
Sliding Window, based on posted SlidingWindowSender, SlidingWindowReceiver, and
UnreliableChannel.
Let the tasks be
{ { send(m): m ! Messages } } for SlidingWindowSender
{ { receive(m) } : m ! Messages } for UnreliableChannel
{ { read(d) : d !Int } , { {send(m) }: m ! Messages } for SlidingWindowReceiver

The liveness property is: If each message is dropped at most finitely many times by the
UnreliableChannel, each message will eventually be delivered to the Reader, ie, in a fair
execution, every write(i) is eventually followed by a read(i).

Discussion
We know that for a message to be delivered, there’s a chain of events that has to happen:
each message must get from the Writer to the SlidingWindowSender, from the
SlidingWindowSender to the UnreliableChannel, from the UnreliableChannel to the
SlidingWindowReceiver, and from the SlidingWindowReceiver to the Reader.

This requires showing that each automaton is either immediately enabled to send the
message on once it receives it, or that it is eventually enabled to send it on. The former
applies to writes from the Writer to the SlidingWindowReceiver, to receives from the
UnreliableChannel to the SlidingWindowReceiver, and to reads from the
SlidingWindowReceiver to the Reader.

In addition, we observe that the receive of a given message may not be enabled forever in
the UnreliableChannel, since it can be dropped. So to get the message through the
channel, we rely on two things: 1) it will be re-sent continually by the
SlidingWindowSender until it has been acked; and 2) the UnreliableChannel drops each
message at most finitely many times. However, the other actions mentioned above are
enabled forever once they have been enabled.

Finally, we need to know that the SlidingWindowSender will eventually send each
message that is written to it. This relies on it sending all messages in its window until
they are acked (Claim 1, below) and also on it eventually receiving an ack for each
message it has sent (Claim ?).

The following claims assume fair executions. An interesting thing to do, when studying
for the midterm, is to consider each of these as a liveness condition for one automaton.

Claim 1 for SlidingWindowSender. For any write(i) with i"lastAckReceived+window,
the action send(m, B, A) occurs repeatedly until lastAckReceived# m.seq.

Proof: Following each write(i), some sendBuf[index] for
min(i,lastAckReceived+window)#index # lastAckReceived+1

is enabled until send(m[index], B, A) occurs. Fairness requires that eventually
send(m[index], B, A) occurs and index is set to index+1, or else back to
lastAckReceived+1 if

index> min(lastFrameWritten,lastAckReceived+window).

Inductively, we see that for every index with
min(index,lastAckReceived+window)#index#lastAckReceived+1,

eventually send(m[index], B, A) occurs. Furthermore, if lastAckReceived is never
updated, each of these must occur infinitely often, i.e., index cycles from
lastAckReceived+1 to lastAckReceived+window forever.

Later, we will show that for every i, eventually lastAckReceived+window#i, so that
send(m[i], B, A) must finally occur.

Claim 2 for SlidingWindowSender and UnreliableChannel. Following every send(m,
B, A) action, there is eventually a receive(m, B, A).

Proof: Every message m sent through UnreliableChannel is either delivered to
SlidingWindowReceiver (with an action receive(m), B, A)) or it is dropped. By
assumption, each message is dropped at most finitely many times, but if a message is not
delivered it will not be acked, and by Claim 1 above we see that any message that is not
acked will be sent through UnreliableChannel infinitely often. So eventually, the action
receive(m, B, A) will be enabled continuously until it occurs. Fairness requires that
receive(m, B, A) eventually occurs.

Claim 3 for SlidingWindowReceiver. Following each receive(m, B, A) with m.data = i,
there is a read(i).

Proof: The following relations hold between the state variables in
SlidingWindowReceiver:

1) Any acknoweldgment sent has an ack value " lastFrameReceived
2) lastAcceptableFrame = lastFrameRead+window.
3) lastFrameRead " lastFrameReceived

1) and 2) are obvious from inspection of the code; 3) follows because lastFrameReceived
is the same as the largest index in receiveBuf with a non-zero entry.

It follows from 1) that SlidingWindowSender.lastFrameAcknowledged "
SlidingWindowReceiver.lastFrameReceived and so SlidingWIndowSender doesn’t send
any frames with a sequence number larger than lastAcceptableFrame. As a result, every
message received by SlidingWindowReceiver is either placed in the receiveBuf or its
sequence number is smaller than lastFrameRead and therefore it can be safely ignored
because the action read(i) has already occurred.

Claim 4 for SlidingWindowReceiver. If there is a subsequence of a fair execution of the
form

receive(m1, B, A), ..., receive(mn, B, A)
such that {m1.seq, ..., mn.seq} = {1,...,n }, then lastFrameReceived#n (and thus all actions
send(m, A, B) where m.ack=mi are enabled forever) and receiveBuf[mi.seq] =mi.

In other words, every received message is put in the receiveBuf and acked by
SlidingWindowReceiver.

Proof: The “for” loop in receive guarantees that lastFrameReceived has the required
property. Also, by the construction of the receive action, any mi that goes into the
receiveBuf goes into receiveBuf[mi.seq] and for i≤lastFrameReceived,
receiveBuf[i]~=empty, so that for mi.seq≤lastFrameReceived, receiveBuf[mi.seq] = mi.
send(m, A, B) is always enabled if m.ack≤lastFrameReceived (note change to tioa so that
m.ack <= SlidingWindowReceiver.lastFrameReceived). So there will be infinitely many
messages send(m, A, B) in any fair exection. (If the precondition has an =, then
liveness will not hold; why not?).

Claim 5 for SlidingWindowReceiver and UnreliableChannel. Any action send(m, A,
B) is followed eventually by an action receive(m,A, B)

Proof: Similar to Claim 2; instead of depending on sends from the window happening
repeatedly, this depends on acks happening repeatedly.

Claim 6 for the entire system. For any write(i) in a fair execution, there is eventually a
receive(m, B, A) with m.seq=i and also eventually (and even later) lastAckReceived = i.

Proof: This depends on the message being sent (Claim 1), received (Claim 2),
acknowledged (Claim 4), and receipt of the acknowledgment (Claim 5).

By induction on lastAckReceived:
For the induction base use the above claims to establish that after write(1), eventually
receive(m, B, A) with m.seq=1 must occur and subsequently send(m, A, B) with m.ack=1
occurs, and the corresponding receive, so that lastAckReceived takes the value 1.

The induction hypothesis is that following write(i), there is eventually an action
receive(m, B, A) with m.seq=i and subsequently lastAckReceived eventually becomes i.

The induction step uses the above claims, as in the base case, to show that once
lastAckReceived reaches i, either the action receive(m, B, A) with m.seq=i+1 has
already occurred (if it happened out of order) or if not it will eventually occur. In either
case, because lastAckReceived"lastFrameReceived (state invariant!! – consider how to
prove this using induction), it must be true that lastFrameReceived#i+1 after the action
receive(m, B, A) with m.seq=i+1. Thus the ack of i+1 is enabled, the ack of i+1 will be
sent and received, and lastAckReceived will reach i+1.

Finally: Using claim 6, note every write(i) is followed eventually by a receive(m, B, A)
with m.seq=i.

