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Abstract. We consider sensor networks in which individual nodes with on-board sensing and low-power transmitters and receivers
establish connections with neighboring nodes. The overall objective is to enable energy-efficient data communication, relayed between
arbitrary nodes on the network. We develop a distributed algorithm which minimizes the power required for neighbor discovery.

Initially nodes do not have deterministic knowledge of the location of their neighbors, and we model the distribution of the nodes as
a two-dimensional Poisson process with known intensity. This corresponds to a situation in which a large number of nodes are randomly
distributed over a given area. The process of neighbor discovery is modeled as a Markov decision process, and the resulting control policy
is a finite automaton, driven by the underlying probability distribution, that minimizes the average power consumed. This policy can be
computed offline and stored in each node with very low requirements for online memory and processor capability.
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1. Introduction

This paper describes an algorithm for network discovery in
wireless sensor networks which uses minimum energy. We
are motivated by a scenario in which a large number of
small, low-cost sensors with on-board processing, wireless
transceivers, and limited power sources are distributed in a
region [14,5]. Applications of such networks include environ-
mental monitoring and factory automation, as well as military
applications such as surveillance.

We assume that the sensor nodes are randomly distributed.
The sensors are not previously configured with knowledge of
their location and must transmit wireless queries to discover
surrounding nodes and establish a communication network.
If the topology changes, say as a result of attrition of sensor
nodes, then this process may need to be repeated more than
once during the lifetime of the network. We focus on the
problem of network discovery where nodes must find other
nodes and determine the minimum energy paths by which to
route data to them. This network discovery phase consumes
energy, and our objective is to develop an algorithm for es-
tablishing the network with minimum energy consumption,
and thereby increase the network lifetime.
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We focus on the problem where the nodes are in unknown
and random locations in a region in the plane. Given the
positions of the nodes, one can determine which pairs of nodes
can communicate directly with each other, based upon the
maximum communication range available to the nodes. This
range is in turn determined by the maximum transmission
power and the path loss model. As pointed out in [17], if
the received power falls as 1/dn, where d is distance from the
transmitter, then if n ≥ 2 relaying information between nodes
may be more energy-efficient than direct communication over
large distances.

1.1. Prior work

The underlying topology of the network defines a graph Gmax,
called the maximum connectivity graph, in which each node
represents a sensor, and two nodes are joined by an edge
if they are within communication range of each other. All
possible routes are then paths within the graph Gmax. We
separate the next stage, that of finding desirable routes, into
the following two parts.

1. Topology Formation: In this phase, one forms a subgraph
Gmin of Gmax, called the minimum-energy graph that con-
tains all nodes of Gmax. The graph Gmin is defined in the
following way. For any two neighboring nodes u and v
in Gmax, an edge is included in Gmin if there is no other
path between u and v which uses less energy for commu-
nication. Thus Gmin contains every energy efficient path
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in the network. Edges of Gmax which are not in Gmin are
therefore ruled out as routing candidates, thus reducing
the work that the routing algorithm itself must perform.

2. Packet Routing: There are several possible protocols which
may be used to route packets over the graph Gmin. Exam-
ples of routing protocols for ad hoc networks are ad hoc on-
demand distance vector routing (AODV) [13], location-
aided routing (LAR) [9], and greedy perimeter stateless
routing (GPSR) [8].

In this paper, we focus on the first problem of topol-
ogy formation. In principle, the minimum-energy graph Gmin

can be constructed from Gmax using the Bellman-Ford algo-
rithm. However, the Bellman-Ford algorithm is expensive in
terms of energy consumption, due to the broadcasts used for
exchange of routing tables. Instead, several alternative dis-
tributed algorithms using local information have been pro-
posed to form topologies that are sparse and contain energy-
efficient routes [15,17,10,20]. By first ruling out inefficient
routes, it is possible to decrease the energy used, and hence
increase the network lifetime, for many different routing al-
gorithms, as discussed in [10].

The wireless sensor nodes are modeled as having knowl-
edge of their positions, which is typically implemented using
the Global Positioning System (GPS) [12]. The algorithm
proposed by Rodoplu and Meng [17], and further optimized
by Li and Halpern [10] forms a graph Genc, called the en-
closure graph that contains the minimum energy graph. The
construction of this graph is based on the notion of the enclo-
sure of a node, defined in the following way. The enclosure
of node i contains all the neighbors of i to which direct trans-
mission is more energy efficient than transmission over any
path with exactly two edges.

An algorithm to approximate the minimum-energy graph
is proposed in [20], which we refer to as the cone algorithm.
Suppose a node is at the origin in the plane R2, and let m > 0
be an integer. We divide the plane into the m cones

Ck =
{

(r cos θ, r sin θ )
∣∣∣ r ≥ 0,

2π (k − 1)
m

≤ θ ≤ 2πk

m

}

for k = 1, . . . , m. The node at the origin is then joined by
an edge to the closest node within each cone Ck . A graph
Gm, called the cone graph, is constructed by applying this
procedure to every node in Gmax. In [20], a bound for the
energy cost of an optimal path between a pair of nodes u and
v in the cone graph is derived in terms of the corresponding
energy consumption of the optimal path between u and v in
the minimum-energy graph. In [10] it is further shown that if
Gmax is connected and m ≥ 5, then the cone-based graph is
also connected.

Figure 1 shows the graphs constructed by the different
topology formation algorithms for 200 nodes distributed uni-
formly in a square of side 10. The maximum transmission
radius of each node is 2. The graph Gmax is significantly
more dense, containing many redundant edges compared to
the minimum-energy graph Gmin. The topology constructed

by the enclosure-based graph contains more edges than
that in the minimum-energy graph, but is also significantly
more sparse than Gmax. The cone graph G6 constructed with
m = 6 is a subgraph of Gmax which approximates the
minimum-energy graph.

1.2. Approach

In all of the above algorithms, each node repeatedly broad-
casts with increasing power to discover its neighbors, stop-
ping either when it is enclosed [10] in the case of the
enclosure-based algorithm, or, in the case of the cone al-
gorithm, when a node has been found in each cone. These
broadcasts used to discover neighbors are a significant source
of energy consumption during topology formation. If the
nodes are mobile, or the network topology changes due to
node attrition and obstruction, then this topology formation
process must be repeated, and the amount of energy spent
in topology formation will have a significant impact on the
network lifetime. We note that neighbor discovery in wireless
ad hoc networks is a much more general problem. We use a
specific notion of a neighbor (as in [20]), and then minimize
the average energy consumption during neighbor discovery.

This paper focusses on minimizing the energy consump-
tion during topology formation of an ad hoc wireless sen-
sor network. In [10], it is pointed out that one reasonable
suboptimal choice for increasing broadcast power is to re-
peatedly double the transmitted power until either the enclo-
sure is found or the maximum power is reached. In order to
discretize the problem, we consider minimizing the energy
consumption use by a modified cone algorithm for neighbor
discovery. We model the nodes as being able to detect the
direction from which signals arrive. We construct a Markov
decision process which models the relationship between the
energy used and the probabilities of finding nodes, and show
that the minimum-energy solution can be found by solving
a stochastic shortest path problem [1]. These problems are
also referred to as pursuit [4] or first passage [3] problems.
They can be solved offline using both linear programming
and dynamic programming. In this case we arrive at an opti-
mal search strategy for the nodes which can be implemented
as a simple finite-state automaton with very low memory
and processor requirements. Such probabilistic automata are
considered in [19].

1.3. Outline of the paper

The remainder of the paper is organized as follows. Section
2 describes the system model and the formulation of our
objective. Section 3 models the neighbor location process as
a Markov decision process and Section 4 describes a method
to compute an optimal network discovery strategy. Section 5
gives simulation results for a simple scenario, and Section 6
summarizes the results and gives some directions for future
work.
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Figure 1. Network topology formed by different topology control algorithms.

2. System model

2.1. Problem definition and approach

Motivated by the results in [20,11], our objective is to locate
the closest node within each of the m cones C1, . . . ,Cm, if
there is one that can be reached with maximum transmission
power. We would like to find a strategy that minimizes the
expected energy used, given the probability distribution of
the nodes in the plane. We assume that the nodes are identi-
cally and independently distributed (IID) over a given region
D ⊂ R2.

More specifically, we model the distribution of nodes as
a two dimensional Poisson process [18] with known inten-
sity ρ. In practice we may have a fixed number of nodes,
each uniformly distributed over D. We use a two dimensional
Poisson distribution to approximate this scenario, as this sim-
plifies some of the computations later in the paper. Note that
for a Poisson distribution, the nodes in any finite region D
are identically and independently distributed in a uniform
manner over the region D.

We refer to the coverage region of a node i; this is the
region in the plane in which other nodes can receive the
transmissions from node i. We assume that the region D is
sufficiently large that the coverage region of the node under

consideration is entirely within D. This assumption does not
hold in the case when nodes are close to the boundary of
D, and our analysis would need modification in that case. If
the percentage of nodes close to the boundary of D is small,
then the overall inefficiency in power consumption due to this
approximation maybe neglected.

A node may transmit at only a discrete-set of allowable
powers, given by

Q = {q1, q2, . . . , ql}

where q1 < q2 < · · · < ql . We also refer to the coverage
region with power q. This is the circular region with radius
r(q) within which transmissions of power q are received. We
assume r is an increasing function. The cones and coverage
regions for m = 6 and l = 3 is shown in Figure 2. We define
Rk(qi, qj ) ⊂ R2 to be the interior of the region between radii
r(qi) and r(qj) in cone Ck, as shown in Figure 3.

2.2. Properties of the model

We assume that the nodes are roughly at the same height,
and hence we can model the process in two dimensions.
The IID distribution of nodes implies that the location of
each node is independent of that of the others. An example
when this would be a reasonable assumption is environmental
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Figure 2. Circular coverage regions and cones for m = 6,Q = {q1, q2, q3}.

Figure 3. Region Rk(qi , qj ) in cone k.

monitoring and reconnaissance, where for example the nodes
may be airdropped.

Each node can detect the direction of arrival of the re-
ceived signal. This requires an antenna configuration with
this capability. A node can communicate with all the nodes in
a circular region centered on it, whose radius is determined
by the transmitted power and the path loss model. Further the
path loss model is deterministic in the sense that if a node
is within this region it is guaranteed to receive the transmis-
sion. We also assume that there are no obstructions within
the coverage region of any node, and each node has the same
threshold power required to decode a received signal.

3. Markov decision process

3.1. State space

We denote random variables with upper case letters and their
realizations in lower case. We focus on a single node, and
model its state at time t by a random variable X(t). Intuitively,
one expects that the state should have two parts; one the max-
imum power transmitted so far and the second characterizing
how many nodes have been found in which cones. We make
a specific choice in the following, and show that it has the
desired properties of a state; that is, that the resulting process
is Markov.

Let Xpower(t) denote the maximum power transmitted until
time t, and let Xfound(t) be the number of cones in which at
least one neighbor has been found. The state X(t) of the node
is then

X(t) = (Xfound(t), Xpower(t))

Since the number of cones is m, we have

X(t) ∈ {(0, 0)}
⋃

{Q × {0, 1, . . . , m}}

The total number of states is n = l (m + 1) + 1. We will call
a state x a terminating state if

xfound = m or xpower = ql.

That is, a state is a terminating state if at least one node
has been found in each cone and/or the maximum available
transmission power has been used. We partition the set of
states into the set of terminating states Sterm and the remaining
states Snon−term.

3.2. Action space

In each state the action space is the set of available trans-
mission powers in that state. In terminating states, only zero
transmission power is considered. For state x ∈ Snon−term, the
action space is

Ax = { q ∈ Q | q > xpower}

Since the path-loss model is deterministic, only a strict in-
crease in power can lead to discovery of new neighbors.

Define the policy space as the product of the action spaces
of non-terminating states

A =
∏

x∈Snon−term

Ax

At time t, let a policy δ(t) ∈ A. A policy defines a map which
assigns to each state x ∈ Snon−term an action in the set Ax,
denoted by δx(t). The policy δ(t) is called stationary if it is
constant over time. In this case, we have for some δ ∈ A,

δ(t) = δ for all t.

3.3. State evolution

For a region R ⊂ D let N(R) be the number of nodes in R, and
define the indicator function I(R) such that

I (R) =
{

1 if N (R) ≥ 1
0 otherwise

Note that both I(R) and N(R) are random variables. Then
the stochastic process X is defined by the state evolution
equations

Xpower(t + 1) = δX(t)(t)

Xfound(t + 1) =
m∑

k=1

I (Rk(0, Xpower(t + 1))) (1)

=
m∑

k=1

I (Rk(0, δX(t)(t))).
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3.4. Markov property

The process X is a Markov decision process, i.e.

Pr{X(t + 1) = x | X(t), δ(t),

X(t − 1), . . . , X(0),

δ(t − 1), . . . , δ(0) }

= Pr{ X(t + 1) = x | X(t), δ(t) }

The proof of the following theorem is given in the Appendix.

Theorem 1. For a stationary policy δ, the process X is
Markov.

For simplicity of notation, we assume that the policy δ

is stationary and prove that the process X is Markov. The
proof requires only minor changes if this assumption is re-
moved. Intuitively, one can see that X is a Markov decision
process, since the random variables corresponding to the lo-
cations of nodes in a ring between circles of radii r and r +
δr, are independent of the random variables corresponding
to the locations of nodes within a circle of radius r. This
is because we have assumed the nodes to have a Poisson
distribution.

3.5. Transition matrix

Since the process X is Markov, it has a transition matrix,
which we denote by P(δ) for policy δ. Denote the elements
of this transition matrix by

Pyw(δ) = Pr{ X(t + 1) = w | X(t) = y, δ(t) = δ} (2)

Let B be the parametrized probability mass function of a
binomial random variable, given by

B(p, n, l) =
(n

l

)
(1 − p)n−lpl

Now the area of Rk(ypower,δy)) is

Area(Rk(ypower, δy)) = 2π

m

(
r(δy)2 − r(ypower)2

2

)

Define the function θ by

θ (y, δ) = Pr{I (Rk(ypower, δy)) = 1}.

Since the distribution of nodes is two-dimensional Poisson,
we have

θ (y, δ) = 1 − exp

(

−ρ
2π

m

(
r(δy)2 − r(ypower)2

2

))

If y ∈ Snon−term, then equations (1) and (7), together with
non-negativity of Z(t + 1), imply that

Pyw(δ) = 0 if wpower )= δy or wfound < yfound

For wpower = δy and wfound ≥ yfound,

Pyw(δ) = Pr{Nnew−cones(ypower, wpower) = wfound − yfound}

= B(θ (y, δ),m − yfound, wfound − yfound)

For y ∈ Sterm, we have

Pyw(δ) =
{

1 for y = w

0 otherwise
(3)

since once a node reaches a terminating state, it stays in that
state. Ordering the states such that the non-terminating states
come before the terminating states, we have

P (δ) =
[

P1(δ) P2(δ)
0 I

]
(3)

which is a block decomposition of P(δ). We will use this to
compute an optimal policy.

3.6. An equivalent substochastic system

We would like to minimize the expected total energy used in
finding a node in each cone. This corresponds to a stochastic
shortest path problem where we would like to minimize the
expected cost of reaching a terminating state, starting in the
initial state (0,0).

The cost function in state x with policy δ is

cx(δ) =
{

δx for x ∈ Snon−term

0 for x ∈ Sterm

Let c(δ) denote the vector of costs for a policy δ, with same
ordering as for the transition matrix. Since non-terminating
states come before terminating states, we have

c(δ) =
[

δ

0

]

Since Q is a set of l transmit powers, after l time steps termi-
nation is guaranteed either because the maximum power has
been used or because a neighbor has been found in each of
the m cones. Hence the structure of P(δ) for all δ ∈ A is such
that after time t ≥ l, Pr{X(t) ∈ Sterm} = 1. Hence for all δ,
we have the matrix product

P (δ(1))P (δ(2)) · · · P (δ(l)) =
[

0 0
0 I

]

Define the t step transition matrix to be

Pstep(t) = P (δ(1)) · · · P (δ(t))

Hence the total cost of the neighbor location process is

l∑

t=1

Pstep(t)c(δ(t)) =
[∑l

t=1 Pblockstep(t)δ(t)
0

]

where

Pblockstep(t) = P1(δ(1)) · · · P1(δ(t)) (4)
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Hence we need to consider only the substochastic system1

x ∈ Snon−term to determine the cost for neighbor location for a
particular policy δ.

4. Computation of an optimal policy

4.1. Dynamic programming recursion

In this section we make use of standard results on dynamic
programming for stochastic shortest path problems. In par-
ticular, we follow the conventions in [7]; see also [6].

Define the vector Vδ whose i’th component is the total cost
when starting in state i and using policy δ. We have

Vδ =
l∑

t=1

Pblockstep (t)δ(t)

Since P1(δ) is a substochastic matrix for every δ, every policy
δ is transient2 (see for example, Theorem 2 in [7]). Hence
there exists a stationary policy δ∗ such that

Vδ∗ ≤ Vδ for all δ ∈ A

where the inequality holds elementwise. Moreover Vδ∗ is the
unique solution of

V = min
δ∈A

(δ + P1(δ)V ) (5)

where again the minimum holds elementwise.
It is standard that the dynamic programming recursion

V (k + 1) = min
δ∈A

(δ + P1(δ)V (k))

converges to the optimal cost. For the Markov decision pro-
cess constructed in this paper, this iteration converges exactly
to Vδ∗ in a finite number of steps, since there is an upper
bound on the number of time-steps before the Markov deci-
sion process terminates, and there is no cost associated with
terminating states. Once the optimal V is found, an optimal
policy δ∗ can be found as a solution to equation (5).

4.2. Linear programming approach

An alternative to applying the dynamic programming recur-
sion is to compute the solution to the stochastic shortest path
problem using linear programming, as in for example [3].
The vector of optimal costs Vδ∗ is the unique solution of the
following linear program

maximize 1T V

subjectto V ≤ δ + P1(δ)V, δ ∈ A

1We say that a system is substochastic if for all δ ∈ A, the transition matrix
P(δ) is such that the sum of each row of P(δ) is less than one.

2A policy δ(t) is said to be transient if
∑∞

t=1 p̃blockstep(t) is finite, where
p̃blockstep(t) = P (δ(1)) · · · P (δ(t)).

Here 1 denotes the vector of 1’s. Let Vopt denote the optimal
solution to this linear program. Any policy δ satisfying

Vopt = δ + P1(δ)Vopt

is an optimal policy. This policy may also be obtained directly
through the solution of the dual linear program.

4.3. The automaton for an optimal policy

In this section we explicitly construct an optimal strategy for
an example, and represent it as a finite automaton. We use 4
cones, a node density of 10 per unit area, and transmission
powers

Q = { 1, 2, 3, 4, 5 }

The function r determining the range within which transmis-
sions can be decoded by other nodes is

r(q) = q
1
4

corresponding to a path-loss model where received power
decays as 1/d4.

A finite state automaton implementing this strategy is
shown in Figure 4. Each circle represents a set of states,
and the number contained in the circle is the power that
should be transmitted in any of those states. After the power
is transmitted, the number of cones in which at least one
node has been found so far determines which is the next set
of states. Note that we can group states into sets in this way
because the policy is the same for many different states. The
required number of non-empty cones to make a transition is
shown next to the corresponding arrow. It can be seen that for
the set of states corresponding to the same transmit power,

Figure 4. State Transition Automation.



AN ENERGY-OPTIMAL ALGORITHM FOR NEIGHBOR DISCOVERY IN WIRELESS SENSOR NETWORKS 323

the optimal policy exhibits a monotonic relationship with the
number of cones in which at least one node has been found.
The next transmit power is a non-increasing function of the
number of cones with at least one neighbor. This is what we
expect, since if we have found only a small fraction of the de-
sired neighbors with the previous power, we would increase
the transmit power by a larger amount compared to when a
greater number of neighbors has been found.

The automaton is driven by the underlying probability dis-
tribution, since state transitions are determined by the number
of nodes detected. This example illustrates the simplicity of
the policy. Note that some states are never visited, such as
xfound = 1 and xpower = 4, and so need not be stored on the
node.

5. Numerical results

In this section we perform two types of computation and com-
pare the results. We compute, using dynamic programming,
the theoretical minimum energy policy and the correspond-
ing energy usage. We also perform simulations by generating
random distributions of nodes in a region D and simulating
the optimum policy to

1. compare the performance of our scheme with that of an
ideal scheme (perfect knowledge), and a simple scheme
(doubling the power).

2. study the effect of boundary nodes on the average energy
expenditure.

We compute the optimal policy and cost for various differ-
ent system parameters. The scenario we consider has nodes
identically and independently distributed over a region of area
1000 with a uniform distribution. We use the set of powers

Q = {i/5 | i ∈ Z, 1 ≤ i ≤ 25}.

The path-loss model is

qrec = qtrans

d4

where qrec is the power received, qtrans is the power trans-
mitted, and d is the distance between the transmitter and the
receiver. This is a good model if the inter-node distance is
sufficiently large, and there are only two components in the
received signal—reflection from the ground and the line of
sight component. More complicated path-loss models (like
in [16]) may also be used. We use a deterministic model in
which the receiver is able to decode the signal if the received
power qrec is greater than a threshold power qth. This will
occur if the distance between the transmitter and receiver is
less than r(qtrans), where

r(qtrans) =
(

qtrans

qth

) 1
4

We choose qth = 1 for this example.
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Figure 5. Computed cost as a function of density, for different number of
cones.

5.1. Variation in the optimal cost with density and number
of cones

The average energy consumption of the optimal policy was
computed via dynamic programming for a range of densi-
ties, and a range of numbers of cones. The results are shown
in Figure 5. As the density of nodes increases, the average
amount of power required to find a neighbor in a cone de-
creases, hence the optimal energy used decreases as shown.
Similarly as the cone angle is decreased, each node needs to
find neighbors in more cones, leading to an increase in the
average energy used.

A larger number of cones corresponds to a finer discretiza-
tion of space, and it has been shown in [20,11] that this enables
the establishment of paths that are closer to the minimum en-
ergy paths in the overall network. Hence there is a trade-off
in energy consumption during the neighbor discovery phase
and energy consumption during network operation after the
resulting paths are established.

The maximum energy that any of the computed policies
will use corresponds to a single transmission with maximum
power. When the number of cones is large, and the density
of nodes is low, this is the optimal strategy, as is seen in the
figure.

5.2. Simulation results

The simulations were performed using 6 cones, correspond-
ing to the same scenario as the above computation. In
Figure 6, the following values are plotted as a function of
density.
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Figure 6. Simulated average energy of search process.

1. Minimum energy with perfect knowledge: This is the aver-
age energy a node would need to use to reach at least one
neighbor in each of its cones, if it had perfect knowledge of
the location of its neighbors. This provides a lower bound
on the achievable cost by any policy.

2. Computed average energy: This is the minimum energy
cost for the search process predicted by the dynamic pro-
gramming computation. As expected, this value is higher
than the minimum energy with perfect knowledge.

3. Simulated average energy for interior nodes: We call a
node an interior node if its coverage region lies completely
inside the region D. The plot shows the average energy
used by these nodes in the simulation; it matches closely
that predicted by the computation.

4. Simulated average energy over all nodes: This is the av-
erage over the energy used by all the nodes in region D,
including boundary nodes which are those for which the
coverage region lies partly outside D. Since all nodes are
within D, the boundary nodes may not have nodes in one
or more cones of their coverage regions. Hence they will
continue transmitting with increasing power until the max-
imum power is reached. This reduces the efficiency of the
computed minimum energy policy in practice, since the
computation ignored the effect of the boundary. Hence it
leads to an increase in average energy used.

5. Power Doubling Scheme: This is the average over energy
used by all nodes, when the transmitting power is simply
doubled till a neighbor is found in each cone. We can see
that the optimal policy has lower energy cost compared
to this scheme. Also, note that for a very low density
of nodes, power doubling consumes more energy than
simply broadcasting at the maximum transmission power.
This is because power doubling starts with the minimum

transmission power and doubles the power each time until
neighbors have been found in all cones. Hence, for low
densities many nodes will double their power until they
reach the maximum transmission power, and in the pro-
cess consume more energy than simply transmitting at the
maximum power.

6. Conclusions

In this paper we have proposed an approach for minimizing
the average energy consumed during the neighbor discovery
phase of a wireless ad hoc sensor network. In such networks
with a high node density, the energy saved by using this
optimal scheme during each instance of neighbor location
can significantly increase the lifetime of the network. This
approach for neighbor location, combined with the method-
ology in [20] leads to an efficient way for a wireless sensor
network to form low energy routes with small node degree.

There are many remaining open questions and possibilities
for refinements of this method. In particular, in this paper each
node discovers neighbors only through responses to its own
queries, and ignores packets it receives through queries and
responses of its neighbors. In this sense one would like a more
cooperative approach between nodes to further optimize the
performance. Other open issues include network rediscovery
when nodes fail or move, and the effects of interference.
In particular, in this case one may leverage the savings in
energy during topology formation to increase the lifetime
of the network. These issues are very interesting and we
anticipate their investigation in future research.
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Appendix

Here we show that the process X defined in Section 3 is a
Markov process for a stationary policy δ. We will make use
of the following preliminary lemmas.

Lemma 1 Suppose R, S ⊂ D are disjoint regions; that is
R ∩ S = ∅. Then

I (R ∪ S) = I (R) + I (S) − I (R)I (S)

Proof This holds because

I (R ∪ S) = max{ I (R), I (S)}

and the indicator function may take only values one or
zero. !
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Lemma 2 If the regions R1, R2, . . . , Rk are pairwise dis-
joint, then I (R1), I (R2), . . . , I (Rk) are mutually indepen-
dent. Moreover if the areas of the regions R1, R2, . . . , Rk are
equal, then the random variables I (R1), I (R2), . . . , I (Rk)
are IID.

Proof Since the nodes have a two dimensional Poisson dis-
tribution, if regions R1, R2, . . . , Rk are pairwise disjoint, then
N (R1), N(R2), . . . , N (Rk) are mutually independent (see for
example [18]). Since I (Ri) is a function of N (Ri), it follows
that I (R1), I (R2), . . . , I (Rk) are mutually independent. The
last part of the lemma follows because the distribution of
I (Ri) depends only on the area of region Ri . !

Lemma 3 Suppose X and Z are stochastic processes, and

X(t + 1) = g(X(t), Z(t + 1)) (6)

for some function g. If Z(t + 1) is conditionally independent
of Z(t), Z(t − 1), . . . , Z(1), X(t − 1), . . . , X(0), given X(t)
then X is Markov.

Proof This is standard; see for example Theorem 2.2, p. 58
in [2]. !

Theorem 1 For a stationary policy δ, the process X is
Markov.

Proof We have

Xfound(t + 1) =
m∑

k=1

I
(
Rk(0, δX(t))

)

For each k, partition the region Rk(0, δX(t)) into two parts, Sk

and Tk, defined by

Sk = Rk(0, Xpower(t))

Tk = Rk(Xpower(t), δX(t))

That is, Sk is the region of cone Ck which has been explored
until before action δX(t), and Tk is the additional region ex-
plored due to the power increase by action δX(t). We have
suppressed the dependence of Sk and Tk on X(t) and δ. We
have

Rk(0, δX(t)) = Sk ∪ Tk

and Sk ∩ Tk = ∅, so Lemma 1 gives

I (Sk ∪ Tk) = I (Sk) + I (Tk) − I (Sk)I (Tk)

Now, from equation (1),

Xfound(t + 1) =
m∑

k=1

I
(
Rk(0, δX(t))

)

=
m∑

k=1

I (Sk ∪ Tk)

and hence

Xfound(t + 1) =
m∑

k=1

I (Sk) +
m∑

k=1

(I (Tk) − I (Sk)I (Tk))

which gives

Xfound(t + 1) = Xfound(t) + Z(t + 1) (7)

where Z(t+1) is defined as

Z(t + 1) =
∑ {

I (Tk)
∣∣ I (Sk) = 0

}
. (8)

We can write this explicitly in terms of the state X as

Z(t + 1) = Nnew-cones
(
Xpower(t), δX(t)

)

Here, the random variable Nnew−cones(qi,qj), defined by

Nnew-cones(qi, qj )

=
∑ {

I (Rk(qi, qj )) | I (Rk(0, qi)) = 0, k = 1, . . . , m
}

is the number of new cones in which at least one neighbor is
found when power is increased from qi to qj.

We would now like to apply Lemma 3; to do this, we
now show that Z(t + 1) is conditionally independent of Z(t),
Z(t −1), . . . , Z(1), X(t −1), . . . , X(0), given X(t). We have

Pr { Z(t + 1) = i |X(t) = x,Z(t) = z,

X(t − 1) = xt−1, . . . , X(0) = x0,

Z(t − 1) = zt−1, . . . , Z(1) = z1}

= Pr{Nnew−cones(xpower, δx) = i} (9)

We now explicitly compute this probability. The regions

R1(xpower, δx), . . . , Rm(xpower, δx)

are pairwise disjoint, and all have the same area. Hence
from Lemma 2, the random variables I(R1(xpower, δx)), . . . ,
I(Rm(xpower, δx)) are IID. Since the distribution of nodes is a
two dimensional Poisson process with intensity ρ, we have

Pr{I (Rk(xpower, δx)) = 1} = p

Pr{I (Rk(xpower, δx)) = 0} = 1 − p

where

p = 1 − exp
(

−ρ
2π

m

(
r(δx)2 − r(xpower)2

2

))

Now Nnew−cones(xpower, δx) is the sum of m − xfound binary IID
random variables, and it therefore has a binomial distribution
given by

Pr{Nnew−cones(xpower, δx) = i} = pi(1 − p)m−xfound−i

which is function of only x; in particular it does not depend
on xt–1, . . . , x0 or zt, . . . , z0. Hence Z(t + 1) is conditionally
independent of Z(t), Z(t −1), . . . , Z(1), X(t −1), . . . , X(0),
given X(t), and Lemma 3 implies that X is Markov, as desired.
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