
Midterm
Chapter 8, sections 1-4

8.1: Definition of automaton
8.2: Composition

Understand theorems, but I will not require you to state or prove them.
8.3: Fairness

Understand theorems
8.4: This is just a hint, you should read it

Section 8.5 pp 216-219
Invariant assertions
Safety properties
Liveness properties

Section 8.6 pp 228-229
Complexity measures – later today

Section 15.1.1
Section 15.2

See also 4.1.2 for the algorithm idea
Sections 15.2-15.3

Lecture Notes & Homeworks

Spanning Tree
Note that BFS computes a spanning tree (the parent pointers identify the edges). How
many edges are there in a spanning tree?

The Cisco STP uses this.

What does the Cisco STP compute
When the protocol stabilizes, the state should be as follows:

1) Root bridge: The process (switch) with the lowest MAC address (or lowest
combined priority+MAC address) is the root. This uses a leader election
algorithm.

2) Root ports: Each bridge has one root port. The root port on each bridge is the
port of the bridge with the smallest distance from the root. If two ports are
equidistant from the root, then the one going to the bridge with the lower MAC
address is the root port. This uses a breadth-first search, if we assume rounds;
however, if the network is asyncrhonous, it’s more complicated.

3) Designated ports: Each network segment (connecting bridges) has a designated
port. Messages put on that network segment are forwarded to the rest of the
network through the designated port. The designated port is on the bridge closest
to the root. If there is a tie, it is on the bridge with the lowest MAC address. If the
bridge selected by this rule has multiple ports on a network, it is the port with the
lowest id.

Examples

Cisco Version
All processes send a BPDU (Basic Protocol Data Unit) at each round (actually, default is
every 2 seconds – but we will describe this as a synchronous algorithm, running in
rounds). The BPDU contains the id (MAC address) of the sending process, the id of the
process it thinks is the root, and the distance from the sending process to its presumed
root.

id:Int
id:Int
cost:Int

When a process receives a BPDU, it compares the ID of the root (designated by the
neighbor that sent the BPDU) to the local value for the ID of the root. If the new root ID
is lower, it replaces its local root ID with the new one and adds one to the cost in the
incoming BPDU and makes that its cost to the root. If it receives different BPDU’s
having different roots, it uses the “best,” i.e., the one with the lowest root ID and the
lowest distance (if root Ids are the same).
Finally it designates the port to which the sending neighbor is connected as the root port.
(Effectively choosing its parent)

Note that this is essentially BFS.

Designated ports are then chosen: for each network it is on, the bridge checks incoming
BPDUs. If its own cost is lowest, or if it is tied with another bridge on cost and its id is
smaller, it is the designated bridge, and its port on that network segment is the designated
port. If it has multiple ports on the network segment, it chooses the one with the lowest
id.

Complexity Analysis

Synchronous
Algorithm Rounds Messages Reference
Basic leader n O(n2) Section 3.3, p 31
Halting leader 2n O(n2) “
Best case message complexity 5n O(n log n) Section 3.4, pp 34-35
Breadth-first search diam |E| Section 4.2, p 60
Terminating breadth-first search 2*diam O(|E|) Section 4.2, p 60

Asynchronous
l : upper bound for each task
d : upper bound on time to deliver oldest message in the channel
Algorithm Time Messages Reference
*Basic leader O(n(l+d)) O(n2) Section 15.1.1, pp

479-480
Halting leader O(n(l+d)) O(n2) Section 15.1.1, pp

479-480
Best case message complexity O(n(l+d)) O(n log n) Sections 15.1.2-3

Breadth-first search diam(l+d)+ l O(|E|) Section 15.3, p. 498

Terminating breadth-first search O(n(l+d)+ l) O(|E|) Section 15.3, p. 498

The only ones with anything tricky in the reasoning are starred. For the basic leader
algorithm, the problem is establishing that message queuing doesn’t increase the time.
There’s an interesting and sophisticated inductive proof on pp 480-481.

The first tricky thing about breadth-first search is that the spanning tree built in the
asynchronous case may not be the breadth-first tree. Since a node uses the first search
message it receives to determine its parent, and since messages on a long path may go
very fast, the path of parent points may be simple path including all nodes in the tree. In
this case, the length of the path is n-1.

However, no matter how long the path of parent pointers is, the bounds on task time and
channel time mean that messages traveling on the shortest (but not necessarily fastest)
path arrive within time O(diam*(l+d)+ l). Thus, no matter who the last node reached
chooses as its parent, the first message it receives has to arrive within time
O(diam*(l+d)+ l).

However, if the nodes send messages back up the tree, instead of going fast they may go
slowly, ie, O(n*(l+d)+ l) because they take n steps.

Midterm

