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1 Overview

A Mobile Ad-hoc Network (MANET) is a wireless network set up temporarily without a wired
infrastructure (routers, switches, servers, cables, access points, etc.). The wireless nodes in
a MANET may move around and each one of them may need to forward packets for other
components in the network. Because they can be deployed quickly, MANETSs could be used

for disaster rescue, battle field communication, sensor networks, etc.

The most important constraint of a MANET is power, since all wireless nodes are powered
by batteries. While technologies in other areas of the IT industry follow Moore’s Law, battery
technologies advance slowly compared to the rapidly increasing need for power on laptops and
PDAs. Wireless communication can take one third of a laptop’s and half of a PDA’s power
consumption. A MANET protocol must take power saving into consideration since the lifetime

of a network is often determined by the time the first node runs out of power.

The second major limitation of MANETS is the interference between wireless data trans-
missions. For a specific channel, the data packets sent out by a specific component can be
heard by every other component within the wireless range of the sender. On the same receiv-
ing node, no two transmissions can happen at the same time on the same frequency. This
reduces the average per node throughput. Packet conflicts can happen due to issues like the
“hidden terminal problem”. The result is that packets get dropped. MANET protocols must

be carefully designed to use the wireless channels efficiently while avoiding conflicts.

The third problem of MANET is the short transmission range of wireless nodes. The radio
range of small wireless devices are typically on the order of a few hundred meters. This results
in large hop counts in large MANETSs. Large hop counts in turn result in long latency, high

packet drop rates and slow routing convergence.

The fourth problem of MANET is that the network topology may change rapidly due to

the movement of wireless nodes. This may make the network slow to converge.

Another big issue for MANET, which has been ignored for years, is the address allocation
problem. A MANET usually doesn’t have a central address allocation authority or a hierarchi-
cal structure. Address allocation could be an issue since a node may keep joining and leaving

a MANET. Also, a MANET may partition sometimes and recover later.



Numerous protocols in the area of MANET routing, power management and address allo-
cation have been designed. One important problem is how to determine a protocol is correct.
A protocol can be checked by testing after it has been implemented. It can also be tested by
simulation or deductive reasoning (theorem proving). These methods usually involve a lot of
manual intervention and are slow. Another way to check the correctness of a protocol is model
checking, which tests the properties that a protocol is supposed to satisfy using a model con-
structed for the protocol. The benefit of model checking is that it can be completely automatic
and fast. Using counter-examples returned from model checkers, fundamental problems of a

protocol can be detected before real implementation.

My research will focus on investigating the specific properties that a wireless routing pro-
tocol needs to satisfy, evaluating existing wireless routing protocols with model checking, and

designing better protocols.

In this report, existing work in the areas of MANET routing (unicast) and address allocation
are reviewed. Three major model checking methods are also investigated. The report is
organized as follows. The requirements for and classification of MANET routing protocols
are given in the next section. Section 3 reviews works in the area of topology-based routing
protocols. Section 4 discusses some geographical-based routing protocols. Three important
solutions to address allocation are discussed in Section 5. Model checking and some model
checking methods are introduced in Section 6. The last section gives a conclusion and outlines

some outstanding issues for MANETSs.

2 MANET Routing Protocols

Popular routing protocols (OSPF, RIP2, BGP) used for wired networks cannot be applied

directly to MANET for the following reasons.

First, due to the structureless address allocation, for each destination, a routing entry is
needed. Since popular routing protocols are mostly subnet based, they are not scalable here
anymore. Second, interference between flooding routing messages can cause heavy packet loss.
Third, the low channel bandwidth of MANET makes the routing overhead problem even worse.

Last, wireless nodes might move quickly. This can cause the network to converge very slowly.



Therefore, new protocols that suit the special needs of MANETSs must be designed. This

report focuses on unicast routing.

The major measures that we use to evaluate routing protocols are: network size and struc-
ture supported, the routing accuracy, and routing overhead. A good routing protocol can find
a good tradeoff between the last two measures. Using Zhou’s classification in [29], routing

protocols for MANET can be classified into the following categories.

e Topology-based routing protocols

— Proactive routing protocols
— Reactive routing protocols

— Hybrid routing protocols

e Geographical-based routing protocols

Topology-based routing protocols are routing protocols calculating the best route to a des-

tination based on the topology information collected from the network.

Within this category, proactive routing protocols are routing protocols that calculate the
routes to all the destinations before a transmission actually happens. Reactive routing protocols
are routing protocols that calculate the route to a destination only when it’s necessary for a
transmission. Hybrid routing protocols are routing protocols that combine proactive routing

and reactive routing.

Geographical-based routing protocols are routing protocols that calculate routes based on

the geographical locations of the destination node and neighboring nodes.

In the following sections, we explain each category of protocols with examples.

3 Topology-based routing protocols

Topology-based routing protocols are widely used in today’s Internet. By exchanging topology
information (local routing tables or neighbor lists) among the nodes of a network, this set of
routing protocols creates routing entries for individual addresses or address blocks. Therefore,

the more destinations, the more memory and processing power are needed.



There exist different classifications for topology-based routing protocols in the Internet.
Here, we divide them by whether a route is created proactively or on demand, since this intro-

duces the largest distinctions in the behavior and performances of MANET routing protocols.

3.1 Proactive Routing Protocols

Proactive routing protocols calculate the routing table even when there is no packet to send.
The benefit of calculating routes beforehand is the short latency in finding a route. The
drawback is that to maintain routes for each destination, the nodes has to keep exchanging

routing messages even when there is no traffic at all.

3.1.1 Destination Sequence Distance Vector (DSDV)

One of the oldest routing protocols for MANET is DSDV [21]. DSDV is a modified version of

the classical Bellman Ford Routing protocol.

For a destination, DSDV’s routing table keeps the next hop, the metric (the hop count),
and a sequence number, which is generated by the destination to mark the freshness of the

route.

A node periodically broadcasts its whole routing table or modifications to its routing table
to its immediate neighbors. For each route, the routing update carries a new sequence number
which is originally given by the destination node. Upon receipt of a new route for a destination,
if there is no route for the destination yet, a node adds the route together with the sequence
number to its routing table. If a route already exists, the node picks the route with a greater
sequence number. If a route with the same sequence number already exists, the node picks the

route with a better metric.

The protocol is not very different from the standard distance vector routing in the wired
network. The use of sequence number further reduces the chance of loop forming. One node
only needs to update the changed part of it’s routing table to its neighbors. The distance

vector feature prevents it from being used in large wireless networks.



3.1.2 Fisheye State Routing (FSR)

G. Pei, M. Gerla et al. designed a proactive link state routing protocol called “Fisheye State
Routing” [19]. FSR is a hierarchical routing scheme since instead of flooding link state infor-
mation, it divides the nodes in a MANET into multiple levels in terms of hop distance. FSR
nodes exchange link state information with neighbors periodically. A link state message is
marked with the number of hops it has travelled. Packets with fewer hop counts are forwarded
with a higher probability. A node receives link state messages originated from nearby nodes
with higher frequency than those from further nodes. By doing this, a node gets detailed
routing information for the nodes in the local area while less detailed information for other
nodes. Although less optimal routes might be chosen for some destinations, as a packet nears

its destination, it has increasingly correct routing information.

This protocol can improve the scalability while keeping the route accuracy and delivery rate
high. The drawback is that many duplicate link state messages are still sent. This is especially
harmful in MANET since the bandwidth is limited and frequent duplicate transmissions can

cause many conflicts. The following two protocols focus on solving this problem.

3.1.3 Optimized Link State Routing (OLSR)

In [13], P. Jacquet et al. proposed a link state routing algorithm that can eliminate many
unnecessary link state message broadcasts using a method called Multi Point Relaying (MPR).
In addition, the amount of link state transmitted can also be reduced by only advertising the

MPR selectors of a node.

The idea of OLSR is as follows. Every wireless node maintains a list of its immediate neigh-
bors through periodic beacon messages. Neighboring wireless nodes exchange their neighbor
lists through HELLO messages. These HELLO messages work like link state routing messages.

Every node thus knows the two hop topology around itself.

Every node picks a set of one hop neighbors to cover all of its two hop neighbors. This set of
immediate neighbors are called MPR nodes. Every node tells its immediate neighbors whether
they are chosen as MPR nodes for it. This is also implemented using HELLO messages. Upon

receipt of a link state routing message, a node checks if it has been chosen by the sender as its



MPR node. If true, the node re-broadcasts the link state message.

Only the nodes that are chosen by some nodes as their MPR nodes generate link state
messages. The link state messages only contain the nodes that choose them as MPR nodes.
This set of nodes are called MPR, selectors. Using the Dijkstra algorithm, the route to every

single destination can be calculated.

The OLSR routing protocol is very popular and has become IETF RFC 3626 [2]. The

greatest strength of the protocol is that the flooding overhead can be greatly reduced.

3.1.4 Joint Architecture Vision for Low Energy Networking (JAVeLEN)

Jason Redi et al. proposed a complete architecture, JAVeLEN[24], for low power consumption
MANET. The architecture mainly targets two problems, power management in the link layer

and efficient power-aware routing. It is especially suitable for large scale sensor networks.

For power management, JAVeLEN uses two radio channels. One high power, high data

rate channel for data packets and another low power, low data rate channel for basic signaling.

Time is divided into equal-sized slots. The clocks on all nodes in a MANET are syn-
chronized. The low power channel is turned on periodically to receive HAIL messages, which
indicate that someone have data ready to send. Upon receiving a HAIL message, a node turns

on the high power channel. The sender of the HAIL message sends the data.

The time slots in which a node turns on the low power channel are determined by a Pseudo-
Random Number sequence and a receiving threshold. When the number generated is less than
the threshold, the node turns on its low power channel. A node’s schedule, the current position
in the PRN sequence and the threshold, are distributed to its immediate neighbors. Therefore,
a sending node can find out whether the recipient of a packet is ready to listen. If so, it sends

out the HAIL message. Otherwise, it tries to send packets destined for another node.

In [5], L. Dai et al. further improve the power efficiency and delivery rate by turning off
low power channels when a node knows it can’t do any sending or receiving in a time slot. The

knowledge is acquired through collection of 1-hop and 2-hop neighbors’ on/off schedules.

JAVeLEN routing uses an optimized version of OLSR that considers the combined trans-

mission power when constructing the MPR tree for a node’s 2 hop neighbors [27].



JAVeLEN is a complete solution for a flat MANET. Its main strength comes from the
pseudo random number on/off scheduling. It not only saves power but also prevents most

conflicts from happening. It can avoid the hidden terminal conflict without using RTS/CTS.

3.1.5 Landmark Routing in Ad Hoc Networks with Mobile Backbones (H-LANMAR)

Most of the existing routing protocols can’t support a flat MANET that has over 100 nodes.
Kaixin Xu et al. designed a hierarchical routing architecture [28] for large MANETS (on the

order of a few thousand nodes) based on the structure of the Internet.

The assumption is that there are a set of wireless nodes that are equipped with multiple
radio, more energy and are capable of doing long range communications. For example, the
helicopters and armored vehicles on battle fields. These nodes can be used to build a backbone
network for a large MANET. In addition, groups of wireless nodes tend to move together, just

as soldiers in the same company usually move together, with a few armored vehicles.

Therefore, the network can have two layers. One layer is the backbone layer, the other is
the subnet layer. In such a network, local traffic is forwarded as before within the border of a
subnet and inter-subnet traffic is relayed by the backbone nodes. The long path problem in a
flat MANET no long exists.

The first problem in constructing such a network is how many backbone nodes (BNs) are
needed. Since the average per node throughput decreases on the order of @(%) (W: average
per node bandwidth, n: total number of nodes)[9], we want the size of a subnet to be small.
At the same time, we need to keep the number of backbone nodes low in order to increase the
throughput of the backbone network. [28] determines that the optimum number of backbone

Wo

node is 12V N, where W7 is the average per node bandwidth of normal wireless nodes, W5 is
Wi

the bandwidth of the backbone channel and N is the total number of nodes in a network.
The next problem is how to deploy the BN’s. Using a simple Distributed Clustering algo-
rithm called Random Competition based Clustering (RCC), the node that first declares itself
as a BN (by broadcasting a packet) becomes the head of a cluster/subnet. A cluster head
claiming message travels an adjustable number of hops in order to achieve ideal subnet sizes.

Each subnet gets a unique network id, which is used for backbone routing.



The routing for the hierarchical network uses a modified version of LANMAR [20], a routing
protocol for flat MANETs. LANMAR is a routing protocol used in situations where groups
of wireless nodes move together (logical groups). Each logical group elects one node as the
landmark. LANMAR routing uses landmarks to track the movement of the logical groups. In
LANMAR, there are two routing protocols running at the same time. Landmarks use distance
vector routing to connect to each other. Local nodes use a link state routing to connect to each
other. Every local node has a link state table for its local network and a distance vector for
landmark nodes. Local packets are forwarded to the destination using the local routing table.
Packets sent to a destination in another logical subnet is sent toward the landmark of that
subnet using the distance vector route. The forwarding of inter-subnet packets are carried out

by local nodes too.

In H-LANMAR, a hierarchical version of LANMAR, inter-subnet packets are forwarded to
the nearest BN first. Then the BN forwards the packet to the BN of the destination subnet
using the backbone network. Once the packet reaches the destination subnet, local routing is
used to forward the packet to the final destination. The length of the forwarding path can

thus be reduced greatly.

H-LANMAR nodes runs LANMAR at the same time in case the local BN fails. In that

case, the flat LANMAR route is used to forward packet to remote destinations.

3.1.6 Summary

Name Network | Network Route Update Route Accu- | Routing Power
Size Structure racy Overhead Awareness

DSDV Small Flat 1 hop High Medium No

FSR Medium | Hierarchical | different relay prob. Maybe not Medium No

OLSR Large Flat Multi-Point Relay High Low No

JAVeLEN Large Flat Multi-Point Relay High Low Yes

H-LANMAR | Large Hierarchical | Subnet Routing High Low 2 Radios

The table above compares the protocols introduced in this section. Proactive routing proto-
cols range from basic DSDV routing to complete routing/power management architectures like
JAVeLEN and hierarchical solutions like H-LANMAR. JAVeLEN is for flat MANETS, which
don’t scale as well as hierarchical MANETSs. A solution combining the idea of JAVeLEN and

H-LANMAR should be able to support very large MANETS.
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3.2 Reactive Routing Protocols

The basic idea of reactive routing protocols is to find the route to a destination only when
necessary. By eliminating the periodic routing updates, these routing protocols are aiming at
reducing the routing overhead. These routing protocols assume that the network is not very

big and the nodes’ rate of motion is moderate.

3.2.1 Dynamic Source Routing (DSR)

David Johnson et al. proposed DSR, a reactive source routing protocol for MANET in [14].
DSR is basically a source routing protocol. When a node tries to send a packet to a destination,
it checks to see if there is a source route available in its route cache. If so, it attaches the route
to the packet and sends it out. The packet is forwarded by the nodes specified in the route.

Otherwise, a route discovery process starts.

To find a route for a destination, a requestor node floods a RREQ message to the network.
The RREQ message carries a vector that records the nodes that it traverses. At every hop, the
forwarding node records the route that the RREQ message traverses into its route cache. The
route can be used to send packets to the requestor node. Then the forwarding node checks to
see if the RREQ message is destined for it, or it is not the destination but it has a route for it.
If so, it returns a RREP message to the requestor node, with the full route to the destination.
If not, it appends its id into the vector carried in the message and re-broadcasts the RREQ
message. The RREQ message finally reaches the destination or gets discarded when it reaches

a node that have already seen it.

When the destination receives the RREQ message, it constructs an RREP message carrying
the vector of nodes recorded in the RREQ message. When a node that having a route to the
destination receives the RREQ message, it constructs an RREP message carrying the vector

of nodes recorded in the RREQ message appended with the route discovered.

For a node to return the RREP message back to the requestor node, if the node has a
route to the requestor node, it attaches the route to the RREP message as the source route.
Otherwise, it can reverse the route just found and attach it to the RREP message. If network

links are directed, the node can start another route discovery in which the RREQ packets are
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piggybacked with the RREP messages.

The nodes in a network maintain the routes cached locally for every destination. If a
node decides a link is broken because of un-acknowledged data messages at a node, it sends
a ROUTE_ERROR message back to the sender of the data message. The ROUTE_ERROR
message contains the hosts on both sides of the broken link. It can be sent back along the
route the data message coming from or some local route in the cache. On the route back, any
route found in the forwarding node’s route cache that contains the broken link is removed.
When receiving a ROUTE_ERROR message, the sender of the data message does a new route

discovery for the destination.

The benefits of DSR are its simplicity and its support on directed networks. The problems
of it are, flooding is costly, a whole route has to be rebuilt even when a single link is broken

and the use of route cache can put a limit on the size of the network supported by DSR.

3.2.2 Temporally-Ordered Routing Algorithm (TORA)

Vincent Park et al. proposed another reactive routing algorithm, TORA [18], to minimize
the reaction to topological changes. The protocol can provide multi-path routing and reduce
routing overhead by localizing link recovery when link failure happens. Also, the protocol

supports networks with directed links.

In TORA, a separate instance of the routing algorithm is run for each destination. The
algorithm has three basic functions, creating routes, maintaining routes and erasing routes.
Like DSR, a route is created when a packet needs to be sent to a destination and there is no
route for it. Route creation begins with a QRY message. The process of creating a route is
like creating a directed acyclic graph (DAG) in an undirected MANET topology. Maintaining
routes is the process of re-establishing routes during topology changes using UPD messages.
Erasing routes is the process of making all the links towards partitioned destinations undirected.

Route erasing is done by a CLR packet.

The creation of the DAG for a destination is marking every node in the network with
“heights”. A node having a higher height than one of its neighbor is said to have a directed

link to the neighbor. Initially, for a destination, every node has a height “NULL”, treated as
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infinity, except that the destination has a height 0, the lowest point. A node knows the heights
of all its neighbors. If a node has a neighbor with a lower height than its own, the node is

defined as having a route to the destination.

For route creation, a node that has a height “NULL” and needs a route to a destination
broadcasts a QRY message. Nodes receiving the QRY but don’t have a route for the destination
re-broadcast the QRY. A node, say i, that has a route to the destination sets its height to H;+1
where Hj is the next hop node’s (node j) height. After this, the node broadcasts a UPD packet
that carries the node’s height. Every node that receives the UPD packet changes its height to
the minimum of its own height and the height carried in the packet plus 1. Eventually, the

UPD packet returns to the node that sent the QRY message, giving it at least one route.

After the route discovery, packets are forwarded in the network like water flowing down a

slope. They follow the route on which heights descend the fastest.

When link failure happens, if a node has multiple next hops, nothing needs to be done.
What’s complicated is when link failure happens and no other neighbors have lower height

that the node. In this case, route maintenance is needed.

The basic idea of route maintenance is to raise the node’s height using an additional
reference height so that the node’s height becomes a local maximum. This update might
make neighboring nodes local minima too. Repeating the process, the new height propagates
“downstream”. If a node that has a downstream route to the destination can be reached, a
route is recovered. A new height is going to propagate back to where the link failure happens.
If such a node can’t be found, a CLR packet is broadcast throughout the partition to set the

heights for the destination on every node to “NULL”.

TORA can find a route in finite time for a destination. It supports directed networks and is
resilient to network failures in that it doesn’t always require an end to end re-route. However,

it still involves high routing overhead due to broadcasting QRY, UPD and CLS messages.

3.2.3 Ad-hoc On-Demand Distance Vector routing (AODV)

The routing protocol, AODV [22], proposed by Charles E. Perkins et al. is very similar to DSR.

The most important difference is, in AODV, instead of storing the routes a RREQ message

13



traversed, a node stores the last hop that the message comes from. The last hop node is used
as the next hop toward the originating node. When a RREQ message reaches the destination
or a node having a route for the destination, the RREP message doesn’t carry the route.
Instead, the RREP message is forwarded back using the local routing tables along the route
back. When the RREP message returns, the last hop before it reaches the requestor node is
stored in the cache as the next hop node to the destination. AODV scales better than DSR

since it doesn’t use source routing.

As in DSDV [21], sequence numbers are used in the RREQ and RREP messages to ensure
the freshness of the message and to prevent loop from happening. AODV also uses a “Ring
Search Algorithm” to reduce the flooding overhead. That is, the algorithm sets a small ttl

value for the RREQ first and increases it in case the destination is not found.

In addition to using acknowledgements to data messages to detect link failure, AODV uses
explicit HELLO message to detect neighbors leaving. When a neighbor of it is found left, a
special REPP message is sent back to all possible source nodes using the link. Upon receiving

the special REPP message, the source nodes restart a route discovery.

3.2.4 Enhancing Ad Hoc Routing with Dynamic Virtual Infrastructures (CEDAR)

In [25], Sinha et al. proposed a solution solving the high cost of flooding query messages in

reactive ad hoc routing protocols. DSR and AODV are two of such protocols.

The paper uses the result of an earlier paper [26] on constructing a minimal set of nodes
who can communicate with all other nodes in a MANET, a minimal dominating set. The
nodes elected to the dominating set are called “core nodes”. The core nodes are at most three
hops away from each other. A communication tree can be constructed among the core nodes
by exchanging beacon messages in the network. A beacon message is like a link state routing
message carrying the list of core nodes connected to the source node. A beacon message travels
at most two hops. Using the beacon messages, a core node can find a route to any other core

node in its 3 hop neighborhood.

Now, the QUERY messages in DSR and AODV are not broadcast any more. Instead, they

are sent to their neighboring core nodes using unicast. By using unicast, 802.11 ACK and

14



RTS-CTS mechanisms can be used to alleviate conflicts. Only the core node that is directly
connected to the QUERY destination needs to forward the QUERY message to it. Therefore,

the message overhead can be reduced greatly.

This paper presents a better solution than MPR in OLSR [2] for reducing the broadcast cost
of the QUERY based routing protocols. The key to this solution is CEDAR, the distributed
dominating set election mechanism designed in [26]. This mechanism would actually be useful

for any protocol that requires flooding messages throughout the whole network.

3.2.5 Summary

[1] compares DSR, AODV and TORA. Simulation results show that DSR and AODV scale
better than TORA. Also, DSR responds better to topology changes due the use of route caches.
However, AODV has a better memory usage thus scales better. It’s suitable for a large but

more static network.

Reactive routing protocols are more suitable for small MANETS that don’t change very fast.
Hence the cached routes can be reused and the overlay network of core nodes can last longer.
The reduced routing overhead comes at the cost of long delay caused by the query/response
process. The following table summarizes the protocols introduced in this section. None of the

protocols takes power management into consideration.

Name Network | Network Route Discovery Route Stored | Routing
Size Structure Overhead
DSR Small Flat Flooding Route Cache Low
TORA Small Flat Flooding Heights High
AODV Small Flat Flooding Next Hop Low
CEDAR | Large Hierarchical | Core Forwarding n/a Low

3.3 Hybrid Routing Protocols

Proactive protocols response quicker but have a higher routing overhead. They are more
suitable for fast changing, larger sized MANETSs. Reactive protocols are more suitable for
small sized, less dynamic MANETSs. Hybrid rooting protocols try to combine the benefits of
both of them. ZRP [10], proposed by Z. J. Haas et al., divides a network into zones from the

point of view of each single node.
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In ZRP, a node propagates its proactive routing message (distance vector or link state)
to nearby nodes within a fixed number of hops (a routing zone). The limit on the hop count
is called zone radius, a critical parameter of ZRP. Hence, each node has complete routing

information about every single node within its routing zone.

Each node has its own routing zone. The zones of different nodes may have large overlap.
The nodes on the border of a node n;’s routing zone (distance to n; equals to the zone radius)

are called peripheral nodes.

When a node has a packet to send, it checks its proactive routing table. If a route can
be found, the packet is delivered to the destination within the zone. Otherwise, it checks its
inter-zone reactive route cache. If a route can be found, the packet is delivered along the
inter-zone route. Otherwise, the node sends a QUERY message to all of its zone peripheral

nodes. Here, the QUERY message is delivered by unicast.

Upon receipt of a QUERY message, a peripheral node checks its zone routing table and
inter-zone routing cache. If a route can be found, the node returns the route found (inter-
zone route found plus the route carried in the QUERY message) back to the requestor node.
Otherwise, it appends its id to the QUERY message and sent it to its peripheral nodes. This

way, the QUERY message finally reaches the destination in some zone and a route is returned.

The QUERY message is not delivered to the network by broadcast. The way ZRP delivers
QUERY messages is called “bordercast”. That is, a QUERY message is sent to the sender’s
peripheral nodes. The peripheral is going to relay the message to its own peripheral nodes.
This goes on until the destination can be reached. The route returned to a querying node is
not a complete end to end route either. Besides the source and the destination, it contains
the set of peripheral nodes that can forward a packet through a string of routing zones to a

destination, which is located at the last routing zone.

Therefore, the number of QUERY messages needed and the route discovery delay are both
reduced. This requires local proactive routing, which could be costly for large zones. If the

sizes of the zones tend to be small, the local routing can be quite efficient.

When the “zone radius” is 1, the protocol becomes a pure reactive routing protocol. When

the “zone radius” is the radius of the network, the protocol becomes a pure proactive routing
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protocol. An optimal radius need to be found to get the best trade-off.

4 Geographical-based routing protocols

Topology-based routing protocols, although widely used in the wired networks, are not scalable
in MANET. One reason is that MANET doesn’t have a hierarchical structure like the Internet,
which can route packets using IP address prefixes. In most of the protocols we have seen above,
for each destination, a separate routing entry needs to be created. Another reason is that the
topology of a MANET tends to change frequently. A topology changes leads to network wide
routing fluctuation. The routing updates or query/reply messages themselves can easily use

up the bandwidth of the MANET.

Geographical-based routing protocols use location information for routing, instead, based
on the intuition that packet forwarding is to get a packet geographically closer and closer to the
destination. These routing protocols usually require the knowledge of the destination node’s
location through some sort of location service. From its neighbors, a sender forwards a packet

to the one that is closer to the destination.

4.1 Greedy Perimeter Stateless Routing (GPSR)

Brad Karp and H. T. Kung designed GPSR [15], a geographical-based routing protocol that
uses only node positions and local topologies (adjacent nodes) to make routing decisions. The
method assumes that all wireless nodes are roughly on the same plane and there are no obstacles
between the nodes. In addition, the wireless channels are all bidirectional. All node positions

are available to everyone through a location mapping service like the one proposed in [16].

The algorithm operates in two modes, greedy routing and perimeter routing. First, from
its immediate neighbors, each node picks the one that is closest to the destination. If such a
node cannot be found, there must be a void area between the current node and the destination
in which there does not exist a node that is closer to the destination and is within the radio
range of the current node. In this case, a right-hand rule is used to forward a packet around
the void area. The rule is, suppose x receives a packet destined for d from y and cannot find a

node that is closer to d, it forwards the packet to the node that can be found counter-clockwise
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around x from the edge (z,d).

Perimeter routing requires that the graph that the nodes use to represent their knowledge of
the topology be non-crossing. Using one of two rules, each node removes some of its neighbors
from its neighbor list. The process planarizes the local graph into a Gabriel Graph (GG) or
Relative Neighborhood Graph (RNG). For example, for any neighboring nodes u and v, if in
u’s neighbor set, there exists a node w such that d(u,v) < maz[d(u,w), d(v,w)], eliminate the

edge (u,v). This rule turns the graph into an RNG.

GPSR is nearly stateless and uses minimal memory storage. It incurs very low control
message overhead. Beacon messages are the only overhead and they can be piggybacked onto

data packets.

GPSR has the following possible problems. First, geographic routing may not be optimal.
A node closer to the destination may not be a better routing choice. Second, GPSR. doesn’t
consider the influences of obstacles on the protocol. When there are obstacles between wireless
nodes, GPSR maybe not be able to find a good route or even any route at all. Third, the
location service is not free. The location distribution protocol can also limit the size of the

network.

4.2 “Direction” Forwarding (DFR)

In [7], Mario Gerla et al. presents another geographical routing scheme, DFR. The protocol is
designed as a backup routing method to work with distance vector routing algorithms. When a
routing entry for a destination is lost due to node movement, DFR finds a node in the direction

that matches the destination direction the best and forward packets to it.

DFR assumes that every node knows its own coordinates. Thus, by neighbor discovery,
every node knows its neighbors’ locations. During the normal operation of table based routing,
when a new route to a destination is learnt from a neighbor, the position of the neighbor is
recorded together with the route. When a node sends a route update for a destination, this
information is also carried in the message. Therefore, upon receiving a route for a destination,
a node knows the coordinates of the node two hops downstream on the route towards the

destination. In the algorithm, such a node is called a virtual destination.
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For each destination, knowing the virtual destination’s coordinates and its own coordinates,
the direction to the virtual destination can be calculated. Suppose that the coordinate of the
node calculating the direction is (z1, y1) and one of its virtual destination’s coordinate is

(22,y2), the direction to the destination is represented by (r, #), where

r=/(z2 —21)? + (2 — 11)? (1)
0 = tan_l(% (2)

If there are multiple virtual destinations, the 6 to the destination node is the average of

the 0’s of all the virtual destinations.

When a route can’t be found using the normal distance vector routing, the algorithm finds
a neighbor whose direction matches the direction to the virtual destination the best. If there
are multiple virtual destinations, the one that matches the average direction to the destination

node best is chosen.

DFR is simple and doesn’t require a node to know the position of all the nodes in the
network like GPSR. Therefore, it causes very little overhead. However, DFR is not a pure
geographical based routing protocol since it need to work together with an existing distance

vector routing protocol.

5 Address Allocation

Address allocation in a MANET is difficult since there is no centralized entity that can provide
DHCP service. Wireless nodes may move around. This problem was initially ignored since
addresses can be manually configured. However, when the number of addresses is limited and
many different devices may join and leave the MANET, a reliable address allocation scheme is
needed. Due to the ad hoc properties of the MANET, an address allocation mechanism must

be completely distributed.

The measures that we use to evaluate an address allocation scheme are: network supported,
chance of duplicate address allocation, chance of address leakage, address allocation delay and

partition merging capability.
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5.1 IP Address Auto-Configuration for Ad Hoc Networks (IAAC)

In [23], Charles Perkins presents a simple solution to address allocation in ad hoc networks.
The idea is, in a MANET running DSR or AODV as its routing protocol, a node joining
the network picks a random address from the range 2048-65534 of a known address block
169.254/16 and sends a DSR or AODV RREQ message to the network for the address picked.
For the RREP message to be returned, the new node picks a random address from the range
1-2047 of the same address block and uses it as a temporary address. If a route can be found
toward the picked address, the address must have already been used. The new node picks a
new address and tries again. If no route can be found for the address, the new node tries the
same query for a few rounds to deal with message losses. If no reply can be received, the new

node uses the address.

The solution is simple and efficient. However, it relies on two specific routing protocols. In
addition, the solution doesn’t consider the situation when the network partitions. When that
happens, an address belong to a node in one partition may be allocated to a new node. When

the partition recovers, there could be address duplications.

Although the temporary addresses is only used by a node for a very short period of time,
there is chance that two new nodes pick the same temporary address. Also, two new nodes
can accidentally pick the same address in the range 2048-65534 at the same time while not
knowing the existence of each other. The algorithm assumes that the chance that this happens

is very low. Hence, there is a finite probability that this algorithm might fail.

5.2 MANETconf: Configuration of hosts in a mobile ad hoc network

In [17], another method, MANETconf, is introduced. Every node maintains two sets, one for
“allocated addresses”, the other for “allocation pending addresses”. When a node wants to
join a MANET, it picks one of its neighbors who is already in the MANET as its address
allocation proxy. The proxy then picks an address which is not in either of its two address
sets. Then, the proxy floods query messages on the MANET to see if any node already uses
the address. If a proxy can’t be found after a number of retries, the node treats itself as the

first node in the network and gives itself a random IP address.
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Upon receiving a query message, every node adds the address to its “pending” set. If the
address already exists in either of the two sets, the node responds to the query message with a
NO message Otherwise, it sends a YES message. After the proxy has collected YES messages
from all the nodes in its “allocated” set, it allocates the address to the new node. Otherwise,
the proxy picks another address and tries it again. After the address has been given to a new
node, the proxy floods another message to the network telling every node that the address has
been allocated. On receipt of this message, every node moves the address from the “pending”
set to the “allocated” set. Otherwise, an address in the “pending” set is deleted when a timer

expires so that other nodes can use it.

If the new node moves away from the proxy before the address allocation finishes, the new
node picks another proxy and tells it about the old proxy. The new proxy asks the old proxy

for the address allocated for the new node.

When a node leaves a network, it broadcasts an AddressCleanup message, which tells every

node in the network to remove its address from their “allocated address” list.

When a node leaves a network before it can broadcast the AddressCleanup message, the
departure of the node is detected when another node tries to join the network. The proxy
is supposed to collect YES/NO answers from all the nodes in the “allocated address” set. If
no response from an address can be heard after a number of retries, the proxy broadcasts an

AddressCleanup message for the address.

The method also considers how to deal with network partitioning and merging. Partitioning

is easy to handle. Node in one partition just treat the nodes in the other as having left.

To deal with partition mergers, the algorithm defines a partition ID, UUID. Each partition
has a unique id determined by the node with the lowest IP address. This can be determined
quickly by using the allocated set. When the network partitions, each partition gets a different
UUID. Whenever two nodes meet, if they both have addresses allocated, they compare their
UUID’s. If the UUID’s are the same, nothing needs to be done. If the UUID’s are different,
the two nodes start the merging process. A node of one partition adds the “allocated address”
set of the other partition to its own “allocated address” set. If there is any conflict (two nodes

share the same address), the node that has fewer TCP connections gives up its address and
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requests a new one.

The method is more sophisticated than the one above. However, it involves too much

message flooding. The solution only works for small MANETS.

5.3 Zero-Maintenance Address Allocation (ZAL)

The essential problem in address allocation is duplicate address detection (DAD). MANETconf

[17] is inefficient since each address allocation needs to be confirmed by the whole network.

Zal [12], designed by Z. Hu et al., is a mechanism to distribute IP addresses to wireless
nodes in MANET’s. The method requires very few DAD operations thus the control overhead
can be very low. The basic idea is starting from a initial node in the network, which owns the
complete address block used by the network, an address block is split and given to new nodes.

Each new node picks one address from its address block for itself.

When a node joins a network, it asks its neighbors for addresses. Upon receipt of such
a request, a node splits off a piece of its address block to the new node. If a new node gets
multiple address block offers, it picks the largest one. Since this is like a binary splitting,
an address block of 2™ address can be used for nodes at most n hops away from the initial
node. If a node is too far away to get a share of the initial address block, an address from a
global temporary address pool is used. As soon as the node meets a neighbor that still has

unallocated addresses, it gives up the temporary address and ask the neighbor for addresses.

When multiple nodes pick addresses from the global temporary address pool, address du-
plication can happen. This problem can be solved by methods detecting address duplication.
Since address duplication can only happen on this global temporary address pool, the chance
this happens is low. When node moves, a node using a temporary address may meet a node

still having addresses to share and get a permanent address.

To deal with the unfair address allocation among the nodes in a network which leads to fast
address depletion, a distribution equalization algorithm is designed to distribute excess address
space from a node to neighboring nodes. A node measures the total size of the address blocks
owned by its immediate neighbors. If the total size is less than a threshold, the node gives a

fraction of its address block to the neighbor with the least number of addresses in such a way
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that the total size can reach the threshold. This process requires only one hop communication.

To deal with network partition merger, the protocol also gives each partition an id, the
partition id of a network is determined by the initial node of a network. When two nodes meet
and they have the same partition id, nothing needs to be done. If they have different partition
id’s, the protocol converts node addresses of the smaller network to addresses belonging to
the larger network. Starting from the border nodes, the nodes belongs to the smaller network
return their address to neighbors still in the smaller network and request address blocks from

the bigger network. Eventually, all the nodes in the smaller network get new addresses.

The strength of this protocol is its simplicity, but it has a few problems. First, the address
usage of this protocol is not efficient. The address spaces required by a network increases
exponentially with the increase of the diameter of the network. Second, an initial node is
required. A leader election method might be necessary when there are multiple nodes starting
the network at the same time. The paper didn’t mention this. Third, a problem in MANET
Address Allocation is address leaking. It means some allocated addresses never get recovered
when nodes owning them crash or suddenly leave so that they have no chance to return the
addresses to their neighbors. The protocol only assumes that the chance that this happens is

low.

5.4 Conclusion

The following table compares the protocols introduced in this section. The current solutions are
either not reliable or too expensive. None of them can support large networks. Optimization
methods that have been used by MANET routing protocols to reduce overheads can also be

applied to address allocation since it also need network wide information flooding.

Name Overhead Address Leakage Address duplication Partition Merging
TAAC Low Low prob. Medium prob. Not supported
MANETconf | High Low prob. Low prob. Supported

ZAL Low High prob. Low prob. Supported
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6 Model Checking

There are a number of methods that can be used to test whether a system satisfies a set of
properties or not: testing, simulation, theorem proving and model checking. Testing requires
test cases and implementations of a system. Thus it needs a lot of manual works. Simulation
can be done for a system using an abstract model. It is closely related to model checking.

Theorem proving is time-consuming and hard to automate.

The idea of model checking is to create a high level model for a system. A model checker
traverses every single possible execution path for the model. While traversing, the model
checker checks the states against a set of logic formulas. If a formula evaluates to false, a
counter-example, consisting of the current execution path, is returned. Otherwise, an answer

true is returned to show that, for the executions checked, the model satisfies the formulas.

The benefit of model checking is that, except for preparation of the model, it is completely
automatic and usually very fast. Also, a complete implementation of a system is not necessary.
An abstract model of the system may suffice.

The main disadvantage of model checking is the problem of “state explosion”. That is, for
large systems using complicated data structures and having many components, the size of the
model can be too large when the transition relations are expressed using adjacency lists. Also,
traversing every single path in a model to verify a set of properties can take exponential time.

In this section, we talk about three solutions, the first is basic model checking using tem-
poral logic. The second uses a novel representation to reduce the size of models. The third

uses a randomized algorithm to check models in order to save time.

6.1 Temporal Logic Model Checking

Chapters 3, 4 in [4] introduce the traditional way of model checking using temporal logic. A
model M is defined as a Kripke structure M = (Sp, S, R, L), where Sy is the set of initial
states, S is the set of states in the model, R = S x S is the set of transition relations, L is the

set of properties satisfied by each state.

A temporal logic formula is a formula composed of temporal logic operators and proposi-
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tional logic formulas. In temporal logic, A and E are called path quantifiers, which specify
how paths from the current state satisfy a property. A means for all paths. E means there
exists a path. F(eventually), U(until), G(globally) and X (next), etc. are called temporal
operators, which specify how a single path starting from the current state satisfies a property.
For example, s F AG(x = 1) means for all paths starting from a state s, the property x = 1
is satisfied on every following state. Another example, s F EX(f; V f2) means there exists a

path starting for a state s, on which the next state that satisfies either formula f; or f.

Computation Tree Logic (CTL) are those temporal logic formulas in which each temporal
operator must be preceded by a path quantifier (A or E). For example, EX, AX(AU), etc.
CTL evaluates the properties for the execution paths starting from a state. There are also

LTL formulas which only evaluate the properties of a single execution path.

Temporal logic model checking is a labeling algorithm for the states in a model. First,
for all the atomic propositional formulas that are in the temporal logic formulas to be tested,
mark each state with those formulas that the state satisfies. Then, based on the result, using a
combination of routines like CheckEU, CheckEX, CheckEG, mark each state with the proper-
ties it satisfies. The three routines can handle all CTL formulas. For example, CheckEX tests
whether there exists a path starting from a state such that the next state on the path satisfies

a formula. The method suffers from state explosion.

6.2 Symbolic Model Checking

In [3], Clarke reviews the model checking methods and focuses on the implementation of model
checking using OBDDs. In 1987, McMillan found that logic formulas and transition relations in
large systems can be expressed symbolically using ordered binary decision diagrams (OBDDs).
Using this representation method, he was able to check systems with over 10%° states. Since

then, the number has increased to over 1020,

A formula’s Binary Decision Tree (BDT) is a tree representation of the formula’s truth
table. On the BDT, each path from the root to a leaf represents a truth setting for the ordered
list of all the boolean variables and the leaf node is labeled with the truth output. OBDDs is

a compact way to represent boolean formulas. An OBDD is a Directed Acyclic Graph (DAG)
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derived from a BDT using an algorithm that removes all redundant vertices and edges from
the BDT. The order of the variables appearing in the BDT is important to the final size of the
OBDD. Variables appearing close to each other in the formula should also be close each other

in the BDT.

Multiple formulas can be represented by a single multi-root OBDD if there are shared
subgraphs in the OBDDs for the formulas. Using this method, more space can be saved. In

addition, if two formulas share the same set of paths in such an OBDD, they are equivalent.

A model (Sp, S, R, L) can be encoded by using three types of OBDDs. Sy and S are two
sets of assignments of the state variables. The assignments can be encoded using a truth table.
Therefore, Sy and S can be represented by an OBDD of the truth table. The propositional
logic part of L can also be represented by truth tables. Each state can thus be mapped with
a set of OBDDs of the properties satisfied by it. R is a set of the state variable assignments
of the state pairs that have transition relations. The assignments can still be encoded into
truth tables and OBDDs. For example, state (a,—b) have a relation to state(a,b) and the state
variables are a and b. We need to construct an OBDD for formula a A =b A a’ A V. a’ and ¥

are used to express a and b in the successor state.

Model checking on a model represented by OBDDs operates on the sets of states and transi-
tions instead of on individual states and transitions. To do this, we use fixpoint characterization
of temporal logic operators.

Definition: A set S’ C S is a fixpoint of a function 7 : P(S) — P(S) if 7(5") = 5".

Here 7 is called a predicate transformer. T is monotonic if P C Q = 7(P) C 7(Q). When
7 is monotonic, there is a least fixpoint (uZ.7(Z)) and a greatest fixpoint (vZ.7(Z)) for set Z.

uZ.7(Z) can be found by recursively calculating 7(Z) from Z = ¢, where ¢ is the empty
set. vZ.7(Z) can be found by recursively calculating 7(Z) from Z = S, where S is the complete
set of states.

For every Computational Tree Logic (CTL) operator combination, we have a fixpoint
characterization equation that converts the problem of looking for states satisfying a for-

mula into a problem of looking for least fixpoints and greatest fixpoints on the model with a

predicate transformer 7. For example, we have EGf = vZ.f N\EXZ, where Z is a set of states.
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Using the equation, the problem of finding all the states from which there exists a path on
which every state satisfies f becomes the problem of looking for a greatest fixpoint starting
from set S using 7(Z) = f N EXZ. EXZ can be solved trivially by checking the OBDD of
the transition relations. For each state in Z if there exists a next state such that the OBDD

of Z leads to true, the formula EX Z save the state in the output set.

This method does every computation using OBDD operations, reducing both the time and

space complexity.

6.3 Monte Carlo Model Checking

In [8], Radu Grosu and Scott Smolka introduce the Monte Carlo Model Checking method,
MC?. Monte Carlo methods are the set of randomized algorithms that can find an answer

quickly with a certain confidence ratio, the probability that the answer is correct.

Biichi automata is a set of finite automata accepting infinite length traces. To accept
infinite traces, every path in a Biichi automaton ends with a lasso (a loop). If the lasso
contains at least one accepting state, it’s called an accepting lasso. Otherwise, a rejecting
lasso. A trace ending up in an accepting lasso is accepted by the automaton. A trace ending

up in a rejecting lasso is rejected by the automaton.

With the specification of a system S, a Biichi automaton, namely Bg, with every state
marked as accepting can be created. With the temporal logic formulas specifying the properties
the system needs to satisfy, namely ¢, another Biichi automation B-, can be constructed. This

automaton only accepts traces that don’t satisfy the formula .

Now, the model checking on the automaton can be reduced to checking if the intersection
of the two automata above, Bg x B-, doesn’t contain any accepting lasso. If there exists such
an accepting lasso, it means there exists an executing trace for the system that can be accepted

by the Biichi automaton B-,. Such a trace is reported as a counterexample.

A modified Depth First Search (DFS) algorithm can be used to traverse every single possible
execution trace to look for accepting lassos. If no such lasso can be found, the algorithm gives

answer true. Otherwise, the accepting lasso is returned as a counterexample.

Using randomized algorithms, we can just retry the search for a number of traces and make
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a conclusion with a certain confidence ratio. Grosu et al. find out that using two parameters €
and § , MC? takes N = In(d)/In(1 — €) random samples (random walks ending in a cycle, i.e
lassos) to get a result with error probability less than §. e is the estimated maximum Bernoulli

probability that a random walk results in an accepting lasso.

The paper also includes optimizations methods that can reduce the space complexity of
the algorithm by doing on the fly automaton generation. Hence, the time complexity of the
algorithm is O(N % D) and space complexity is O(D), where D is B’s recurrence diameter, N is
the number of retries. Experimental results demonstrate that M C? is fast, memory-efficient,

and scales well.

6.4 TIOA language

The Timed Input/Output Automaton (TIOA) [6] is a formal language designed by Dilsun
K. Kaynar, Nancy Lynch et al. from Massachusetts Institute of Technology, Boston. It can
be used to model distributed systems with timing constraints as groups of interacting state
machines which can be composed together. Systems can be modeled with different levels of
details for the specific purpose of model checking. Properties a system needs to satisfy are
defined as invariants that can be checked during simulations. A simulation toolset for the
TTOA language, “Tempo”, has been developed. Using the TIOA language, we have developed
a model for a MANET channel and a model for the JAVeLEN protocol. In the appendix, the

TTOA model of the wireless channel is given.

6.5 AGATE Tool Suite

Another tool that will be used in my research is Agate, a tool suite developed by our group to
generate state machines from network traces. Currently, the tool suite accepts libpcap traces.
It reads protocol definitions, creates protocol stacks, reads traces and stores the packet content
into a database. Using the database, graphic state machines and TIOA models relating to a

specific property can be generated from the trace.
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7 Summary

In this report, routing protocols in different categories have been described. MANET routing
is a very popular research topic nowadays. Many routing protocols have been designed. Due

to the limited use of real MANET’s, the protocols are largely untested in the real world.

For small networks, existing protocols like DSR, AODV, OLSR are popular although op-
timization can still be done to improve the power consumption of the protocols. For large
sized MANETS, the solution may be to divide the network into hierarchies and use a combi-
nation of proactive and reactive routing protocols. Otherwise, the routing overhead itself can
congest the network. Geographic routing can reduce routing overhead. However, a real world
network is not as ideal as assumed by the existing research. Location services incur additional
overhead. GPS service may not be available everywhere. Obstacles may lie between wireless
nodes. More work need to be done in this area. Due to the limited deployment of MANETS,
most of the MANET routing protocols are only evaluated by simulation. How these routing

protocols would behave in real implementations is unknown.

The second reviewed area is address allocation. This is a important problem when a
MANET is big and dynamic. Current solutions all have the problem of address duplication

and address leaking. They are still either too costly or too unreliable.

The third area of the report is model checking. The knowledge of modeling checking meth-
ods facilitates the checking of the protocols in the first two areas. In my research, properties
of MANET routing and address allocation protocol will be investigated. Some protocols will
be designed or modified, modeled by TIOA and finally evaluated using Monte Carlo model

checking.
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A  TIOA model of the wireless channel

vocabulary Packets
types Packet tuple[source, dest: Nat, pos_x, pos_y: Reall
end
automaton Channel(ttl: Real, thresholdR: Int) imports Packets
signature
% node_id: the sender
input send(p:Packet)
% node_id: the reader
output read(p:Packet, node_id: Nat)
% node_id: the node’s id
input register(node_id: Nat, pos_x, pos_y: Real)
% discards packets
internal discard
states
ttl: Real := 1,
thresholdR: Int:=1,
{1,

timeQueue: Seq[Real] := {},

inQueue: Seq[Packet]

flags: Array[Nat, Bool] := constant(true),
positions_x: Array[Nat, Real],
positions_y: Array[Nat, Reall,
now: Real := 0,
% the set of all the nodes in the network
dests:Set[Nat] := insert(4,insert(3,insert(2,insert(1,{})))),
% temporary holder for a packet
tempP: Packet
transitions

% receive a packet from a node
input send(p)
eff

inQueue := inQueue |- p;

timeQueue := timeQueue |- now;

% allow some nodes to receive depending on the packet’s destination

% broadcast or unicast

if (len(inQueue) = 1) then

if p.dest = O then
for j:Nat in dests do flags[j] := false od
else

flags[p.dest] := false
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% remove a packet from the buffer
internal discard
pre now = head(timeQueue)+ttl
eff
inQueue := tail(inQueue);
timeQueue := tail(timeQueue);
tempP := head(inQueue);
% allow some nodes to receive depending on the packet’s destination
% broadcast or unicast
if len(inQueue) ~“= O then
if tempP.dest = O then
for j:Nat in dests do flags[j] := false od
else

flags[tempP.dest] := false

fi;
% send a packet to a specific node when there is no
% conflict, otherwise ignore all packets
output read(p, node_id)
pre

flags[node_id] = false /\ now < head(timeQueue) + ttl

/\ p = head(inQueue) /\ ((p.pos_x - positions_x[node_id])
**2) + ((p.pos_y - positions_y[node_id])**2) < thresholdR

eff

flags[node_id] := true;

input register(node_id, pos_x, pos_y)

eff
positions_x[node_id] := pos_x;
positions_y[node_id] := pos_y;
trajectories

trajdef clock
stop when head(timeQueue) + now = ttl

evolve d(now)=1
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