
Spanning Tree
Some facts about spanning trees in undirected graphs:

Acyclic
Number of edges is 1 less than the number of nodes
Connected
Root has no parent
Any connected subgraph of a graph with (number of nodes)-1 edges is a tree

Applications
Broadcast
Convergecast
Build a loop-free topology for bridges
Min-cost communication (e.g., min latency/energy in a cycle-free structure)

BFS Spanning Tree
The tree is defined by the parent pointers; it will only be a BFS tree if the network is
synchronous.  Otherwise, it can be any tree rooted at the start node.

Min-weight spanning tree
Minimize total weight of all edges in the tree.  We will show a synchronous algorithm
first, then a much more complex asynchronous algorithm.

Assume: G=(V,E) undirected; weights on edges are known by adjacent processes;
processes have UID’s; n (size of graph) is known

Each node will decide which of its adjacent edges is or is not in the tree.

Theory
A spanning tree of G is a tree connecting all nodes, with edges selected from G.  A
spanning forest is a collection of trees spanning all the nodes, with edges selected from
G.  All MST algorithms are special cases of a general strategy.

1) Start with trivial spanning forest of n separate nodes.
2) Merge components along edges that connect components until all are connected

(but no cycles).
The trick is to make sure that we merge only along edges that are minimum weight
outgoing edges of some component.

Justification:
Lemma 4.3. (p 64) Let (Vi, Ei) 1 <= i <= k be a spanning forest, with k>1
Fix any i.  Let e be an edge of smallest weight among the set of edges with exactly one
endpoint in Vi.  Then there is a spanning tree for G that

1) Includes !jEj

2) Includes e



3) Has min weight among all spanning trees that include !jEj

Proof:
Suppose this is false, then there is some T that is a spanning tree for G and includes !jEj,
doesn’t contain e, and has weight strictly less than the weight of any spanning tree that
includes both !jEj and e.

We can construct T’ by adding e to T.  This contains a cycle, which must contain another
edge outgoing from the same component (Vi,Ei).  The weight of e’ must be greater than
or equal to the weight of e.  Remove e’ from T’.  The result is a spanning tree that
contains both !jEj and e and has weight no greater than T’.  This contradicts the choice of
T.

Strategy for MST
See page 65.  Repeatedly:

Choose component i
Choose any least-weight outgoing edge from i and add (merging two components)

Sequential MST are special cases:
Prim-Dijkstra adds 1 more node on each iteration
Kruskal adds min weight edge globally

Distributed version:  We want to choose edges concurrently for multiple components –
but (if multiple edges have the same weight) this can produce cycles – example 4.4.1.
Assume all edge weights are distinct (we can get the same effect by breaking ties with
UID’s.

Lemma 4.4. If all edge weights are distinct, then there is a unique MST.

The concurrent strategy:
At each stage, suppose (inductively) that the forest produced so far is part of the unique
MST.  Each component chooses a least-cost outgoing edge.   Each of these is in the
(unique) MST, by Lemma 4.3.  So, all are ok – add them all.

The synchronous algorithm
Main idea: The algorithm proceeds by levels.  It starts at level 0, with each component
containing 1 node and no edges.  At level 1, nodes connect along their minimum-weight
outgoing edge (MWOE) to their nearest neighbor.  Each component now has at least 2
nodes.  At level k, with each component having at least 2k nodes, each component selects
an edge to connect it to its nearest neighbor, so that at level k+1 each component has at
least 2k+1 nodes.
Finding the MWOE: To make this work, we also need a way to identify the MWOE of a
component.  The algorithm requires that a leader has been chosen for each component.
The leader’s UID serves as the component ID.  We’ll discuss the choice of leader shortly.
This leader broadcasts a search request (using BFS) for the MWOE.  Each node



determines its own MWOE by sending a test message along each outgoing edge, asking
whether the neighbor is in the same component (using the UID of the leader).  Among
those edges not leading to the same component, the node chooses the MWOE and
responds with the edge and its weight in a convergecast to the leader.  Then the leader
can pick the overall MWOE.
Combining components: Once the leaders have picked MWOE’s, they tell the processes
adjacent to the MWOE’s to mark them as selected as part of the spanning tree.
Leader selection:  To select a new leader, note that there is a unique edge e that is the
common MWOE of two of the level k components in the group.  Let the new leader be
the endpoint of e having the larger UID.  Note the leader election is efficient, because the
leader can identify himself by asking his neighbor along the MWOE if that edge is also
the neighbor’s MWOE.
Propagating the leader id: Use BFS to propagate the leader ID to all components.
Synchronizing component levels: Note that nodes must be at the same level before they
can determine accurately whether they are in the same component; for this reason, a pre-
determined number of rounds is used for each level, based on the size of the network.
This is why the size of the network must be known.
Termination:  When the search request fails to find any outgoing edges, the algorithm is
complete and the leader can use BFS to inform the other nodes.

Adaptation for asynchronous case
Difficulties (p 511)
1) Since we can’t run by rounds to keep nodes at the same level, determination of
whether two nodes are in the same component may be done incorrectly.
2) Inefficiencies may arise due to unbalanced combining of components
3) Components at higher levels might interfere with searches for MWOE by components
at lower levels (how?)

Strategy
Maintain a number at each node representing the level of its component.
Define two combining operations, merge and absorb.
merge is for components at the same level that have a common MWOE (the new leader
and component ID are chosen accordingly).
absorb is for components at different levels in which the lower level component has a
MWOE leading to the higher level component.  Its level is then raised – this is not a new
component.

This strategy guarantees that the components at level k have at least 2k nodes.  Also, any
sequence of legal merges and absorbs leads eventually to a single component, ie, a
spanning tree.

Cisco Spanning Tree (by Radia Perlman)
Not a min-weight spanning tree, but a shortest-distance-to-root spanning tree.

Algorhyme
Radia Perlman, the inventor of the algorithm, summarized it in a poem titled "Algorhyme"_(adapted from



"Trees", by Joyce Kilmer):

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span
So packets can reach every LAN.
First the Root must be selected
By ID it is elected.
Least cost paths from Root are traced
In the tree these paths are placed.
A mesh is made by folks like me
Then bridges find a spanning tree.

Note that BFS computes a spanning tree (the parent pointers identify the edges), once a
root has been selected.  How many edges are there in a spanning tree?

Example

           

           

How does the Cisco STP work
When the protocol stabilizes, the state should be as follows:

1) Root bridge: The process (switch) with the lowest MAC address (or lowest
combined priority+MAC address) is the root.  This uses a leader election
algorithm.



2) Root ports: Each bridge has one root port.  The root port on each bridge is the
port of the bridge with the smallest distance from the root.  If two ports are
equidistant from the root, then the one going to the bridge with the lower MAC
address is the root port.  This uses a breadth-first search, if we assume rounds;
however, if the network is asyncrhonous, it’s more complicated.

3) Designated ports: Each network segment (connecting bridges) has a designated
port.  Messages put on that network segment are forwarded to the rest of the
network through the designated port.  The designated port is on the bridge closest
to the root.  If there is a tie, it is on the bridge with the lowest MAC address. If the
bridge selected by this rule has multiple ports on a network, it is the port with the
lowest id.

Algorithm
All processes send a BPDU (Basic Protocol Data Unit) at each round (actually, default is
every 2 seconds – but we will describe this as a synchronous algorithm, running in
rounds).  The BPDU contains the id (MAC address) of the sending process, the id of the
process it thinks is the root, and the distance from the sending process to its presumed
root.

id:Int
id:Int
cost:Int

When a process receives a BPDU, it compares the ID of the root (designated by the
neighbor that sent the BPDU) to the local value for the ID of the root.  If the new root ID
is lower, it replaces its local root ID with the new one and adds one to the cost in the
incoming BPDU and makes that its cost to the root.  If it receives different BPDU’s
having different roots, it uses the “best,” i.e., the one with the lowest root ID and the
lowest distance (if root Ids are the same).
Finally it designates the port to which the sending neighbor is connected as the root port.
(Effectively choosing its parent).

Designated ports are then chosen: for each network it is on, the bridge checks incoming
BPDUs.  If its own cost is lowest, or if it is tied with another bridge on cost and its id is
smaller, it is the designated bridge, and its port on that network segment is the designated
port.  If it has multiple ports on the network segment, it chooses the one with the lowest
id.

Relationship to BFS:
If we ignore all BPDU’s except those carrying the ID of the eventual root, it will look just
like BFS.  This is the basic idea behind simulation, which I introduce next.



Hierarchical proofs
This is an important strategy for complex algorithms.  We formulate the algorithm in a
series of levels.  For example, we could have a high-level centralized algorithm (easy to
prove, almost a specification), then do a simple but inefficient decentralized version, then
do an optimized version.
High level version:

Simulation Relations
Lower levels are harder to understand, so we relate them to higher levels with a
simulation invariant rather than trying to deal with them directly.  This is similar to the
simulation relation for synchronous algorithms:
Run them side by side.
Define an invariant relating the states.
The invariant is called a simulation relation and is usually shown via induction.

Show that for each execution of the lower-level algorithm, there exists a related execution
of the higher-level algorithm.

Definition: Assume A and B have the same external signature.  Let f be a binary relation
on states(A)xstates(B).
Notation: (s,u) "f or u"f(s)
Then f is a simulation relation from A to B provided that



1. If s "start(A) then f(s) # start(B) $ %
2. If s,u are reachable states of A and B respectively, with u"f(s), and if (s, &, s’) is a

transition of A, then there is an execution fragment ' of B starting with u, and
ending with u’ "f(s’), with trace(') = trace(&).

Theorem.  If there’s a simulation relation from A to B then traces(A) ( traces(B).
Proof: Take any execution of A, and iteratively construct the corresponding execution of
B.

Example proof
Example: Implementing the reliable FIFO channel with TCP (sort of)

Altered spec
Reliable FIFO assumes that all messages are eventually delivered.  When we deal with
real networks, we know that cables can break and as a result a channel entirely disappears
for a period of time.  So the Reliable FIFO spec can't  be implemented in a real network;
we have to modify it somewhat to address reality.

Add fail(i.j) transition to Reliable FIFO: all messages up to some point get sent in order.
At some point there is a fail.  No more messages can be sent after some point, but a
subset of the messages in the queue can be received.

either there is a fail action or the cause is surjective.
if a send cause(&) is in range(cause) then so is every earlier send



Implementation
This is an adaptation of TCP.

Automata Descriptions:
Sender(i,j) puts new message in Sender(i,j).Array[last+1] and increments last.
It sends messages in Sender(i,j).Array[lastAcked+1...last] repeatedly until it
receives ack1(n,i,j).  Then it sets lastAcked to max(lastAcked, n).

Loser(i,j) puts messages in Loser(i,j).Mset when send1(m,i,j) happens.  The
precondition for send2(m,i,j) and for delete(m,i,j) is that m " Loser(i,j).Mset.
The effect of delete(m,i,j) is to remove the message from the multi-set, but
send2(m,i,j) causes no change.  This means that Loser(i,j) delivers each message to
Recover(i,j) 0 or more times.

Recover(i,j) puts each message in its proper position in Recover(i,j).Array.
Recover(i,j).ack2(n,i,j) is enabled when there are no holes in
Recover(i,j).Array[1..n-1] and n > lastAckSent.  Its effect is to update
lastAckSent to n.
Recover(i,j).receive(m,i,j) is enabled if m =
Recover(i,j).Array[lastReceived+1] and lastAckSent > lastReceived+1.
Simulation relation
We are comparing the composition of Sender, Loser, and Recover with all actions
hidden except send(m,i,j), receive(m,i,j), and fail(i,j).  We need to show that
the traces of this composition are contained in the traces of Channel(i,j), modified by
the fail action.



The important parts of the state are:
Sender(i,j).Array
Recover(i,j).Array
lastReceived
lastAcked

Facts:
Just to develop some intuition about what's going on:

Recover(i,j).Array is a prefix of Sender(i,j).Array[1...lastSent] (with holes)
Recover(i,j).Array[1...lastReceived] extends
Sender(i,j).Array[1...lastAcked]

Recover(i,j).Array[1...lastAckSent] is the messages already delivered to the
receiving application plus those that are ready to be delivered

The simulation relation
The correspondence is that Channel(i,j).Queue corresponds to any state with all
messages in Channel(i,j).Queue sent and no messages in Channel(i,j).Queue
received (yet) – that is,

Channel(i,j).Queue corresponds to all states such that there exists n with
Send(i,j).Array[n...last] = Channel(i,j).Queue and
n = Recover(i,j).lastReceived+1

Proof that the above is a simulation relation:
We must show that the  relation is preserved by all actions.  Consider actions of the
composition:
send adds a message to Channel(i,j).Queue and to Sender(i,j).Array[last+1] –
this preserves the simulation relation
send1, send2 don’t change any of the relevant parts of the state
receive increases Recover(i,j).lastReceived and Recover(i,j).lastAckSent;
also removes an element from Channel(i,j).Queue – this preserves the simulation
relation
ack2 and ack1 have no effect on relevant parts of state
fail can happen any time but after fail, Sender quits doing anything - the
only other thing that can happen is that messages get through the system
and are received.  In Channel, no more messages can be sent but some subset of the
messages already in the channel can be delivered.


