
Dining Philosophers Problem 

Solution based on Monitor 

 

 

package diningphilisopher; 

 

/** 

Dining Philosopher Problem 

Monitor.java 

@author G Jung 

@version March 27, 2017 

 */ 

public class Monitor { 

 

 /** 

  instance variable philosopherState[]: array size 5,  elementValues: 0 = thinking, 1=Hungry, 

2=eating 

  instance variable chopStickStates[]: array size 5, elementValues: false = chop stick is being 

used, true = available 

  */ 

int philospherStates[] = new int[5];     

boolean chopStickStates[] = new boolean[5];  // false = in use, true = free 

 

/** 

default (no-argument) constructor 

Precondition: no argument 

Postcondition: 5 philosophers states are initialized 0 (i.e., thinking) 

and 5 chop sticks states are initialized true (i.e., available) 

 */ 

public Monitor() {         

   for(int i=0;i<5;i++) { 

    philospherStates[i]=0; 

    chopStickStates[i]=true; 

   } 

} 

 

/** 

Precondition: 

Postcondition: print out the states of the 5 philosophers: Thinking, Hungry, Eating 

 */ 

public synchronized void printPhilosopherStates() { 

 

 System.out.println();         

  for(int i=0;i<5;i++) 

   switch(philospherStates[i]){ 



    case 0: System.out.print(" " + "...Thinking");  

     break; 

    case 1: System.out.print(" " + "....Hungry");  

     break; 

    case 2: System.out.print(" " + ".....Eating");  

     break; 

 } 

} 

 

/** 

Precondition: philosopherID must be in [0..4] 

Postcondition: If both chop sticks (left, right) are not available philosopherID must wait (call 

wait()) 

and set phisosopher's state 1 (Hungry). If both chop sticks are available set phisosopher's state 2 

(Eating) 

and update states of both chop sticks in use (i.e., false) 

@param philosopherID 

 */ 

public synchronized void pickUpChopStickToEat(int philosopherID) 

{ 

   while(!chopStickStates[philosopherID] || !chopStickStates[(philosopherID+1)%4]) 

   {    // while it can't have both forks, wait 

    philospherStates[philosopherID] = 1;   

      try{ 

      wait(); 

      } 

      catch(InterruptedException e){}  

   }     

   philospherStates[philosopherID] = 2;  // eating 

   chopStickStates[philosopherID] = false;  // in use 

   chopStickStates[(philosopherID + 1) % 4] = false; 

} 

 

/** 

Precondition: philosopherID must be in [0..4] 

Postcondition: Update both (left, right) chop sticks available (i.e., true)  

and call notify() to wake up other philosopher 

 @param philosopherID 

 */ 

public synchronized void PutDownChopStickAfterEating(int philosopherID) 

{ 

 chopStickStates[philosopherID] = true; // available 

 chopStickStates[(philosopherID + 1) % 4] = true; 

 philospherStates[philosopherID] = 0;  // thinking 

    notify();  



} 

} 

 

 

Philosopher.java 

 

package diningphilisopher; 

 

/** 

Dining Philosopher Problem 

Philosopher.java 

@author G Jung 

@version March 27, 2017 

*/ 

 

 

import java.util.Random; 

 

public class Philosopher implements Runnable { 

  

/** 

 instance variables 

 random r is initialized by new Random() 

 */ 

 private Monitor monitorObject; 

 private WaiterServingPhilosophers waiterObject; 

 private Random r = new Random();  // Random number generator object 

 private int philosopherID; 

 private double time; 

 

/** 

 @param philosopherID 

 @param monitorObject 

 @param waiterObject 

 Precondition: philosopherID must in [0..4], m: Monitor object, w: WaiterServingPhilosophers object 

 Postcondition: initialize the instance variables philosopherID, monitorObject, waiterObject 

 */ 

 public Philosopher(int philosopherID, Monitor monitorObject, WaiterServingPhilosophers 

waiterObject) { // constructor 

  

  this.philosopherID = philosopherID; 

  this.monitorObject = monitorObject; 



  this.waiterObject = waiterObject; 

 } 

 

/** 

Precondition: 

Postcondition: Each philosopher iterates 10 times executing the following tasks: 

pickupChopStickToEat and then sleep random milliseconds 

and putDownChopStickAfterEating. Then sleep random milliseconds. random sleep time is calculated  

by (int)(1000 * r.nextDouble()), where r is random object. 

After the philosopher completes the tasks (10 iterations), the waiterObject must report the status  

of the philosopher (i.e., waiterObject.reportFinishedDining(philosopherID). 

*/ 

    public void run() {    

      

      for(int i=0; i<10; i++) {   

       

      monitorObject.pickUpChopStickToEat(philosopherID);   

      time = 1000 * r.nextDouble(); 

      try {Thread.sleep((int)time);} catch(Exception e){} 

      monitorObject.PutDownChopStickAfterEating(philosopherID); 

      time = 1000 * r.nextDouble(); 

      try {Thread.sleep((int)time);} catch(Exception e){} 

     }//of for 

           

      

     waiterObject.reportFinishedDining(philosopherID);   // tell the timer this one is done      

    }        

 } 

 

 

package diningphilisopher; 

 

/** 

 Dining Philosopher Problem 

 WaiterServingPhilosophers.java 

 @author G Jung 

 @version March 27, 2017 

 */ 

 

public class WaiterServingPhilosophers implements Runnable { 

 

/** 

instance variables 



 */ 

 private Monitor monitorObject; 

 private int noOfPhilosophersFinishedDining; 

/** 

 Constructor 

 @param m 

 Precondition: Monitor object m 

 Postcondition: Printout "Waiter thread Serving 5 Philosophers Started.......". Initialize 

monitorObject = m 

 and noOfPhilosophersFinishedDining = 0 

 */ 

 

public WaiterServingPhilosophers(Monitor m) {   // constructor 

   System.out.println("Waiter thread Serving 5 Philosophers Started......."); 

   monitorObject = m; 

   noOfPhilosophersFinishedDining = 0; 

   new Thread(this, "Timer").start(); // make a new thread and start it 

 } 

 

/** 

 @param philosopherID 

 Precondition: philosopherID must be in [0..4] 

 Postcondition: increase noOfPhilosophersFinishedDining by one, and printout philosopher 

philosopherID 

 finishes eating..  

 */ 

public void reportFinishedDining(int philosopherID) { 

 noOfPhilosophersFinishedDining++; 

   System.out.println("\n!!!!!! " + "philosopher " + philosopherID + " is now terminating !!!" 

    + "\n........Number of philosopher threads finished by now: " + 

noOfPhilosophersFinishedDining ); 

} 

 

/** 

 Precondition: 

 Postcondition: as long as noOfPhilosophersFinishedDining is not 5, wait until all of them finish 

eating 

 Waiting is done by Thread.sleep(500). If all of them finished eating waiter thread terminates. 

 */ 

public void run() {    

   while(noOfPhilosophersFinishedDining!=5) {   

    try {Thread.sleep(500); 

    monitorObject.printPhilosopherStates();   

    } 

       catch(Exception e){} 



   } 

} 

} 

 

package diningphilisopher; 

 

public class TestDiningPhisopher { 

 

 public static void main(String args[]) {  

     Monitor monitorObject = new Monitor(); // thing begins here 

     WaiterServingPhilosophers waiterObject = new 

WaiterServingPhilosophers(monitorObject);   

     Philosopher [] philosophers = new Philosopher[5];   

     Thread philosopherThread; 

     for(int i=0; i<5; i++){ 

        philosophers[i] = new Philosopher(i,monitorObject,waiterObject);  

        philosopherThread = new Thread(philosophers[i], "Philosopher" + i); 

        System.out.println("Philosopher " + i + " starts...... "); 

        philosopherThread.start(); 

     } 

     System.out.println("___________________________________________"); 

 } 

  

} 

 


