
CMP464/788
Multitasking, Concurrency, Events

Objectives
 Learn to use finite state machines for event-based programming
 Define a finite state machine for going from here to there

Finite state machines
This is not so much a technique to be learned as a way of thinking about things – if that’s
really a distinction. You decide that for yourself!
A finite state machine is a method for simplifying descriptions of what some complicated
programs do. A finite state machine has a state, which describes what it is doing right
now, and a collection of actions that can be performed on it. For example, everyone is
familiar with a telephone. Let’s consider just the telephone functions of a simple cell
phone (ignoring voice mail and call waiting for the moment).
The states are:
Idle: the cell phone isn’t doing anything
Dialing: the cell phone user is entering a number to call
Calling: the cell phone user is listening to the ringtone in his cell phone, while waiting for
the other party to answer
Talking: the cell phone user is talking to someone on another phone
Ringing: the cell phone is ringing (or perhaps vibrating) because someone has called

The actions are:
Dial: A user enters a number in the cell phone
Send: A user hits the send button, to call another telephone
Answer: A user hits the send button because the phone is ringing
Hangup: A user hits the end button to end the call
Each action takes the cell phone from one state to another (or, if you use it in the wrong
state, it may just do nothing). Figure 1 is an example of a drawing of a finite state
machine.

Figure 1. A Finite State Machine representing a telephone.

Using Finite State Machines to Simplify Programming Robots
Assume your robot for going from here to there is also using its light sensors to keep it
going straight (by turning away whenever it hits the wrong color line). Suppose you
program your robot to alternate counting lines and continue going straight. What
problem could happen?
Right, it could miss the fact that it has crossed a line because it was trying to straighten
out from hitting another line. This kind of thing can happen when there is just one task,
alternating between different functions – nothing is looking out for one event while
handling the other!
A similar problem arises if you do any waiting. At least one other task must be running
for any event to be detected while the robot is using the wait command.

On the other hand, if multiple tasks are trying to control the motors, the robot can get into
some rather undesirable situations1. For example, the Bugbot (see chapter 7) performs
turns when an antenna is hit by turning off the motor opposite the hit antenna until the
touch sensor is released. But if both antennae are hit, the Bugbot just stops, and the touch
sensors behind the antennae are never released.
But we can develop a style of programming that avoids both of these problems by using
finite state machines.

Using state machines
The central idea is to use several tasks to keep track of what’s happening to the robot
(that is, to update what its current state is). We’ll call these “sensing tasks,” because they
monitor sensors and record their current value in global variables. Meanwhile, the main
routine continually examines the current state (the values of the global variables) and
decides what to do given the state.
Doing it this way means that only one task controls the activity of the robot (the main
task), so the kind of conflict we saw with the Bugbot can’t occur.
Also, it won’t be necessary to use the wait command. Instead of having the robot enter a
wait until it clears an obstacle, for example, we have it continually monitoring the sensors
and also continually checking its current state (in the main task) so that the main task
knows as soon as anything changes.

An example
We will construct a robot that tries to find another robot with a light sensor inside an area,
including obstacles. Our robot will have bumpers, a light sensor, and two motors to run
its treads or wheels. We will have tasks to monitor events on the light sensors and
bumpers.
Tasks:

Moving: run motors to move toward light and avoid obstacles
Checking light sensor: set saw_light to 0 (none seen) or 1 (seen); this will require
two tasks, one for the “light detected” event and one for the “no light detected”
event.
Checking bumpers: set hit_bumper to 0 (none hit), 1 (left hit), 2 (right hit), or 3
(both hit); this will require four tasks, one to detect when a bumper is pressed and
the other when it is released, for each of the two bumpers.

Finite State Machine
State variables:

1 It turns out that there is an acquire statement that effectively provides a semaphore for
controlling access to resources. We will investigate the use of this statement in a future
lecture.

saw_light: 0 or 1 – this state variable will be set by the sensing task for detecting a
light and the sensing task for detecting no light (or for detecting dark)
hit_bumper: 0, 1, 2, or 3 – this state variable will be set by the sensing tasks for
detecting bumpers pressed and released
direction: stopped, forward, reverse, spin left, spin right – this state variable will
be set by the main task as it controls the motors to do the corresponding actions.

Actions:
Stop
Go forward
Go back
Spin left
Spin right

The following table shows all possible states (that is, all possible values of saw_light,
hit_bumper, and direction) and what to do in each state. Note that the only thing that the
robot can influence directly is the new direction, so that’s all it changes; then the sensing
tasks must update the other parts of the state as they change (e.g., when a bumper is hit).
Note that when the robot has to avoid something, it deals with that first (ignoring the
light). In general, it spins right when the left bumper has been hit, left when the right
bumper has been hit, and reverses when both bumpers are hit. However, if it’s already
spinning right when the left bumper is hit, something is strange so it goes into reverse to
get away; similarly, if it’s already spinning left when the right bumper is hit, it goes into
reverse.
If it doesn’t have to avoid anything, it checks if there is a light visible and goes toward it.
But if it doesn’t see any light, it spins. The choice of spin direction is either the current
direction, if it is already spinning, or random (just “spin”) if it is not.

saw_light hit_bumper direction new direction

0 0 stopped spin
0 0 forward spin
0 0 spin right spin right
0 0 spin left spin left
0 0 reverse spin
0 1 stopped spin right
0 1 forward spin right
0 1 spin right reverse
0 1 spin left spin right
0 1 reverse spin right
0 2 stopped spin left
0 2 forward spin left
0 2 spin right spin left
0 2 spin left reverse
0 2 reverse spin left
0 3 stopped reverse

0 3 forward reverse
0 3 spin right reverse
0 3 spin left reverse
0 3 reverse reverse
1 0 stopped forward
1 0 forward forward
1 0 spin right forward
1 0 spin left forward
1 0 reverse forward
1 1 stopped spin right
1 1 forward spin right
1 1 spin right reverse
1 1 spin left spin right
1 1 reverse spin right
1 2 stopped spin left
1 2 forward spin left
1 2 spin right spin left
1 2 spin left reverse
1 2 reverse spin left
1 3 stopped reverse
1 3 forward reverse
1 3 spin right reverse
1 3 spin left reverse
1 3 reverse reverse

Code
//Sensors
#define EYE SENSOR_2
#define LBUMP SENSOR_1
#define RBUMP SENSOR_3

//Motors
#define LEFT OUT_A
#define RIGHT OUT_B

//Events
#define LEFT_HIT 0
#define RIGHT_HIT 2
#define LEFT_UNHIT 1
#define RIGHT_UNHIT 3
#define LIGHT 4
#define NOT_LIGHT 5

// state variables
int saw_light = 0; // 0 for no light or 1 for light

int hit_bumper=0; // 0 for no bumpers hit, 1 for left, 2 for right, 3 for both
int direction=1; // bits 4-5 are left motor, 6-7 are right motor
 // 0 off, 1 forward, 2 reverse
 // 6 is spin right
 // 9 is spinning left
 // 5 is forward
 // 10 is reverse

sub spinLeft() { Fwd(RIGHT); Rev(LEFT); direction = 9; On(LEFT+RIGHT); }

sub function spinRight() { Fwd(LEFT); Rev(RIGHT); direction = 6; On(LEFT+RIGHT); }

task main() {

int i;

// set sensors
SetSensor(EYE, SENSOR_LIGHT);
SetSensor(LBUMP, SENSOR_TOUCH);
SetSensor(RBUMP, SENSOR_TOUCH);

// set events
SetEvent(LEFT_HIT,SENSOR_1,EVENT_TYPE_PRESSED);
SetEvent(LEFT_UNHIT,SENSOR_1,EVENT_TYPE_RELEASED);
SetEvent(RIGHT_HIT, SENSOR_3, EVENT_TYPE_PRESSED);
SetEvent(RIGHT_UNHIT, SENSOR_3, EVENT_TYPE_RELEASED);
SetEvent(LIGHT, SENSOR_2, EVENT_TYPE_HIGH);
SetEvent(NOT_LIGHT, SENSOR_2, EVENT_TYPE_LOW);

start looking;
start feeling_left;
start feeling_right;

// start rotating
spinRight();

while(true)
{

if (hit_bumper == 3) { // blocked – back up
OnRev(LEFT+RIGHT);

} else if (hit_bumper == 1 && direction == 6) { // oops – back up
OnRev(LEFT+RIGHT);

} else if (hit_bumper == 2 && direction == 9) { // oops – back up
OnRev(LEFT+RIGHT);

} else if (hit_bumper == 1) { // left bumper – right spin
spinRight();

} else if (hit_bumper === 2) { // right bumper – left spin
spinLeft();

}
else if (saw_light == 1 && hit_bumper == 0) { // see light & not blocked

OnFwd(LEFT+RIGHT);
} else if (saw_light == 0 && hit_bumper == 0) { // no information - spin

if (direction != 6 && direction != 9) { // not already spinning
 i = Random(1,2);

if (i == 1) { spinRight(); }
else { spinLeft(); }

}
}

}
}

task lookForLight()
{

monitor(EVENT_MASK(LIGHT)) { while(true); }
catch { saw_light = 1; }

}

task lookForDark()
{

monitor(EVENT_MASK(NOLIGHT)) { while(true); }
catch { saw_light = 0; }

}

task hitLeft()
{

monitor(EVENT_MASK(LEFT_HIT)) { while(true); }
catch { hit_bumper += 1; }

}

task hitRight()
{

monitor(EVENT_MASK(RIGHT_HIT)) { while(true); }
catch { hit_bumper += 2; }

}

task releaseLeft()
{

monitor(EVENT_MASK(LEFT_UNHIT)) { while(true); }
catch { hit_bumper -= 1; }

}

task releaseRight()
{

monitor(EVENT_MASK(RIGHT_UNHIT)) { while(true); }
catch { hit_bumper -= 2; }

}

Advantages
1. Should respond as soon as anything happens, i.e., as soon as sees light or bumper

is hit.
2. Can respond to a combination of events happening close together.

3. If decision-making is wrong, it should be clear where to change it?

Subroutines versus inline functions
Subroutines do not have arguments
Cannot call another subroutine.
Inline functions are copied into the code in place.

Function arguments
int: call by value (all Java arguments are “by value”) – the value is copied into a temp,
and that’s what is used inside the function
const int: must be a constant (no variables allowed)
int &: call by reference. The value is not copied – this saves on memory, and now the
function can change the value. This is like (but not really the same as) when you pass a
reference to an object and call a method on the object that changes an instance variable of
the object. It’s the same object, but you can change something about it.
const int &: call by reference, but it must be a constant – more efficient than const int;
anything can be passed this way, but it cannot be changed in the function. Anomaly
when x == x for x declared const int &

Expressions
See programmer’s manual section 2.4: conditions are also expressions, and evaluate to
integers. 0 is false, non-zero is true

Appendix
switch(hit_bumper) {
case 3: // both bumpers hit

OnRev(LEFT+RIGHT);
break;

case 2: // right bumper hit
if (direction == 9) OnRev(LEFT+RIGHT);
else spinLeft();
break;

case 1: // left bumper hit
if (direction == 6) OnRev(LEFT+RIGHT);
else spinRight();
break;

case 0: // no bumpers hit
switch(saw_light) {
case 0: // no light seen

if (direction != 6 && direction != 9) {
int i = Random(1,2);
if (i == 1) spinLeft();
else spinRight();

}
break;

case 1: // light seen
OnFwd(LEFT+RIGHT);
break;

default: // oops
PlaySound(TONE_DOWN);
break;

}
break;

default: // oops
PlaySound(TONE_DOWN);
Break;

}

