Wireless Mobile Ad-hoc Networks
and Modeling of Wireless Channels

Jiang Wu
City University of New York
March 29, 2007
Outline

- Mobile Ad Hoc network behavior
- MANET routing and power saving algorithms
- Modeling the wireless channel
 - A TIOA model and simulation output
Mobile Ad-hoc Wireless Networks

- **MANET**: a network without a wired infrastructure.
 - No cable, no wired hub, switch, router or access point
 - Wireless nodes may move.
- Easy to deploy
- Useful for disaster rescue, battle field communication and sensor network, etc.
Limitations of MANET

- Power: network life limited by battery life
- Short radio range
- Packet Collisions
- Network topology changes
- Address allocation
Power

- Network life limited by battery life
- Wireless transmission eats power
 - One third of a laptop’s power
 - Over half of a PDA’s power
- Power aware
 - forwarding
 - routing
Short Radio Range

- Radio fades quickly and subjects to interference
- Trade-off between power consumption and range
 - Result: Typical Radio Range on the order of a few hundred meters
- Problems:
 - Denser network needed
 - More forwarding hops
 - More routing overhead
 - More end to end packet loss
Packet Collision

- Sending and receiving can’t happen at the same time
- No two transmissions can happen at the same time on the same channel
Broadcasting

- Unlike wired network, every hop is broadcasting
- Every packet can reach every node in the radio range of the sender
 - As in Ethernet
- Flooding messages make the problem even worse
 - Wasted bandwidth
 - High collision rate
Hidden Terminal Problem

- Node A tries to send a packet to the hub, Node B tries to send at the same time.
- They can’t sense each other.
- Collision happens.
- Solution:
 - RTS-CTS
 - Request to send
 - Confirm to send
Exposed Terminal Problem

- S1 tries to send a packet to R1, S2 tries to send a packet to R2
- Suppose S1 sends first
 - By carrier sensing, S2 won’t send although this transmission won’t collide with S1’s transmission
- Solution: an RTS without a following CTS
Node movement

- Node may move around
- Network topology may change rapidly
 - Network converges slowly
- Dynamic address allocation needed
Address Allocation

- Difficulties
 - No central entity offering DHCP service
 - Networks may partition and merge
 - Address Duplication and Leakage

- Necessity
 - Large number of nodes may come and go
MANET Routing

- Traditional Routing doesn’t work well in MANETs
 - No subnet
 - Network topology changes quickly
 - Address allocation
- High routing overhead with low channel bandwidth
MANET algorithms

- Multi-Point Relaying
 - Reducing routing overhead and conflicts
- JAVeLEN
 - Power management by duty cycling

We assume that the wireless nodes already got addresses assigned somehow.
Multi-Point Relaying

- Part of OLSR protocol, RFC 3626. Widely used.

- Multi-Point Relaying
 - On a node (n1)
 - Use Hello messages to collect 2-hop topology
 - Select a minimal set of 1-hop neighbors to cover all 2-hop neighbors (MPR set)
 - Only nodes in MPR set forward Link State Routing messages for the selector
MPR cont.

- Only nodes picked by some node as MPR nodes generate LSR messages
- A LSR message only contains the nodes who pick the sender as an MPR node (MPR selectors)

- MPR can
 - Reduce routing overhead
 - Alleviate packet collisions

- Packet collisions still happen
Joint Architecture Vision for Low Energy Networking (JAVeLEN)

- BBN technologies, 2006
- Power Management
 - 2 Channels, High/Low Power (data/control)
 - Divide time into slots
 - Unique receiving schedules based on Pseudo Random Number sequences and thresholds.
 - A node exchanges schedules with neighbors.
 - Using the schedule, a node turns on low power channel
 - Upon receipt of a hail message, turn on high power channel
 - To send a data message, a node
 - Checks receiver’s schedule,
 - If it is scheduled for receiving, send Hail message, then send data.
Routing, a modified version of OLSR
- A power efficient MPR set
- Forward LSR messages with different probabilities.

Advantages: power efficient, collision avoidance

Problems
- Complicated Power control
- Need network wide clock synchronization
Modeling Ad Hoc Channel

- Packet format
- Wireless channel
 - Send: input
 - Read: output
 - Discard: internal
 - Register: input
- Node Movement
 - Waypoint model
Packet Format

- **seq**: the sequence number of the packet
- **source, dest**: the source and destination of a packet
- **pos_x, pos_y**: the position the packet comes from

```haskell
vocabulary Packet
  types Packet tuple[seq: Nat, source, dest: Nat, pos_x, pos_y: Int]
```
Wireless channel

- A single common channel

 signature

 input send(p:Packet)
 internal discard(p:Packet)
 input register(id: Nat, pos_x, pos_y: Int)
 output read(p:Packet, id:Nat)

- A buffer of short-lived packets

- Definition: packet position
 - The location of the packet sender
Transitions:

- **Send**: get a packet from a node. Record the time when the packet is received.
- **Discard**: discard outdated messages from the channel.
 - Only way a packet can be removed
 - Assume packets are outdated fast enough, so that no collision will happen between two packets that come at times far apart
Wireless Channel Cont. (2)

- Register: node registers position to the channel before receiving a packet
- Read: a node reads a packet from the channel

 - For every packet buffered, check the distance

 - ThresholdR: The channel checks if any packet can reach the node

 - And there is no collision from other packets in the channel

 - ThresholdC: Even if a second packet is not close enough to be received, it can still cause collision.

 - ThresholdD: If two sending nodes’ distance to the receiving node are very different, the farther one will be drowned out.
Random Waypoint Model

- Randomly pick
 - Waypoints
 - Speed
 - Pause Time

- Move-Pause-Move

- A problem
 - Average speed decreasing
 - Slow moving nodes get trapped
 - Solution: non-zero minimum speed
 - Other solutions?
Thank you!