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 Intel Architectural Support for Memory Management 

 

The memory management facilities of the Intel Architecture are divided into two parts: 

segmentation and paging.  

 Segmentation provides a mechanism of isolating individual code, data, and runtime 

stack memory segments, so that multiple programs (or tasks) can run on the same 

processor without interfering with one another.  

 Paging provides a mechanism for implementing a conventional demand-paged, 

virtual-memory system where sections of a program’s execution environment are 

mapped into physical memory as needed. Paging can also be used to provide 

isolation between multiple tasks. 

 

As shown in Figure 1, segmentation provides a mechanism for dividing the processor’s 

addressable memory space (called the linear address space) into smaller protected address 

spaces called segments. Segments can be used to hold the code, data, and stack for a program 

or to hold system data structures (such as a TSS (task state segment for per process hardware 

context) or LDT (Local Descriptor Table)). If more than one program (or task) is running on a 

processor, each program can be assigned its own set of segments. The processor then enforces 

the boundaries between these segments and insures that one program does not interfere with 

the execution of another program by writing into the other program’s segments.  

 

Figure 1: Segmentation and Paging 

All of the segments within a system are contained in the processor’s linear address space. To 

locate a byte in a particular segment, a logical address (sometimes called a far pointer) must 
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be provided. A logical address consists of a segment selector and an offset. The segment 

selector is a unique identifier for a segment. Among other things it provides an offset into a 

descriptor table (such as the global descriptor table, GDT) to an entry (a data structure) called 

a segment descriptor. Each segment has a segment descriptor, which specifies the size of the 

segment, the access rights and privilege level for the segment, the segment type, and the 

location of the first byte of the segment in the linear address space (called the base address of 

the segment). The offset part of the logical address is added to the base address for the 

segment to locate a byte within the segment. The base address plus the offset thus forms a 

linear address in the processor’s linear address space. 

Paging supports a “virtual memory” environment where a large linear address space is 

simulated with a small amount of physical memory (RAM and ROM) and some disk storage. 

When using paging, each segment is divided into pages (ordinarily 4 KBytes each in size), 

which are stored either in physical memory or on the disk. The operating system or executive 

maintains a page directory and a set of page tables to keep track of the pages. When a 

program (or task) attempts to access an address location in the linear address space, the 

processor uses the page directory and page tables to translate the linear address into a physical 

address and then performs the requested operation (read or write) on the memory location. If 

the page being accessed is not currently in physical memory, the processor interrupts 

execution of the program (by generating a page-fault exception). The operating system or 

executive then reads the page into physical memory from the disk and continues executing the 

program. 

 

1. Physical address space 

In protected mode (real mode is used to maintain processor compatibility with older models 

than Intel 80286), the Intel Architecture provides a normal physical address space of 4 Gbytes 

(232
 bytes). This is the address space that the processor can address on its address bus. This 

address space is flat (unsegmented), with addresses ranging continuously from 0 to 

FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only 

memory, and memory mapped I/O. The memory mapping facilities described in this chapter 

can be used to divide this physical memory up into segments and/or pages.  

(Introduced in the Pentium Pro processor.) The Intel Architecture also supports an 

extension of the physical address space to 236
 bytes (64 GBytes), with a maximum physical 

address of FFFFFFFFFH. This extension is invoked with the physical address extension (PAE) 

flag, located in bit 5 of control register CR4.  

 

2. Logical and linear addresses 

At the system-architecture level in protected mode, the processor uses two stages of address 

translation to arrive at a physical address: logical-address translation and linear address space 

paging. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 
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2). The segment selector identifies the segment in which the byte is located, and the offset 

specifies the location of the byte in the segment relative to the base address of the segment.  

The processor translates every logical address into a linear address. A linear address is a 

32-bit address in the processor’s linear address space. Like the physical address space, the 

linear address space is a flat (unsegmented), 232
 -byte address space, with addresses ranging 

from 0 to FFFFFFFH. The linear address space contains all the segments and system tables 

defined for a system. 

To translate a logical address into a linear address, the processor does the following: 

1. Uses the offset in the segment selector to locate the segment descriptor for the 

segment in the GDT or LDT and reads it into the processor.  

2. Examines the segment descriptor to check the access rights and range of the segment 

to insure that the segment is accessible and that the offset is within the limits of the 

segment. 

3. Adds the base address of the segment from the segment descriptor to the offset to 

form a linear address. 

 

Following are some related system registers and data structures: 

Segment selectors 

 

Figure 2: Logical address to linear address translation 

 

Figure 3: Segment selector 

A segment selector is a 16-bit identifier for a segment (see Figure 3). It does not 

point directly to the segment, but instead points to the segment descriptor that defines 

the segment. A segment selector contains the following items: 

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The 

processor multiplies the index value by 8 (the number of bytes in a segment 
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descriptor) and adds the result to the base address of the GDT or LDT (from the 

GDTR or LDTR register, respectively). 

TI (table indicator) flag (Bit 2). Specifies the descriptor table to use: clearing this flag 

selects the GDT; setting this flag selects the current LDT. 

Requested Privilege Level (RPL) (Bits 0 and 1). Specifies the privilege level of the 

selector. The privilege level can range from 0 to 3, with 0 being the most 

privileged level.  

 

The first entry of the GDT is not used by the processor. A segment selector that 

points to this entry of the GDT (that is, a segment selector with an index of 0 and the TI 

flag set to 0) is used as a “null segment selector.” The processor does not generate an 

exception when a segment register (other than the CS or SS registers) is loaded with a 

null selector. It does, however, generate an exception when a segment register holding a 

null selector is used to access memory. A null selector can be used to initialize unused 

segment registers. Loading the CS or SS register with a null segment selector causes a 

general-protection exception (#GP) to be generated 

 

Segment registers 

To reduce address translation time and coding complexity, the processor provides 

registers for holding up to 6 segment selectors (see Figure 4). Each of these segment 

registers supports a specific kind of memory reference (code, stack, or data). For 

virtually any kind of program execution to take place, at least the code-segment (CS), 

data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment 

selectors. The processor also provides three additional data-segment registers (ES, FS, 

and GS), which can be used to make additional data segments available to the currently 

executing program (or task). 

For a program to access a segment, the segment selector for the segment must 

have been loaded in one of the segment registers. So, although a system can define 

thousands of segments, only 6 can be available for immediate use. Other segments can 

be made available by loading their segment selectors into these registers during program 

execution. 

 
Figure 4: Segment registers 

Every segment register has a “visible” part and a “hidden” part. When a segment 
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selector is loaded into the visible part of a segment register, the processor also loads the 

hidden part of the segment register with the base address, segment limit, and access 

control information from the segment descriptor pointed to by the segment selector. The 

information cached in the segment register (visible and hidden) allows the processor to 

translate addresses without taking extra bus cycles to read the base address and limit 

from the segment descriptor. In systems in which multiple processors have access to the 

same descriptor tables, it is the responsibility of software to reload the segment registers 

when the descriptor tables are modified. If this is not done, an old segment descriptor 

cached in a segment register might be used after its memory-resident version has been 

modified. 

 

Segment descriptors 

A segment descriptor is a data structure in a GDT or LDT that provides the 

processor with the size and location of a segment, as well as access control and status 

information. Segment descriptors are typically created by compilers, linkers, loaders, or 

the operating system or executive, but not application programs. Figure 5 illustrates the 

general descriptor format for all types of segment descriptors. 

The flags and fields in a segment descriptor are as follows: 

 

Figure 5: Segment descriptor 

Segment limit field 

Specifies the size of the segment. The processor puts together the two segment 

limit fields to form a 20-bit value. The processor interprets the segment limit in one of 

two ways, depending on the setting of the G (granularity) flag: 

 If the granularity flag is clear, the segment size can range from 1 byte to 1 

MByte, in byte increments. 

 If the granularity flag is set, the segment size can range from 4 KBytes to 4 

GBytes, in 4-KByte increments. 
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Base address fields 

Defines the location of byte 0 of the segment within the 4-GByte linear address 

space. The processor puts together the three base address fields to form a single 32-bit 

value. Segment base addresses should be aligned to 16-byte boundaries. 

Type field  

Indicates the segment or gate type and specifies the kinds of access that can be 

made to the segment and the direction of growth. The interpretation of this field 

depends on whether the descriptor type flag specifies an application (code or data) 

descriptor or a system descriptor. 

S (descriptor type) flag 

Specifies whether the segment descriptor is for a system segment (S flag is clear) 

or a code or data segment (S flag is set). 

DPL (descriptor privilege level) field 

Specifies the privilege level of the segment. The privilege level can range from 0 

to 3, with 0 being the most privileged level. The DPL is used to control access to the 

segment.  

P (segment-present) flag 

Indicates whether the segment is present in memory (set) or not present (clear). If 

this flag is clear, the processor generates a segment-not-present exception (#NP) when a 

segment selector that points to the segment descriptor is loaded into a segment register. 

Memory management software can use this flag to control which segments are actually 

loaded into physical memory at a given time. It offers a control in addition to paging for 

managing virtual memory. 

D/B (default operation size/default stack pointer size and/or upper bound) flag 

Performs different functions depending on whether the segment descriptor is an 

executable code segment, an expand-down data segment, or a stack segment. (This flag 

should always be set to 1 for 32-bit code and data segments and to 0 for 16-bit code and 

data segments.) 

 Executable code segment. The flag is called the D flag and it indicates the 

default length for effective addresses and operands referenced by instructions 

in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit operands 

are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit operands are 

assumed. The instruction prefix 66H can be used to select an operand size 

other than the default, and the prefix 67H can be used select an address size 

other than the default. 

 Stack segment (data segment pointed to by the SS register). The flag is 

called the B (big) flag and it specifies the size of the stack pointer used for 

implicit stack operations (such as pushes, pops, and calls). If the flag is set, a 

32-bit stack pointer is used, which is stored in the 32-bit ESP register; if the 
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flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit SP 

register. If the stack segment is set up to be an expand-down data segment 

(described in the next paragraph), the B flag also specifies the upper bound of 

the stack segment. 

 Expand-down data segment. The flag is called the B flag and it specifies the 

upper bound of the segment. If the flag is set, the upper bound is FFFFFFFFH 

(4 GBytes); if the flag is clear, the upper bound is FFFFH (64 KBytes). 

G (granularity) flag 

Determines the scaling of the segment limit field. When the granularity flag is 

clear, the segment limit is interpreted in byte units; when flag is set, the segment limit is 

interpreted in 4-KByte units. 

Available and reserved bits 

Bit 20 of the second double word of the segment descriptor is available for use by 

system software; bit 21 is reserved and should always be set to 0. 

 

Code- and Data-segment descriptor types 

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is 

for either a code or a data segment. The highest order bit of the type field (bit 11 of the 

second double word of the segment descriptor) then determines whether the descriptor 

is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are 

interpreted as accessed (A), write-enable (W), and expansion-direction (E). See Table 1 

for a description of the encoding of the bits in the type field for code and data segments. 

Table 1 

 

Segment descriptor types 

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor 

type is a system descriptor. The processor recognizes the following types of system 
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descriptors: 

 Local descriptor-table (LDT) segment descriptor. 

 Task-state segment (TSS) descriptor. 

 Call-gate descriptor. 

 Interrupt-gate descriptor. 

 Trap-gate descriptor. 

 Task-gate descriptor. 

 

These descriptor types fall into two categories: system-segment descriptors and 

gate descriptors. System-segment descriptors point to system segments (LDT and TSS 

segments). Gate descriptors are in themselves “gates,” which hold pointers to procedure 

entry points in code segments (call, interrupt, and trap gates) or which hold segment 

selectors for TSS’s (task gates). Table 2 shows the encoding of the type field for 

system-segment descriptors and gate descriptors. 

 

Segment descriptor tables 

A segment descriptor table is an array of segment descriptors (see Figure 6). A 

descriptor table is variable in length and can contain up to 8192 (213
 ) 8-byte descriptors. 

There are two kinds of descriptor tables: 

 The global descriptor table (GDT) 

Table 2 
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Figure 6 GDT and LDT 

 The local descriptor tables (LDT) 

 

Each system must have one GDT defined, which may be used for all programs 

and tasks in the system. Optionally, one or more LDTs can be defined. For example, an 

LDT can be defined for each separate task being run, or some or all tasks can share the 

same LDT.  

The GDT is not a segment itself; instead, it is a data structure in the linear address 

space. The base linear address and limit of the GDT must be loaded into the GDTR 

register. 

The LDT is located in a system segment of the LDT type. The GDT must contain 

a segment descriptor for the LDT segment. If the system supports multiple LDTs, each 

must have a separate segment selector and segment descriptor in the GDT. The segment 

descriptor for an LDT can be located anywhere in the GDT. An LDT is accessed with its 

segment selector. To eliminate address translations when accessing the LDT, the 

segment selector, base linear address, limit, and access rights of the LDT are stored in 

the LDTR register 

 

3. Paging (Linear address to physical address) 

When paging is used, the processor divides the linear address space into fixed-size pages 

(generally 4 KBytes in length) that can be mapped into physical memory and/or disk storage. 

When a program (or task) references a logical address in memory, the processor translates the 
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address into a linear address and then uses its paging mechanism to translate the linear address 

into a corresponding physical address. If the page containing the linear address is not 

currently in physical memory, the processor generates a page-fault exception (#PF). The 

exception handler for the page-fault exception typically directs the operating system or 

executive to load the page from disk storage into physical memory (perhaps writing a 

different page from physical memory out to disk in the process). When the page has been 

loaded in physical memory, a return from the exception handler causes the instruction that 

generated the exception to be restarted. The information that the processor uses to map linear 

addresses into the physical address space and to generate page-fault exceptions (when 

necessary) is contained in page directories and page tables stored in memory. 

Paging is controlled by three flags in the processor’s control registers: 

 PG (paging) flag, bit 31 of CR0: The PG flag enables the page-translation 

mechanism. 

 PSE (page size extensions) flag, bit 4: The PSE flag enables large page sizes: 

4-MByte pages or 2-MByte pages (when the PAE flag is set). When the PSE flag is 

clear, the more common page length of 4 KBytes is used. 

 PAE (physical address extension) flag, bit 5 of CR4: The PAE flag enables 36-bit 

physical addresses. 

 

The information that the processor uses to translate linear addresses into physical 

addresses (when paging is enabled) is contained in four data structures: 

 Page directory: an array of 32-bit page-directory entries (PDEs) contained in a 

4-Kbyte page. Up to 1024 page-directory entries can be held in a page directory. 

 Page table: an array of 32-bit page-table entries (PTEs) contained in a 4-KByte 

page. Up to 1024 page-table entries can be held in a page table. (Page tables are not 

used for 2-MByte or 4-MByte pages. These page sizes are mapped directly from 

one or more page-directory entries.) 

 Page: a 4-KByte, 2-MByte, or 4-MByte flat address space. 

 Page-Directory-Pointer Table: an array of four 64-bit entries, each of which points 

to a page directory. This data structure is only used when the physical address 

extension is enabled. 

 

Figure 7 shows the page directory and page-table hierarchy when mapping linear 

addresses to 4-KByte pages. The entries in the page directory point to page tables, and the 

entries in a page table point to pages in physical memory. This paging method can be used to 

address up to 220 pages, which spans a linear address space of 232 bytes (4 GBytes). 



 

11 

 

 

Figure 7: Linear address to physical address translation 

To select the various table entries, the linear address is divided into three sections: 

 Page-directory entry: Bits 22 through 31 provide an offset to an entry in the page 

directory. The selected entry provides the base physical address of a page table. 

 Page-table entry: Bits 12 through 21 of the linear address provide an offset to an 

entry in the selected page table. This entry provides the base physical address of a 

page in physical memory. 

 Page offset: Bits 0 through 11 provides an offset to a physical address in the page. 

 

Figure 8 shows the format for the page-directory and page-table entries when 4-Kbyte 

pages and 32-bit physical addresses are being used. The functions of the flags and fields in the 

entries are as follows: 

Page base address, bits 12 through 32 

(Page-table entries for 4-KByte pages.) Specifies the physical address of the first 

byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-significant 

bits of the physical address, which forces pages to be aligned on 4-KByte boundaries.  

(Page-directory entries for 4-KByte page tables.) Specifies the physical address of 

the first byte of a page table. The bits in this field are interpreted as the 20 

most-significant bits of the physical address, which forces page tables to be aligned on 

4-KByte boundaries. 
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Figure 8: Page-Directory and Page-Table Entries 

Present (P) flag, bit 0 

Indicates whether the page or page table being pointed to by the entry is currently 

loaded in physical memory. When the flag is set, the page is in physical memory and 

address translation is carried out. When the flag is clear, the page is not in memory and, 

if the processor attempts to access the page, it generates a page-fault exception (#PF). 

Read/write (R/W) flag, bit 1 

Specifies the read-write privileges for a page or group of pages (in the case of a 

page-directory entry that points to a page table). When this flag is clear, the page is read 

only; when the flag is set, the page can be read and written into. 

User/supervisor (U/S) flag, bit 2 

Specifies the user-supervisor privileges for a page or group of pages (in the case 

of a page-directory entry that points to a page table). When this flag is clear, the page is 

assigned the supervisor privilege level; when the flag is set, the page is assigned the 

user privilege level.  

Page-level write-through (PWT) flag, bit 3 

Controls the write-through or write-back caching policy of individual pages or 

page tables. When the PWT flag is set, write-through caching is enabled for the 

associated page or page table; when the flag is clear, write-back caching is enabled for 

the associated page or page table.  

Page-level cache disable (PCD) flag, bit 4 



 

13 

 

Controls the caching of individual pages or page tables. When the PCD flag is set, 

caching of the associated page or page table is prevented; when the flag is clear, the 

page or page table can be cached. This flag permits caching to be disabled for pages that 

contain memory-mapped I/O ports or that do not provide a performance benefit when 

cached.  

Accessed (A) flag, bit 5 

Indicates whether a page or page table has been accessed (read from or written to) 

when set. Memory management software typically clears this flag when a page or page 

table is initially loaded into physical memory. The processor then sets this flag the first 

time a page or page table is accessed. This flag is a “sticky” flag, meaning that once set, 

the processor does not implicitly clear it. Only software can clear this flag. The accessed 

and dirty flags are provided for use by memory management software to manage the 

transfer of pages and page tables into and out of physical memory. 

Dirty (D) flag, bit 6 

Indicates whether a page has been written to when set. (This flag is not used in 

page-directory entries that point to page tables.) Memory management software 

typically clears this flag when a page is initially loaded into physical memory. The 

processor then sets this flag the first time a page is accessed for a write operation. This 

flag is “sticky,” meaning that once set, the processor does not implicitly clear it. Only 

software can clear this flag. The dirty and accessed flags are provided for use by 

memory management software to manage the transfer of pages and page tables into and 

out of physical memory. 

Page size (PS) flag, bit 7 

Determines the page size. This flag is only used in page-directory entries. When 

this flag is clear, the page size is 4 KBytes and the page-directory entry points to a page 

table. When the flag is set, the page size is 4 MBytes for normal 32-bit addressing (and 

2 MBytes if extended physical addressing is enabled) and the page-directory entry 

points to a page. If the page-directory entry points to a page table, all the pages 

associated with that page table will be 4-Kbyte pages. 

Global (G) flag, bit 8 

(Introduced in the Pentium Pro processor.) Indicates a global page when set. 

When a page is marked global and the page global enable (PGE) flag in register CR4 is 

set, the page-table or page-directory entry for the page is not invalidated in the TLB 

when register CR3 is loaded or a task switch occurs. This flag is provided to prevent 

frequently used pages (such as pages that contain kernel or other operating system or 

executive code) from being flushed from the TLB. Only software can set or clear this 

flag. For page-directory entries that point to page tables, this flag is ignored and the 

global characteristics of a page are set in the page-table entries.  

Reserved and available-to-software bits 
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In a page-table entry, bit 7 is reserved and should be set to 0; in a page-directory 

entry that points to a page table, bit 6 is reserved and should be set to 0. For a 

page-directory entry for a 4-MByte page, bits 12 through 21 are reserved and must be 

set to 0, for Intel Architecture processors through the Pentium II processor. For both 

types of entries, bits 9, 10, and 11 are available for use by software. (When the present 

bit is clear, bits 1 through 31 are available to software.) When the PSE and PAE flags in 

control register CR4 are set, the processor generates a page fault if reserved bits are not 

set to 0. 

 

4. Virtual address space details 

Although virtual addresses are 64 bits wide in 64-bit mode, current implementations (and any 

chips known to be in the planning stages) do not allow the entire virtual address space of 

16 EB (18,446,744,073,709,551,616 bytes) to be used. Most operating systems and 

applications will not need such a large address space for the foreseeable future (for example, 

Windows implementations for AMD64 are only populating 16 TB (17,592,186,044,416 

bytes), or 44 bits' worth), so implementing such wide virtual addresses would simply increase 

the complexity and cost of address translation with no real benefit. AMD therefore decided 

that, in the first implementations of the architecture, only the least significant 48 bits of a 

virtual address would actually be used in address translation (page table lookup). However, 

bits 48 through 63 of any virtual address must be copies of bit 47 (in a manner akin to sign 

extension), or the processor will raise an exception. Addresses complying with this rule are 

referred to as "canonical form." Canonical form addresses run from 0 through 

00007FFF`FFFFFFFF, and from FFFF8000`00000000 through FFFFFFFF`FFFFFFFF, for a 

total of 256 TB (281,474,976,710,656 bytes) of usable virtual address space. 

This scheme allows an important feature for later scalability to true 64-bit addressing: many 

operating systems (including, but not limited to, the Windows NT family) take the 

higher-addressed half of the address space (named kernel space) for themselves and leave the 

lower-addressed half (user space) for application code, user mode stacks, heaps, and other 

data regions. The "canonical address" design ensures that every AMD64 compliant 

implementation has, in effect, two memory halves: the lower half starts at 

00000000`00000000 and "grows upwards" as more virtual address bits become available, 

while the higher half is "docked" to the top of the address space and grows downwards. Also, 

fixing the contents of the unused address bits prevents their use by operating system as flags, 

privilege markers, etc., as such use could become problematic when the architecture is indeed 

extended to 52, 56, 60 and 64 bits. 
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The 64-bit addressing mode ("long mode") is a superset of Physical Address Extensions 

(PAE); because of this, page sizes may be 4 KB (4096 bytes), 2 MB (2,097,152 bytes), or 

1 GB (1,073,741,824 bytes). However, rather than the three-level page table system used by 

systems in PAE mode, systems running in long mode use four levels of page table: PAE's 

Page-Directory Pointer Table is extended from 4 entries to 512, and an additional Page-Map 

Level 4 Table is added, containing 512 entries in 48-bit implementations. In implementations 

providing larger virtual addresses, this latter table would either grow to accommodate 

sufficient entries to describe the entire address range, up to a theoretical maximum of 

33,554,432 entries for a 64-bit implementation, or be over ranked by a new mapping level, 

such as a PML5. A full mapping hierarchy of 4 KB (4096 bytes) pages for the whole 48-bit 

space would take a bit more than 512 GB (549,755,813,888 bytes) of RAM (about 0.196% of 

the 256 TB [281,474,976,710,656 bytes] virtual space). 

 

 


