
CMP438/738
There and Back Again1

Event-based programming
Objectives:
 Design a program to deal with events asynchronously
 Use tasks
 Use global variables for communication between tasks
 Identify potential conflicts between tasks

Issues
Robots have to deal with events whose timing can’t be predicted exactly. These are
called asynchronous events. They occur according to their own schedule, not that of the
programmer.
This means that as programmers, we can’t organize our programs to do one thing first,
and then another thing, and so forth, according to a given schedule. We have to react to
events. Thus the robots are reactive systems: their environment presents them with
events, according to its own timing, and the robots react.
Video games are also reactive systems: they have to react to the events that the player
causes (and the player has to react also!)
Contrast this to programming a compiler: the compiler reads the program, parses it into
individual pieces, translates the pieces into code, maybe optimizes – always in the same
order.
GUI interfaces tend to be reactive systems: they present a user with a lot of options,
which one the user chooses determines what the system does next.
A challenge for a reactive system comes when multiple events are happening at once, or
at least, while other events are being processed.

Preliminary program: Going from here to there
This is a simple version of the Advanced Checkerboard Challenge, involving just one
starting point and destination.

Watchers
Watchers are a useful tool to simplify a program. They let you check for something to
happen while your robot is doing something else. For example, check that it crosses a
line while it is moving and perhaps pushing an object or following a light.

Watchers
 Tasks that watch for something and change variables when it happens
 Examples: hitting an object, crossing a line, receiving a message

1 See The Hobbit, by J. R. R. Tolkein

Tasks
In NQC, a task is a unit of a program that can run independently and concurrently with
the rest of the program. The main routine is a task; subroutines are not tasks, since they
must be called and executed to completion before the calling routine can continuer.
It is natural to implement a watcher as a task.

An algorithm
This section introduces as algorithm to go from here to there, where here and there are
expressed as <x,y> coordinates.

This is just one way to do it!!

Variables:
 here – an array with two entries (0 is x, 1 is y)
 there – an array with two entries (0 is x, 1 is y)
Line-watcher:
 Changes a here[i] when it sees a line for direction i has been crossed
Idea:
 let i be either 0 or 1 (x or y)
 change orientation to face from here[i] to there[i]
 start a line-crossing-watcher to change the value of here[i]
 parameters are i and +1 for positive direction or -1 for negative direction
 start motor
 while (here[i] != there[i]) {
 move forward
 }
 stop motor
 stop the watcher
 change i to 1-i (y or x)
 change orientation by 90 degrees
 change orientation to face from here[i] to there[i]
 start a line-crossing-watcher to change the value of here[j]
 while (here[j] != there[j] {
 move forward
 }
 stop the watcher

Since tasks don’t have parameters, you will have to pass information in and out with
global variables.
If you’re not using rotation sensors, you will want extra watchers to correct the robot’s
direction after it hits a line
Some things we have to work out:
 How to decide what the orientation is
 The global variables to share with the tasks

Changing orientation

Cases:
Facing Move in X

direction from
here to there

Move inY
direction from
here to there

Action

North North Go north until here[1]==there[1]
 South Turn 180 degrees

Go south until here[1]==there[1]
 None Deal with x direction
South North Turn 180 degrees

Go north until here[1]==there[1]
 South Go south until here[1]==there[1]
 None Deal with x direction (if necessary)
East East Go east until here[0]==there[0]
 West Turn 180 degrees

Go east until here[0]==there[0]
 None Deal with y direction (if necessary)
West East Turn 180 degrees

Go east until here[0]==there[0]
 West Go east until here[0]==there[0]
 None Deal with y direction (if necessary)

Algorithm:
Trying to keep the code as simple as possible!

if (here != there) {
 if (here[1]!=there[1] && robot direction != necessary move in y direction) {
 turn robot 180 degrees
 }
 set variables for line-crossing-watcher
 set i=1 // index to use when updating “here”
 set what the increment will be
 start line-crossing-watcher
 move until here[1] == there[1]
 stop line-crossing-watcher

 // similarly for the x direction
}

Exercises:
How do we decide what the needed direction is?
 North: here[1] < there[1]
 South: here[1] > there[1]
 East: here[0] < there[0]
 West: here[0] > there[0]
How do we decide what the increment is?
 North and East are +1
 South and West are -1
Could you use forward and reverse instead of turning 180 degrees? What would that
require?

