 5; // buffer size

 private java.util.LinkedList<Integer> queue =

 new java.util.LinkedList<Integer>();

 // Create a new lock

 private static Lock lock = new ReentrantLock();

 // Create two conditions

 private static Condition notEmpty = lock.newCondition();

 private static Condition notFull = lock.newCondition();

 public void write(int value) {

 lock.lock(); // Acquire the lock

 try {

 while (queue.size() == CAPACITY) {

 System.out.println("Wait for notFull condition");

 notFull.await();

 }

 queue.offer(value);

 notEmpty.signal(); // Signal notEmpty condition

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 } finally {

 lock.unlock(); // Release the lock

 }

 }

 public int read() {

 int value = 0;

 lock.lock(); // Acquire the lock

 try {

 while (queue.isEmpty()) {

 System.out.println("\t\t\tWait for notEmpty condition");

 notEmpty.await();

 }

 value = queue.remove();

 notFull.signal(); // Signal notFull condition

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 } finally {

 lock.unlock(); // Release the lock

 return value;

 }

 }

}

21

ProducerTask.java

// A task for adding an int to the buffer

 public class ProducerTask implements Runnable {

 private final Buffer buffer; // reference to shared object

 // constructor

 public ProducerTask(Buffer sharedBuffer)

 {

 buffer = sharedBuffer;

 } // end Producer constructor

 public void run() {

 try {

 int i = 1;

 while (true) {

 System.out.println("Producer writes " + i);

 buffer.write(i++); // Add a value to the buffer

 // Put the thread into sleep

 Thread.sleep((int)(Math.random() * 1000));

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 }

ConsumerTask.java

// A task for reading and deleting an int from the buffer

public class ConsumerTask implements Runnable {

 private final Buffer buffer; // reference to shared object

 // constructor

 public ConsumerTask(Buffer sharedBuffer)

 {

 buffer = sharedBuffer;

 } // end Producer constructor

 public void run() {

 try {

 while (true) {

 System.out.println("\t\t\tConsumer reads " + buffer.read());

 // Put the thread into sleep

 Thread.sleep((int)(Math.random() * 1000));

 }

 } catch (InterruptedException ex) {

22

 ex.printStackTrace();

 }

 }

}

ProducerConsumer.java

import java.util.concurrent.*;

public class ProducerConsumer {

 private static Buffer buffer = new Buffer();

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(2);

 executor.execute(new ProducerTask(buffer));

 executor.execute(new ConsumerTask(buffer));

 executor.shutdown();

 }

}

11. Blocking Queues

A blocking queue causes a thread to block when you try to add an element to a full queue or to remove an element

from an empty queue.

 Concrete Blocking Queues

Three concrete blocking queues ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue

are supported in Since JDK 1.5, as shown below. All are in the java.util.concurrent package.

ArrayBlockingQueue implements a blocking queue using an array. You have to specify a capacity or an

optional fairness to construct an ArrayBlockingQueue. LinkedBlockingQueue implements a blocking

queue using a linked list. You may create an unbounded or bounded LinkedBlockingQueue.

PriorityBlockingQueue is a priority queue. You may create an unbounded or bounded priority queue.

«interface»
java.util.concurrent.BlockingQueue<E>

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.

Waits if the queue is full.

Retrieves and removes the head of this

queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

ArrayBlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,

fair: boolean)

«interface»
java.util.concurrent.BlockingQueue<E>

LinkedBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

23

Example:

Producer.java

import java.util.concurrent.ArrayBlockingQueue;

// A task for adding an int to the buffer

public class Producer implements Runnable {

 private final ArrayBlockingQueue<Integer> buffer;

 // constructor

 public Producer(ArrayBlockingQueue<Integer> sharedBuffer)

 {

 buffer = sharedBuffer;

 } // end Producer constructor

 public void run() {

 try {

 int i = 1;

 while (true) {

 System.out.println("Producer writes " + i);

 buffer.put(i++); // Add any value to the buffer, say, 1

 // Put the thread into sleep

 Thread.sleep((int)(Math.random() * 1000));

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

}

Consumer.java

import java.util.concurrent.ArrayBlockingQueue;

// A task for reading and deleting an int from the buffer

public class Consumer implements Runnable {

 private final ArrayBlockingQueue<Integer> buffer;

 // constructor

 public Consumer(ArrayBlockingQueue<Integer> sharedBuffer)

 {

 buffer = sharedBuffer;

 } // end Producer constructor

 public void run() {

 try {

24

 while (true) {

 System.out.println("\t\t\tConsumer reads " + buffer.take());

 // Put the thread into sleep

 Thread.sleep((int)(Math.random() * 1000));

 }

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

}

ProducerConsumerUsingBQ.java

import java.util.concurrent.*;

public class ProducerConsumerUsingBQ {

 private static ArrayBlockingQueue<Integer> buffer =

 new ArrayBlockingQueue<Integer>(2);

 public static void main(String[] args) {

 // Create a thread pool with two threads

 ExecutorService executor = Executors.newFixedThreadPool(2);

 executor.execute(new Producer(buffer));

 executor.execute(new Consumer(buffer));

 executor.shutdown();

 }

}

12. Semaphore

Semaphores can be used to restrict the number of threads that access a shared resource. Before accessing the

resource, a thread must acquire a permit from the semaphore. After finishing with the resource, the thread must

return the permit back to the semaphore, as shown below.

To create a semaphore, you have to specify the number of permits with an optional fairness policy, as shown below.

A task acquires a permit by invoking the semaphore’s acquire() method and releases the permit by invoking the

semaphore’s release() method. Once a permit is acquired, the total number of available permits in a semaphore is

reduced by 1. Once a permit is released, the total number of available permits in a semaphore is increased by 1.

Acquire a permit from a semaphore.
Wait if the permit is not available.

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Access the resource

-char token

+getToken

+setToken

+paintComponet

Release the permit to the semaphore

-char token

semaphore.acquire();

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Access the resource

-char token

+getToken

+setToken

+paintComponet

semaphore.release();

-char token

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and

the fairness policy.

Acquires a permit from this semaphore. If no permit is

available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:

boolean)

+acquire(): void

+release(): void

25

Example:

AccountWithSemaphore.java

import java.util.concurrent.*;

public class AccountWithSemaphore {

 private static Account account = new Account();

 public static void main(String[] args) {

 ExecutorService executor = Executors.newCachedThreadPool();

 // ExecutorService executor = Executors.newFixedThreadPool(20);

 // Create and launch 100 threads

 for (int i = 0; i < 100; i++) {

 executor.execute(new AddAPennyTask());

 }

 executor.shutdown();

 // Wait until all tasks are finished

 while (!executor.isTerminated()) {

 }

 System.out.println("What is balance? " + account.getBalance());

 }

 // A thread for adding a penny to the account

 private static class AddAPennyTask implements Runnable {

 public void run() {

 System.out.println(Thread.currentThread());

 account.deposit(1);

 }

 }

 // An inner class for account

 private static class Account {

 private static Semaphore semaphore = new Semaphore(1);

 private int balance = 0;

 public int getBalance() {

 return balance;

 }

 public void deposit(int amount) {

 try {

 semaphore.acquire();

 int newBalance = balance + amount;

26

 Thread.sleep(100);

 balance = newBalance;

 }

 catch (InterruptedException ex) {

 }

 finally{

 semaphore.release();

 }

 }

 }

}

