Chapter 9: Relational DB Design by ER/EER to Relational Mapping

- Relational Database Design Using ER-to-Relational Mapping
- Mapping EER Model Constructs to Relations
Relational Database Design by ER- and EER-to-Relational Mapping

- Design a relational database schema
 - Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations
- Additional steps for EER model
Relational Database Design Using ER-to-Relational Mapping
Figure 9.2
Result of mapping the COMPANY ER schema into a relational database schema.
ER-to-Relational Mapping Algorithm

- COMPANY database example
 - Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types
 - For each regular entity type, create a relation R that includes all the simple attributes of E
 - Called entity relations
 - Each tuple represents an entity instance
ER-to-Relational Mapping Algorithm (cont’d.)

- **Step 2: Mapping of Weak Entity Types**
 - For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R
 - Include primary key attribute of owner as foreign key attributes of R
ER-to-Relational Mapping Algorithm (cont’d.)

Figure 9.3
Illustration of some mapping steps.

(a) EMPLOYEE
 - Fname
 - Minit
 - Lname
 - Ssn
 - Bdate
 - Address
 - Sex
 - Salary

 DEPARTMENT
 - Dname
 - Dnumber

 PROJECT
 - Pname
 - Pnumber
 - Plocation

(b) DEPENDENT
 - Essn
 - Dependent_name
 - Sex
 - Bdate
 - Relationship

(c) WORKS_ON
 - Essn
 - Pno
 - Hours

(d) DEPT_LOCATIONS
 - Dnumber
 - Dlocation
Step 3: Mapping of Binary 1:1 Relationship Types

- For each binary 1:1 relationship type
 - Identify relations that correspond to entity types participating in R

Possible approaches:
- Foreign key approach
- Merged relationship approach
- Crossreference or relationship relation approach
ER-to-Relational Mapping Algorithm (cont’d.)

- **Step 4: Mapping of Binary 1:N Relationship Types**
 - For each regular binary 1:N relationship type
 - Identify relation that represents participating entity type at N-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S
ER-to-Relational Mapping Algorithm (cont’d.)

- Alternative approach
 - Use the *relationship relation* (cross-reference) option as in the third option for binary 1:1 relationships
Step 5: Mapping of Binary $M:N$ Relationship Types

- For each binary $M:N$ relationship type
 - Create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of $M:N$ relationship type
ER-to-Relational Mapping Algorithm (cont’d.)

- **Step 6: Mapping of Multivalued Attributes**
 - For each multivalued attribute
 - Create a new relation
 - Primary key of R is the combination of A and K
 - If the multivalued attribute is composite, include its simple components
ER-to-Relational Mapping Algorithm (cont’d.)

- Step 7: Mapping of N-ary Relationship Types
 - For each n-ary relationship type R
 - Create a new relation S to represent R
 - Include primary keys of participating entity types as foreign keys
 - Include any simple attributes as attributes
Discussion and Summary of Mapping for ER Model Constructs

<table>
<thead>
<tr>
<th>ER MODEL</th>
<th>RELATIONAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity type</td>
<td>Entity relation</td>
</tr>
<tr>
<td>1:1 or 1:N relationship type</td>
<td>Foreign key (or relationship relation)</td>
</tr>
<tr>
<td>M:N relationship type</td>
<td>Relationship relation and two foreign keys</td>
</tr>
<tr>
<td>n-ary relationship type</td>
<td>Relationship relation and n foreign keys</td>
</tr>
<tr>
<td>Simple attribute</td>
<td>Attribute</td>
</tr>
<tr>
<td>Composite attribute</td>
<td>Set of simple component attributes</td>
</tr>
<tr>
<td>Multivalued attribute</td>
<td>Relation and foreign key</td>
</tr>
<tr>
<td>Value set</td>
<td>Domain</td>
</tr>
<tr>
<td>Key attribute</td>
<td>Primary (or secondary) key</td>
</tr>
</tbody>
</table>
Discussion and Summary of Mapping for ER Model Constructs (cont’d.)

- In a relational schema relationship, types are not represented explicitly
 - Represented by having two attributes A and B: one a primary key and the other a foreign key
Mapping EER Model Constructs to Relations

- Extending ER-to-relational mapping algorithm
Mapping of Specialization or Generalization

- Step 8: Options for Mapping Specialization or Generalization (see pages 294-295)
 - Option 8A: Multiple relations—superclass and subclasses
 - For any specialization (total or partial, disjoint or overlapping)
 - Option 8B: Multiple relations—subclass relations only
 - Subclasses are total
 - Specialization has disjointedness constraint
Mapping of Specialization or Generalization (cont’d.)

- **Option 8C: Single relation with one type attribute**
 - Type or discriminating attribute indicates subclass of tuple
 - Subclasses are disjoint
 - Potential for generating many NULL values if many specific attributes exist in the subclasses

- **Option 8D: Single relation with multiple type attributes**
 - Subclasses are overlapping
 - Will also work for a disjoint specialization
Mapping of Shared Subclasses (Multiple Inheritance)

- Apply any of the options discussed in step 8 to a shared subclass

Figure 9.6
Mapping the EER specialization lattice in Figure 8.8 using multiple options.
Mapping of Categories (Union Types)

- Step 9: Mapping of Union Types (Categories)
 - Defining superclasses have different keys
 - Specify a new key attribute
 - Surrogate key
Figure 9.7
Mapping the EER categories (union types) in Figure 8.8 to relations.
Summary

- Map conceptual schema design in the ER model to a relational database schema
 - Algorithm for ER-to-relational mapping
 - Illustrated by examples from the COMPANY database
- Include additional steps in the algorithm for mapping constructs from EER model into relational model
FIGURE 8.7
A specialization lattice with multiple inheritance for a UNIVERSITY database.
FIGURE 9.6
Mapping the EER specialization lattice in Figure 8.7 using multiple options.

<table>
<thead>
<tr>
<th>PERSON</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td>Name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMPLOYEE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td>Salary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUMNUS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td>ALUMNUS_DEGREES</td>
</tr>
<tr>
<td></td>
<td>SSN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td>MajorDept</td>
</tr>
</tbody>
</table>
FIGURE 8.8
Two categories (union types): OWNER and REGISTERED_VEHICLE.
FIGURE 9.7
Mapping the EER categories (union types) in Figure 8.8 to relations.

<table>
<thead>
<tr>
<th>PERSON</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN</td>
<td>DriverLicenseNo</td>
<td>Name</td>
<td>Address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BANK</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BName</td>
<td>BAddress</td>
<td>OwnerId</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CName</td>
<td>CAddress</td>
<td>OwnerId</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OwnerId</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTERED_VEHICLE</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VehicleId</td>
<td>LicensePlateNumber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAR</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VehicleId</td>
<td>CStyle</td>
<td>CMake</td>
<td>CModel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRUCK</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VehicleId</td>
<td>TMake</td>
<td>TModel</td>
<td>Tonnage</td>
<td>TYear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OwnerId</td>
<td>VehicleId</td>
<td>PurchaseDate</td>
<td>LienOrRegular</td>
<td></td>
</tr>
</tbody>
</table>